[image: image11.png]

 http://www.softintegration.com

Introduction to Ch
What is Ch?
Ch is a user-friendly C/C++ interpreter for absolute beginners to learn C/C++. It helps students create programs that tell computers, step-by-step, how to solve problems. Programs are behind all of the computer applications you use every day.
Arithmetic and Parentheses in Ch
Parentheses can change the result of an arithmetic expression. In a Ch Command Window, enter the following expressions to understand how parentheses affect the order of operations.

	Exercise 1
	Exercise 2
	Exercise 3

	1a)
>2+3
Result: __________
	2a)
>9-4
Result: __________
	3a)
>2*3
Result: __________

	1b)
>6+10/2
Result: __________
	2b)
>2+3*5
Result: __________
	3b)
>(6+(8/4)-2)*3
Result: __________

	1c)
>(6+10)/2
Result: __________
	2c)
>(2+3)*5
Result: __________
	3c)
>6+(8/4)-2*3
Result: __________

Read through the following steps and calculate the expressions.

Several important tips to keep in mind include:

· Use + for addition.

· Use – for subtract.

· Use the ‘*’ symbol for multiplication, e.g. 4*(3+1) not 4(3+1).

· Use the ‘/’ symbol for division.
· Be sure to include all the parentheses you need to perform the correct order of operations.

· Be sure to close any parentheses that you open.

	Exercise 4
	Exercise 5

	4a)
Step 1: Divide 70 by 5
Step 2: Multiply the result by 3
Step 3: Subtract 12 from the product
	5a)
Step 1: Multiply 5 by 3
Step 2: Add 6 to the product
Step 3: Multiply the sum by 4
Step 4: Subtract 8 from the product
Step 5: Divide the result by 4

	4b) Write the expression described above: _________________________
	5b) Write the expression described above:

	Type the expression into the interpreter. If correct, Ch should tell you that the answer is 30.
	Type the expression into the interpreter. If correct, Ch should tell you that the answer is 19.

Mathematical Notation in Ch
Ch uses several symbols for mathematical operations that vary from what we usually see in math class. Test the examples below while looking for patterns that indicate the meaning of each symbol.

Exercise 6
For each of the operations below, enter the four examples into the Ch Command Window to figure out what each operation does. Use the last column to comment on what you have learned about the operation.

	Operation
	Example 1
	Example 2
	Example 3
	What does this operation do?

	6a) *
	>7*7

Result: _______
	>2*2*2

Result: _______
	>2*2*2*2

Result: _______
	

	6b) pow
	>pow(7,2)
Result: _______
	>pow(2,3)
Result: _______
	>pow(2,4)
Result: _______
	

	6c) %
	>21%4

Result: _______
	>24%5
Result: _______
	>18%6
Result: _______
	

	6d) /
	>21/4
Result: _______
	>21.0/4
Result: _______
	>21/4.0
Result: _______
	

· Note:

The function pow(x, y) is used as the power function for the expression xy.

Unless the result of a division operation is a whole number, to get the correct numerical result, one of the numbers must be a decimal.
Equality in Ch
Ch has three different symbols to represent different types of equality. In the exercises below, test out the ‘=’, ‘==’, and ‘!=’ symbols looking for patterns that indicate what each one means.

Exercise 7
Enter the expressions below, starting with 7a). Use the last column to comment on what you have learned about that symbol.
[image: image1.png]

Note:

· Be sure to complete 7a) before entering in the other expressions; Ch cannot evaluate an expression involving a variable until that variable is defined.

· If Ch gives you an error message on any of the above exercises, try defining x again by entering x=7, and then proceeding.

	Expression
	Ch’s Response
	Expression
	Ch’s Response

	7a)
> int x

>x = 7
	
	7e)
> x == 7
	

	7b)
> 4*x
	
	7f)
> x == 9
	

	7c)
> pow(x,2)
	
	7g)
>x != 9
	

	7d)
> x
	
	7h)
>x != 7
	

· Note:

1. The symbol int is used to declare a variable to store integers.

2. The symbols ‘=’, ‘==’, and ‘!=’ represent assignment, equal to, and not equal to, respectively.
Inequality in Ch
Exercise 8
Ch also understands inequalities ‘<’, ‘<=’, ‘>’, and ‘<=’. Enter the expressions below, beginning with 8a), and record the results.

	Expression
	Ch’s Response
	Expression
	Ch’s Response

	8a)

> x=3
	
	8g)
> x>=8
	

	8b)
> x<8
	
	8h)
> x>1
	

	8c)
> x<=8
	
	8i)
> x>=1
	

	8d)
> x<1
	
	8j)

> x == 3
	

	8e)
> x<=1
	
	8k)
> x<=3
	

	8f)
> x>8
	
	8l)
> x<=3
	

· Note: The symbols ‘<’, ‘<=’, ‘>’, and ‘>=’ represent less than, less than or equal to, greater than, and greater than or equal, respectively.
Logical Operations in Ch
Exercise 9
Ch also understands logical operations. Enter the expressions below, beginning with 9a), and record the results.

	Expression
	Ch’s Response
	Expression
	Ch’s Response

	9a)

> x=3
	
	9d)
> x>1 && x<8
	

	9b)
> x<2 || x>8
	
	9e)
> x>5 && x<8
	

	9c)
> x<5 || x>8
	
	9f)
> x<=3 && x<8
	

· Note: For the logical OR (||), either one or both of its operands must be true for the operation to be true. The logical AND operator (&&) can be used to check whether both the conditions of its two operands are true.

Programs in Ch
We can also use the ChIDE Editor to write our own programs.
[image: image2.png]

Note: If asked to save your program, be sure to save it as a .ch file (e.g. ProgramName.ch). Once the file is saved as .ch, Ch will be able to find and run your program. Additionally, Ch will know to automatically color code your program for easier readability!
Program add.ch
Read through and run the program below to improve your understanding of how Ch stores values in variables. Notice what happens when the same variable name is used to store more than one value.

Complete the following steps to run the program:

1. Type in the code below and save the file as a .ch file (e.g. ProgramName.ch)

2. Click on the Run menu at the top of the screen

	1a) Predict the answer to the sum of x+y+z below. Then run the following program to test your prediction:

	/* File: add.ch */
int x, y, z; // initialize variables

x = 4; // assign variable values

y = 2;
z = 6; // the value of 6 is assigned to z

z = 2; // z no longer holds the value 6, the value of 2 is assigned to z

printf("%d\n", x+y+z); // prints the sum of x, y, and z to the screen

Use the table below as a guide to analyze Program 1:

	Code
	Explanation

	/* File: add.ch */
	a) Comments with the file name add.ch

	int x, y, z;
	b) Assign 4 into the variable x

	x = 4;
	c) Assign 4 into the variable x

	y = 2;
	d) Assign 2 into the variable y

	z = 6;
	e)

	z = 2;
	f)

	printf("%d\n", x+y+z);
	g)

[image: image3.png]

Note:

· In the final line of program add.ch we also introduced notation \n, which tells Ch that we would like it to start a new line before printing out the statement that follows.
· Use the format specifier “%d” in function printf() integer numbers.
Program product.ch
Predict and run the program below, and work through the related tasks to improve your programming skills.
· Note: Quotation marks and commas are NOT optional in Ch. If Ch gives you an error message, double check to make sure you included all quotation marks and commas!
	2a) Predict what the program below will do. Then run the program to test your prediction:

	/* File: product.ch */
int firstnumber, secondnumber, product; // declare variables

printf("enter the first number: "); // prints to the screen the message

scanf("%d", &firstnumber); // reads user input and stores into variable

printf("enter the second number: ");
scanf("%d", &secondnumber);
product = firstnumber*secondnumber; // compute the product

printf("%dx%d=%d\n", firstnumber, secondnumber, product);

Use the table below as a guide to analyze Program product.ch:

	Code
	Explanation

	int firstnumber, secondnumber, product;
	a)

	scanf("%d", &firstnumber);
	b) Store the value that the user enters into the variable called firstnumber

	scanf("%d", &secondnumber);

	c)

	product = firstnumber*secondnumber
	d)

	printf("%dx%d=%d\n", firstnumber, secondnumber, product);
	e)

[image: image4.png]

Note:

· Use the format specifier “%d” in function scanf() for integer numbers.
Task 1: Create new variable names for ‘firstnumber’, ‘secondnumber’, and ‘product’. Be sure to replace the variables ‘firstnumber’, ‘secondnumber’, and ‘product’ with your own variable names each time they appear in the program.

Task 2: Change the program to multiply 3 input numbers and print the result.

Program tall.ch
Predict and run the program below, and work through the related tasks to improve your programming skills.
[image: image5.png]

Note: On line 12 of the code we divided by 12.0 because if we divide by 12, Ch will cut off the decimal part of the answer.
	3a) Predict what the program below will do. Then run the program to test your prediction:

	/* File: tall.ch */
// declare variables

int feet, inches;
double totalinches, totalfeet;
// ask user for input

printf("enter your height as follows: feet, inches: ");
scanf("%d%d", &feet, &inches);
// compute total inches and total feet

totalinches = feet*12 + inches;
totalfeet = feet+inches/12.0;
// prints the answer to the screen

printf("You are %lf inches tall.\n", totalinches);
printf("You are %lf feet tall.\n", totalfeet);

[image: image6.png]

Note:

· Use int and double types to declare variables to hold integer and decimal numbers, respectively.

· Use the format specifiers “%d” and “%lf” in functions printf() and scanf() for integer and decimal numbers, respectively.
Use the table below as a guide to analyze Program 3:
	Code
	Explanation

	scanf("%d%d", &feet, &inches);

	a) Store the first value entered into a variable called feet and the second value into a variable called inches

	totalinches = feet*12 + inches
	b) Multiply the value stored in feet by 12 and add the product to the value stored in inches; the sum is stored in a variable called totalinches

	totalfeet = feet+inches/12.0
	c)

	printf("You are %lf inches tall.\n", totalinches);
	d) Print out the specified height in inches

	printf("You are %lf feet tall.\n", totalfeet);
	e)

Task 1: Add a line of code that will calculate how many centimeters tall the user is, and a print statement that will print out the result (note: there are 2.54 cm in one inch).
 Program average.ch
Predict and run the program below, and work through the related tasks to improve your programming skills.
	a) Predict what the program below will do. Then run the program to test your prediction:

	/* File: average.ch */
// declare variables

double first, second, third, average;
// ask user for input

printf("enter three number, separated by commas: ");
scanf("%lf%lf%lf", &first, &second, &third);
// compute average

average = (first+second+third)/3.0;
// prints average to screen

printf("average: %lf\n", average);

Use the table below as a guide to analyze Program average.ch:

	Code
	Explanation

	scanf("%lf%lf%lf", &first, &second, &third);

	a) Store the first value entered in a variable called first, the second value in a variable called second, and the third value in a variable called third

	average = (first+second+third)/3.0
	b)

	printf("average: %lf\n", average);
	c) Print out the average of the three specified values

Task 1: Change the program so that it asks the user to enter the three numbers one line at a time, e.g.:

enter the first number:

enter the second number:

enter the third number:

Task 2: Change the program so that it calculates the average of 5 numbers.
Plotting in Ch
Ch can plot data conveniently. The relation between Fahrenheit and Celsius are given in a table below.

	Fahrenheit
	-10
	20
	50
	80
	110

	Celsius
	-23.33
	-6.67
	10
	26.67
	43.33

Program points.ch
Predict and run the program below, and work through the related questions and tasks.

	/* File: points.ch

 Plot the temperature relationship between Fahrenheit and Celsius

 using five points */
#include <chplot.h> // for CPlot

CPlot plot; // declare the variable plot

plot.title("Temperature Relation"); // title of the plot

plot.label(PLOT_AXIS_X, "Fahrenheit"); // x-label of the plot

plot.label(PLOT_AXIS_Y, "Celsius"); // y label of the plot

/* add five data points for plotting */
plot.point(-10, -23.33);
plot.point(20, -6.67);
plot.point(50, 10.00);
plot.point(80, 26.67);
plot.point(110, 43.33);
plot.plotting(); // generate the plot

The output of a plot from the program points.ch is shown below.

[image: image7.png]Temperature Relation

*
0
x
10—
20 -
a3l i i i i i
20 20 40 60 100

Fahrenheit

120

Use the table below as a guide to analyze Program points.ch:
	Code
	Explanation

	#include <chplot.h>
	a) Include the header file chplot.h where all the plotting information is stored

	CPlot plot;
	b) Declare the variable ‘plot’ of type ‘CPlot’

	plot.title("Temperature Relation”);
	d) Set the title of the plot

	plot.label(PLOT_AXIS_X, "Fahrenheit");
	e) Set the x label of the plot

	plot.label(PLOT_AXIS_Y, "Celsius");
	f)

	plot.point(-10, -23.33);
	g) Add the point (-10, -23.33) to the plot

	plot.point(20, -6.67);
	h)

	plot.plotting();
	i) Generate the plot

Conditional Logic in Ch
Ch uses conditional logic to ‘branch out’ and handle all possible scenarios to solve a problem. Run the program below three times:

· The first time, enter a number that is less than 2272

· The second time, try a number that is greater than 2272

· The last time, enter 2272
Program 5: guess.ch
Predict and run the program below, and work through the related questions and tasks.

	5a) Based on the results and the code below, explain what an ‘if, elif, else’ statement appears to do in the space below:

	/* File: guess.ch */
int guess;
printf("Guess the average number of texts an American teen sends and receives each month: ");
scanf("%d", &guess);
if (guess == 2272)
 printf("You got it!\n");
else if (guess < 2272)
 printf("Too low; the average American teen sends 2272 texts per month\n");
else
 printf("Too high; the average American teen sends 2272 texts per month\n");

Use the table below as a guide to analyze Program 5:

	Code
	Explanation

	scanf("%d", &guess);
	a)

	if (guess == 2272)
 printf("You got it!\n");

	b) Ch checks to see if the user guessed 2272; if she/he did, Ch prints out the words “You got it!”

If we had used the single equal sign ‘=’, Ch would have assigned 2272 to guess and then been confused; the double equal sign tells Ch to compare two values, not to replace one with the other.

	else if (guess < 2272)
 printf("Too low; the average American teen sends 2272 texts per month\n");
	c) If the user did not guess 2272, Ch checks to see if the value they guessed is less than 2272. If it is, Ch prints out the words “Too low, try again”

	else
 printf("Too high; the average American teen sends 2272 texts per month\n");
	d)

5f) In the space below, complete the program so that Ch will run as follows:

· Ask the user how many hours she slept last night.

· If she slept 7 - 9 hours, print out ‘You are right on schedule’.

· If she slept less than 7 hours, print out ‘You need a nap’.

· If she slept more than 9 hours, print ‘Time to set the alarm’.

	/* File hour.ch */
int hours;
printf("How many hour did you sleep last night?\n");
scanf("%d", &hours);
if (hours == 7 || hours == 8 || hours == 9)
 printf("You are right on schedule.\n");
else if (hours < 7)
 printf("You could use a nap.\n");
else
 printf("Time to set the alarm.\n");

Type your completed program into the ChIDE editor and run it to check your work.

Programming with Loops in Ch
Ch uses a ‘while loop’ to complete a repetitive task very quickly. A while loop performs a specified task over and over while a specified condition is true. Run the two ‘blastoff’ programs below and describe what appears to be happening in each program.

	Program guess2.ch: Blastoff outside of the loop
	Program guess3.ch: Blastoff inside of the loop

	/* guess2.ch */
int number;
printf("enter a number between 1 and 50: ");
scanf("%d", &number);
while (number >= 0)
{
 printf("%d\n", number);
 number = number - 1;

}
printf("Blastoff!\n");

	/* File: guess3.ch */
int number;
printf("enter a number between 1 and 50: ");
scanf("%d", &number);
while (number >=0)
{
 printf("%d\n", number);
 number = number - 1;
 printf("Blastoff!\n");
}

	Describe the results of this program:

	How do the results of the program differ now that the second print statement is inside the braces?

	Program count.ch: We can have Ch count the total number of multiples of 3 between zero and one hundred by adding a variable that we chose to call counter to our program.

	/* File: count.ch */
// initialize variables

int x, counter;
// assign variables values

x = 3;
counter = 0;
// while x is less than 100, run loop

while (x < 100)
{
 printf("%d\n", x);
 counter = counter+1; // increase count every time program enters loop

 x = x + 3; // increase x by 3

}
printf("There are %d multiples of 3 between zero and one hundred.\n", counter);

	Code
	Explanation

	x = 3;
	a) Store the value 3 in the variable x

	counter = 0;
	b)

	while (x < 100)

	c) Check to see if x is less than 100. If it is, go through the next 3 indented lines inside the braces. If not, skip all of the indented lines.

	printf("%d\n", x);
	d) Print out the value stored in x

	counter = counter+1;
	e) Add 1 to the value stored in counter

	x = x + 3;
	8f) Add 3 to the value stored in x, and replace the previous value with this sum. Then return to the while statement to check to see if the new value stored in x is still less than 100.

	printf("There are %d multiples of 3 between zero and one hundred.\n", counter);
	g)

[image: image8.png]

Note:

· We set counter equal to zero at the beginning of the program. We ‘initialize’ all variables before using them in a loop. This tells Ch that it will need to save some space for the variable before it runs through the loop that follows.
Once we learn how to program, we can create a personalized calculator that can do our work for us. In the program below, we used a while loop to create a calculator that will solve a word problem:

	Program earnings.ch: Mai earns $5.50 per hour at her after-school job. How many hours does she have to work to earn $132?
	Program earnings2.ch: Notice that this is the same program, with a print statement is included in the while loop. Compare the results to those of Program earning.ch.

	/* File: earnings.ch */
double earnings;
int hours;
// assign variables values

earnings = 0;
hours = 0;
// while earnings are less than 132, run loop

while (earnings < 132)
{
 earnings = earnings + 5.5;

 hours = hours + 1;

}
// prints answer to screen

printf("Mai must work %d hours.\n", hours);
	/* File: earnings2.ch */
double earnings;
int hours;
earnings = 0;
hours = 0;
while (earnings < 132)
{
 earnings = earnings + 5.5;

 hours = hours + 1;

 printf("%d hours $%.2lf\n", hours, earnings);
}
printf("Mai must work %d hours\n", hours);

[image: image9.png]

Note:

· In these final programs, hours does the same thing that counter does in Program count.ch.

· Use the format specifier “%.2lf” for the function printf() to display a decimal number with two digits after the decimal point, instead of the default 6 digits after the decimal point.

 Random Number Generation and Games
The same programming skills that you learned to use when solving math problems can be used to create games as well.

Program game.ch
Ch has a function called randint() that will pick a random number between any two values that you want. Type the guessing game below into the ChIDE editor and then fill out the table below to help you understand how this program works.

	/* File game.ch */
int guess, x;
printf("I'm thinking of a number between 10 and 25. Guess my number: "); scanf("%d", &guess);
x = randint(10, 25); // generate a random number between 10 and 25

// while the user's guess is wrong, run while loop

while (guess != x)
{
 printf("Try again: ");
 scanf("%d", &guess);
}
printf("You got it! My number is %d\n", x);

	scanf("%d", &guess);
	a)

	x = randint(10, 25);
	b) Ch generates a random number between 10 and 25, and assigns it to the variable x

	while (guess != x)
	c)

	scanf("%d", &guess);
	d)

	printf("You got it! My number is %d\n", x);
	e)

Program game2.ch
We can improve our guessing game by providing hints about whether the user’s guess is too high or too low. We do this by including conditional logic inside a loop. Fill in the two blank lines of code to tell Ch under what condition it should print out ‘too low, try again:’

	/* File game2.ch */
int guess, x;
// ask user for input

printf("I'm thinking of a number between 10 and 25. Guess my number: ");
scanf("%d", &guess);
x = randint(10, 25); // generate a random number between 10 and 25

// while guess is wrong

while (guess != x)
{
 // guess is to low

 if (guess < x)
 {
 printf("too low, try again: ");
 scanf("%d", &guess);
 }
 // guess is too high

 else
 {
 printf("too high, try again: ");
 scanf("%d", &guess);
 }
 printf("You got it! My number is %d\n", x);
}

Summary
In this lesson we covered several key programming topics that are directly applicable to math curriculum and computational thinking. These include:

· Parentheses affect the order in which Ch performs a calculation

· Ch stores one value in each variable

· Ch uses several symbols rarely found outside of computer science to evaluate mathematical expressions, including

· * : multiplication

· / : division (note: expressions must include decimals if the quotient is not an integer)
· % : remainders
· pow() : power function

· <= : less than or equal to

· >= : greater than or equal to

· != : not equal to

· == : value comparison

· ||: logical OR operation

· &&: logical AND operation

· Ch can tell whether an expression is true or false

· We can use the ChIDE Editor to write our own programs

· We can use Ch to plot data

· We can use conditional logic (if, else if, else) to account for several possible cases of the same problem

· We can use ‘while loops’ to perform a repetitive calculation quickly and accurately

Copyright and License
Copyright 2014, SoftIntegration, Inc. http://www.softintegration.com
The content of this lesson is licensed under the

 HYPERLINK "http://www.google.com/url?q=http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F3.0%2F&sa=D&sntz=1&usg=AFQjCNEkGjDdGkHbUbUnDvbQE_Uk1F0AJQ"
Creative

 HYPERLINK "http://www.google.com/url?q=http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F3.0%2F&sa=D&sntz=1&usg=AFQjCNEkGjDdGkHbUbUnDvbQE_Uk1F0AJQ"

 HYPERLINK "http://www.google.com/url?q=http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F3.0%2F&sa=D&sntz=1&usg=AFQjCNEkGjDdGkHbUbUnDvbQE_Uk1F0AJQ"
Commons

 HYPERLINK "http://www.google.com/url?q=http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F3.0%2F&sa=D&sntz=1&usg=AFQjCNEkGjDdGkHbUbUnDvbQE_Uk1F0AJQ"

HYPERLINK "http://creativecommons.org/licenses/by/3.0/"
Attribution

 HYPERLINK "http://www.google.com/url?q=http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F3.0%2F&sa=D&sntz=1&usg=AFQjCNEkGjDdGkHbUbUnDvbQE_Uk1F0AJQ"
 3.0

 HYPERLINK "http://www.google.com/url?q=http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F3.0%2F&sa=D&sntz=1&usg=AFQjCNEkGjDdGkHbUbUnDvbQE_Uk1F0AJQ"
License, and code samples are licensed under the

 HYPERLINK "http://www.google.com/url?q=http%3A%2F%2Fwww.apache.org%2Flicenses%2FLICENSE-2.0&sa=D&sntz=1&usg=AFQjCNFPaSHdvCi6VD7GwgEkKspvD3d_tw"
Apache

 HYPERLINK "http://www.google.com/url?q=http%3A%2F%2Fwww.apache.org%2Flicenses%2FLICENSE-2.0&sa=D&sntz=1&usg=AFQjCNFPaSHdvCi6VD7GwgEkKspvD3d_tw"
 2.0

HYPERLINK "http://www.apache.org/licenses/LICENSE-2.0"
License.
[image: image10.png]

6

[image: image11.png]