
The Ch Language Environment

CGI Toolkit

Version 3.7.0

User’s Guide

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10

B
es

se
l f

un
ct

io
ns

t

j0(t)
j1(t)
j2(t)
j3(t)

How to Contact SoftIntegration

Mail SoftIntegration, Inc.

216 F Street, #68

Davis, CA 95616

Phone + 1 530 297 7398

Fax + 1 530 297 7392

Web http://www.softintegration.com

Email info@softintegration.com

Copyright c©2001-2012 by SoftIntegration, Inc. All rights reserved.

Revision 3.7.0, May 2012

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this document may be reproduced, stored

in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of SoftIntegration, Inc.

Ch, SoftIntegration, and One Language for All are either registered trademarks or trademarks of SoftInte-

gration, Inc. in the United States and/or other countries. Other product or brand names are trademarks or

registered trademarks of their respective holders.

i

Typographical Conventions

The following list defines and illustrates typographical conventions used as visual cues for specific elements

of the text throughout this document.

• Interface components are window titles, button and icon names, menu names and selections, and

other options that appear on the monitor screen or display. They are presented in boldface. A sequence

of pointing and clicking with the mouse is presented by a sequence of boldface words.

Example: Click OK

Example: The sequence Start->Programs->Ch7.0->Ch indicates that you first select Start. Then

select submenu Programs by pointing the mouse on Programs, followed by Ch7.0. Finally, select

Ch.

• Keycaps, the labeling that appears on the keys of a keyboard, are enclosed in angle brackets. The label

of a keycap is presented in typewriter-like typeface.

Example: Press <Enter>

• Key combination is a series of keys to be pressed simultaneously (unless otherwise indicated) to

perform a single function. The label of the keycaps is presented in typewriter-like typeface.

Example: Press <Ctrl><Alt><Enter>

• Commands presented in lowercase boldface are for reference only and are not intended to be typed

at that particular point in the discussion.

Example: “Use the install command to install...”

In contrast, commands presented in the typewriter-like typeface are intended to be typed as part of an

instruction.

Example: “Type install to install the software in the current directory.”

• Command Syntax lines consist of a command and all its possible parameters. Commands are dis-

played in lowercase bold; variable parameters (those for which you substitute a value) are displayed

in lowercase italics; constant parameters are displayed in lowercase bold. The brackets indicate items

that are optional.

Example: ls [-aAbcCdfFgilLmnopqrRstux1] [file ...]

• Command lines consist of a command and may include one or more of the command’s possible

parameters. Command lines are presented in the typewriter-like typeface.

Example: ls /home/username

• Screen text is a text that appears on the screen of your display or external monitor. It can be a system

message, for example, or it can be a text that you are instructed to type as part of a command (referred

to as a command line). Screen text is presented in the typewriter-like typeface.

Example: The following message appears on your screen

usage: rm [-fiRr] file ...

ls [-aAbcCdfFgilLmnopqrRstux1] [file ...]

ii

• Function prototype consists of return type, function name, and arguments with data type and param-

eters. Keywords of the Ch language, typedefed names, and function names are presented in boldface.

Parameters of the function arguments are presented in italic. The brackets indicate items that are

optional.

Example: double derivative(double (*func)(double), double x, ... [double *err, double h]);

• Source code of programs is presented in the typewriter-like typeface.

Example: The program hello.ch with code

int main() {

printf("Hello, world!\n");

}

will produce the output Hello, world! on the screen.

• Variables are symbols for which you substitute a value. They are presented in italics.

Example: module n (where n represents the memory module number)

• System Variables and System Filenames are presented in boldface.

Example: startup file /home/username/.chrc or .chrc in directory /home/username in Unix and

C:\ > chrc or chrc in directory C:\ > in Windows.

• Identifiers declared in a program are presented in typewriter-like typeface when they are used inside

a text.

Example: variable var is declared in the program.

• Directories are presented in typewriter-like typeface when they are used inside a text.

Example: Ch is installed in the directory /usr/local/ch in Unix and C:/Ch in Windows.

• Environment Variables are the system level variables. They are presented in boldface.

Example: Environment variable PATH contains the directory /usr/ch.

iii

Table of Contents

1 System Administration in Windows 1

1.1 System Requirement for Windows NT/2000/XP/Vista/Windwows 7 1

1.2 Installation in Windows . 1

1.2.1 Install CGI Toolkit in Windows . 1

1.2.2 Uninstall CGI Toolkit in Windows . 2

1.3 Web Server Configuration and Setup CGI in Windows . 2

1.3.1 IIS in Windows NT/2000/XP . 3

1.3.2 IIS in Windows Vista . 6

1.3.3 IIS in Windows 7 . 8

1.3.4 Testing Ch CGI in the Web Server in Windows . 10

1.3.5 Apache Web Server in Windows NT/2000/XP . 12

1.3.6 Netscape Enterprise Web Server in Windows NT/2000/XP 13

1.3.7 Other Web Servers . 13

2 System Administration in Unix 15

2.1 System Requirements for Unix . 15

2.2 Install Apache in Unix . 15

2.2.1 Installing Apache under Ubuntu . 16

2.2.2 Installing Apache under Fedora . 16

2.2.3 Installing Apache under Gentoo . 17

2.2.4 Setting up CGI in Apache . 17

2.3 Install and Uninstall CGI Toolkit in Unix . 17

2.3.1 Install CGI Toolkit in Unix . 17

2.3.2 Uninstall CGI Toolkit in Unix . 18

2.3.3 Install CGI Toolkit in Max OS X . 18

2.3.4 Uninstall CGI Toolkit in Mac OS X . 18

2.4 Configuration and Setup of Web Browsers in Unix . 19

2.5 Configuration and Setup of Web Servers . 19

2.5.1 Apache 1.0 Web Servers . 19

2.5.2 Apache 2.0 Web Servers . 20

2.5.3 BOA Web Servers on the Gumstix . 20

2.5.4 Netscape Web Server . 20

2.6 Testing Ch CGI Scripts . 20

2.6.1 Hardcopying the Ch CGI Scripts and Demos . 20

2.6.2 Symbolic Linking the Ch CGI Scripts and Demos 20

2.6.3 Setting Up the Correct Permissions . 21

2.6.4 Trying the Demos . 21

iv

3 Common Gateway Interface 22

3.1 Common Gateway Interface in Ch . 22

3.2 Classes for Common Gateway Interface . 22

3.3 Processing Fill-Out Forms . 23

3.4 Verbatim Output Blocks Using fprintf . 29

3.5 Dynamic Web Plotting . 32

3.6 Uploading Files to a Web Server . 36

3.7 Cookies for Personalized Content . 44

3.7.1 What Is Cookie . 44

3.7.2 Properties of a Cookie . 45

3.7.3 How to Set a Cookie . 46

3.7.4 How to Get Cookies . 46

3.8 Tips for Debugging CGI Programs . 46

4 References for CGI Classes 52

4.1 CResponse Class . 52

addCookie . 54

addHeader . 56

begin . 56

end . 57

exit . 57

flush . 58

getBuffer . 59

getCacheControl . 60

getCharSet . 61

getContentType . 61

getExpires . 62

getExpiresAbsolute . 62

getStatus . 63

PICS . 64

redirect . 64

setBuffer . 65

setCacheControl . 66

setCharSet . 67

setContentType . 67

setExpires . 68

setExpiresAbsolute . 69

setStatus . 70

title . 71

4.2 CRequest Class . 72

binaryRead . 73

getCookie . 73

getCookies . 74

getForm . 75

getForms . 76

getFormNameValue . 77

getServerVariable . 78

getTotalBytes . 80

v

4.3 CServer Class . 82

HTMLEncode . 83

URLEncode . 83

mapPath . 84

4.4 CCookie Class . 86

addPort . 88

getComment . 89

getCommentURL . 90

getDiscard . 90

getDomain . 91

getMaxAge . 91

getName . 92

getPath . 93

getPorts . 93

getSecure . 94

getValue . 94

getVersion . 95

setComment . 95

setCommentURL . 96

setDiscard . 97

setDomain . 97

setMaxAge . 98

setName . 98

setPath . 99

setSecure . 99

setValue . 100

setVersion . 101

Index 102

vi

Chapter 1

System Administration in Windows

This chapter describes the system requirement, installation, and system administration for SoftIntegration

CGI Toolkit in in Windows. To install and configure Ch CGI to run in Windows, you have to login with an

administrative privilege.

1.1 System Requirement for Windows NT/2000/XP/Vista/Windwows 7

The Ch language environment shall be installed before Ch CGI Toolkit can be installed. One of Ch Standard,

Professional, and Student Editions can be used for CGI programming. To install and use CGI toolkit in

Windows, the following minimum requirements should be met:

• Operating System: Windows NT/2000/XP. For Windows NT, it shall be NT workgroup or Server 4.0

with SP3 or above, Windows 2000/XP/2003/Vista.

• CPU: with a 486 or higher microprocessor.

• Memory: a minimum of 16 Megabytes of RAM.

• Disk Space: 2 Mb.

The CGI Toolkit runs in the following Web servers:

• Microsoft Internet Information Server (IIS) 4.0 or above for Windows NT server and Windows 2000/XP/Vista/Windows

7

• Apache Web Server 1.2.6 or above

• Netscape Enterprise Server 3.0 or above

Note: the CGI Toolkit is likely to work in other Web servers. However, other Web servers not listed here

are yet to be tested and verified.

1.2 Installation in Windows

1.2.1 Install CGI Toolkit in Windows

Before starting the installation, close all running applications. If you have installed an older version of the

CGI Toolkit before, uninstall it off the system first.

To start the installation process from a CD:

1

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

1. Login to the computer with an Administrator privilege under NT/2000/XP/Vista/Windows 7.

2. Insert the Ch setup CD into the CD-ROM drive.

3. On Windows NT/2000/XP/Vista/Windows 7, the setup process starts automatically if AutoPlay for

CDs is enabled. Click Next to continue.

If AutoPlay for CDs is not enabled, use Windows Explorer to navigate from the root directory of the

CD. Then, double-click the Setup.exe file.

4. Read and accept the SoftIntegration license agreement.

5. Enter the product Key

6. Accept default folder names.

7. Accept the typical installation and press Next

8. Follow the instructions of the setup program to install the CGI Toolkit on your computer.

9. Click Finish to complete the installation

If you reinstall the IIS web server or install Ch before the installation of IIS web server, you need to

run the command CHHOME\toolkit\bin\setIISMetabase.exe. The error message created by

setIISMetabase.exe can be found at setIISMetabase.log. If no error message is found, it means the program

runs correctly. Note that CHHOME is not the string “CHHOME”. Rather, it is the Windows filesystem

path under which Ch is installed. For instance use C:\Ch for CHHOME in Windows.

Note: You are able to quit the installation at any time by pressing the <Cancel> button displayed in every

dialog box during the installation. You can also move back and forth to review your settings by clicking the

<Back> and <Next> buttons.

1.2.2 Uninstall CGI Toolkit in Windows

Stop all the Ch programs.

Click Control Panel in My Computer. Click Add/Remove Programs, select SoftIntegration CGI

Toolkit x.xx, where x.xx is the version number such as 1.00. then Click Add/Remove Press Yes

if you are asked to completely remove the CGI Toolkit and all of its components.

1.3 Web Server Configuration and Setup CGI in Windows

This section addresses issues related to setup and system administration of CGI Toolkit in Windows

NT/2000/XP/Vista/Windows 7. To run Ch CGI scripts successfully under windows, all CGI scripts need

to have .ch as a file extension.

2

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

1.3.1 IIS in Windows NT/2000/XP

Install IIS

To install the Internet Information Services (IIS), follow the procedure as follows.

• click Control Panel

• click Add/Remove Programs

• click Add/Remove Windows Components

• check the Internet Information Services Box

Setup Web Server

If you already have the Internet Information Server (IIS) setup prior to installing CGI Toolkit, then the in-

stallation of CGI Toolkit will automatically setup registry and metabase settings for you.

If you reinstall IIS or install the IIS after the installation of CGI Toolkit, you need to run the command

CHHOME\toolkit\bin\setIISMetabase.exe to automatically configure web server for you.

• copy C:/Ch/demos/cgi/chhtml to C:/inetpub/wwwroot/chhtml

• create directory C:/inetpub/cgi-bin

• copy C:/Ch/demos/cgi/chcgi to C:/inetpub/cgi-bin/chcgi

Add index.html as a Default Web Page in Windows NT/2000/XP

• click Control Panel again

• click Performance and Maintenance

• click Administrative Tools

• click Internet Information Services

• click the local computer directory

• In the local computer directory, click Web Sites

• right click Default Web Site, click Properties

• click the Documents tab

• add default document index.html

In some Windows XP system, you may need to follow the following steps to add index.html as a default

Web page.

• click Control Panel again

• click Performance and Maintenance

• click Administrative Tools

3

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

• click Computer Management

• click to expand Services and Applications

• click Internet Information Services

• click Web Sites

• right click Default Web Site, click Properties

• click the Documents tab

• add default document index.html

Create IIS Virtual Directory for CGI

You need to check with your Web server administrator to get information about the server document root

directory and CGI directory, as well as its availability.

Here are the steps for you to follow.

1. First launch the Internet Information Services snap-in.

(a) click Control Panel again

(b) click Performance and Maintenance

(c) click Administrative Tools

(d) click Internet Information Services

In some Windows XP system, you may need to follow the following steps to launch the Internet

Information Services snap-in.

(a) click Control Panel again

(b) click Performance and Maintenance

(c) click Administrative Tools

(d) click Computer Management

(e) click to expand Services and Applications

(f) click Internet Information Services

2. Create a web server virtual directory, cgi-bin. If you have already had one, skip to (3).

• First, create a cgi-bin directory in the Web server root directory, which by default is C:\inetpub
and you need to create the directory C:\inetpub\cgi-bin if it does not exist.

• Then select the Web site to which you want to add a directory. Afer you have clicked Web

Sites and Default Web Site, left click the Action button next to the File button,

point to New, and select Virtual Directory.

• In the New Virtual Directory Wizard for alias, enter cgi-bin.

• Enter the Web Site Content Directory with the directory you just created, which by default is

C:\inetpub\cgi-bin.

4

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

• In Access Permission, Make sure options Read, Run scripts, and Execute are checked,

while the other options are left unchecked.

Note: If you are using NTFS, you can also create a virtual directory by right-clicking a directory in

Windows Explorer, click Sharing, and then selecting the Web Sharing property sheet.

3. Copy all files from CHHOME\demos\CGI\chcgi including the directory chcgi itself to the directory

where virtual directory cgi-bin is associated, which by default is C:\inetpub\cgi-bin. You

will get C:\inetpub\cgi-bin\chcgi

4. Copy all files from CHHOME\demos\CGI\chhtml including the directory chcgi itself to the Web

Server document home directory, which is C:\inetpub\wwwroot by default. You will get

C:\inetpub\wwwroot\chhtml

Start and Stop IIS Web Server

• click Control Panel again

• click Performance and Maintenance

• click Administrative Tools

• click Internet Information Services

• click the local computer directory

• in the local computer directory, click Web Sites

• right click Default Web Site, click Start to start the web server or click Stop to stop the web server.

In some Windows XP system, you may need to follow the following steps to start or stop the IIS Web

server.

• click Control Panel again

• click Performance and Maintenance

• click Administrative Tools

• click Computer Management

• click to expand Services and Applications

• click Internet Information Services

• click Web Sites

• right click Default Web Site, click Start to start the web server or click Stop to stop the web server.

5

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

1.3.2 IIS in Windows Vista

Install IIS

To install the Internet Information Services (IIS), follow the procedure as follows.

• click Control Panel

• click Program & Features

• click Turn Windows Features On of Off

• check the Internet Information Services Box

• Click World Wide Web Services to expand

• Click CGI

Setup Web Server

If you already have the Internet Information Server (IIS) setup prior to installing CGI Toolkit, then the in-

stallation of CGI Toolkit will automatically setup registry and metabase settings for you.

If you reinstall IIS or install the IIS after the installation of CGI Toolkit, you need to run the command

CHHOME\toolkit\bin\setIISMetabase.exe to automatically configure web server for you.

• copy C:/Ch/demos/cgi/chhtml to C:/inetpub/wwwroot/chhtml

• create directory C:/inetpub/cgi-bin

• copy C:/Ch/demos/cgi/chcgi to C:/inetpub/cgi-bin/chcgi

Add index.html as a Default Web Page in Windows Vista

• click Control Panel again

• click Administrative Tools

• click Internet Information Services

• click the local computer directory

• In the local computer directory, click Web Sites

• click Default Document

• add default document index.html

6

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

Create IIS Virtual Directory for CGI

You need to check with your Web server administrator to get information about the server document root

directory and CGI directory, as well as its availability.

Here are the steps for you to follow.

1. First launch the Internet Information Services snap-in.

(a) click Control Panel again

(b) click Performance and Maintenance

(c) click Administrative Tools

(d) click Internet Information Services

In some Windows XP system, you may need to follow the following steps to launch the Internet

Information Services snap-in.

(a) click Control Panel again

(b) click Performance and Maintenance

(c) click Administrative Tools

(d) click Computer Management

(e) click to expand Services and Applications

(f) click Internet Information Services

2. Create a web server virtual directory, cgi-bin. If you have already had one, skip to (3).

• First, create a cgi-bin directory in the Web server root directory, which by default is C:\inetpub
and you need to create the directory C:\inetpub\cgi-bin if it does not exist.

• Click on the displayed machine name on the left pane.

• Click Sites, then right click Default Web Site, then click Add Virtual Directory on the pull down

menu.

• In the New Virtual Directory Wizard for alias, enter cgi-bin.

• Enter the Web Site Content Directory with the directory you just created, which by default is

C:\inetpub\cgi-bin.

• Select the created virtual directory, under Actions on right hand side, select Edit permissions

. . . .

• In Access Permission, Make sure options Read, Read & execute are checked, while the

other options are left unchecked.

Note: If you are using NTFS, you can also create a virtual directory by right-clicking a directory in

Windows Explorer, click Sharing, and then selecting the Web Sharing property sheet.

3. Copy all files from CHHOME\demos\CGI\chcgi including the directory chcgi itself to the directory

where virtual directory cgi-bin is associated, which by default is C:\inetpub\cgi-bin. You

will get C:\inetpub\cgi-bin\chcgi

4. Copy all files from CHHOME\demos\CGI\chhtml including the directory chcgi itself to the Web

Server document home directory, which is C:\inetpub\wwwroot by default. You will get

C:\inetpub\wwwroot\chhtml

7

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

Add Script Handler

To use Ch for CGI, a script handler needs to be added from IIS manager as follows:

• click Control Panel again

• click System & Securiy

• click Administrative Tools

• click Internet Information Services (IIS) Manager

• click on the displayed machine name on the left pane.

• click Sites, then click Default Web Site, then click cgi-bin.

• double click on Handler Mappings on the mid pane.

• click on Add Script Map on the right pane.

• Fill

Request Path: *.ch

Executable: C:\Ch\bin\ch.exe %s

Name: "Ch"

Then, click Yes

Start and Stop IIS Web Server

• click Control Panel again

• click Performance and Maintenance

• click Administrative Tools

• click Internet Information Services

• click the local computer directory

• in the local computer directory, click Web Sites

• click Default Web Site, click Start to start the web server or click Stop to stop the web server.

1.3.3 IIS in Windows 7

Install IIS

To install the Internet Information Services (IIS) in Windows 7, follow the procedure as follows.

• click Control Panel

• click Programs and Features

• click Turn Windows features on & off

• click Internet Information Services Box, expand Internet Information Services, expand World Wide

Web Services, expand Application Development Features, check CGI.

8

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

Setup Web Server

Copy sample html and CGI code to the Web server as follows:

• copy C:/Ch/demos/cgi/chhtml to C:/inetpub/wwwroot/chhtml

• create directory C:/inetpub/cgi-bin

• copy C:/Ch/demos/cgi/chcgi to C:/inetpub/cgi-bin/chcgi

The file index.html can be recognized as a default Web page by Windows 7 automatically.

Create IIS Virtual Directory for CGI

You need to check with your Web server administrator to get information about the server document root

directory and CGI directory, as well as its availability.

Here are the steps for you to follow.

1. First launch the Internet Information Services snap-in.

(a) click Control Panel again

(b) click System & Securiy

(c) click Administrative Tools

(d) click Internet Information Services (IIS) Manager

2. Create a web server virtual directory, cgi-bin. If you have already had one, skip to (3).

• First, create a cgi-bin directory in the Web server root directory, which by default is C:\inetpub
and you need to create the directory C:\inetpub\cgi-bin if it does not exist.

• Click on the displayed machine name on the left pane.

• Click Sites, then right click Default Web Site in the left pane, then click Add Virtual Directory

on the pull down menu.

• In the New Virtual Directory Wizard for alias, enter cgi-bin.

• Enter the Physical path with the directory you just created, which by default is

C:\inetpub\cgi-bin.

3. Copy all files from CHHOME\demos\CGI\chcgi including the directory chcgi itself to the directory

where virtual directory cgi-bin is associated, which by default is C:\inetpub\cgi-bin. You

will get C:\inetpub\cgi-bin\chcgi

4. Copy all files from CHHOME\demos\CGI\chhtml including the directory chcgi itself to the Web

Server document home directory, which is C:\inetpub\wwwroot by default. You will get

C:\inetpub\wwwroot\chhtml

9

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

Add Script Handler

To use Ch for CGI, a script handler needs to be added from IIS manager as follows:

• click Control Panel again

• click System & Securiy

• click Administrative Tools

• click Internet Information Services (IIS) Manager

• click on the displayed machine name on the left pane.

• expand Sites, then expand Default Web Site, then click cgi-bin.

• double click on Handler Mappings on the mid pane.

• click on Add Script Map on the right pane.

• Fill

Request Path: *.ch

Executable: C:\Ch\bin\ch.exe %s

Name: "Ch"

Then, click Yes

Start and Stop IIS Web Server

• click Control Panel again

• click System & Securiy

• click Administrative Tools

• click Internet Information Services (IIS) Manager

• click Start to start the Web server or Stop to stop the Web server on the right hand pane.

1.3.4 Testing Ch CGI in the Web Server in Windows

Start the web browser, type one of the following URLs,

http://localhost/iishelp/

http://localhost/chhtml/

http://localhost/chhtml/index.html

http://YourComputerName.YourDomain/chhtml/index.html or

http://YourComputerName/chhtml/index.html

To test a simple Ch CGI script, you can test the following hello.ch code in the cgi-bin directory

C:\inetpub\cgi-bin\chcgi\hello.ch:

10

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

#!/bin/ch

printf("HTTP/1.0 200 OK\n");

printf("Content-Type: text/html\n\n");

printf("<HTML>\n");

printf("<HEAD>\n");

printf("<Title> Hello World </Title>\n");

printf("</Head>");

printf("<BODY>\n");

printf("<h4> Hello, world </h4>\n");

printf("</BODY>\n");

printf("</HTML>\n");

The above code can be written in CGI classes as follows:

#!/bin/ch

#include <cgi.h>

class CResponse Response;

Response.begin();

Response.title("Hello World");

printf("<h4> Hello, world </h4>\n");

Response.end();

In a plain text, the code can be written as:

#!/bin/ch

printf("Content-type: text/plain\n\n");

printf("Hello, world\n");

Start the web browser, type one of the following URLs,

http://localhost/cgi-bin/chcgi/hello.ch

http://YourComputerName.YourDomain/cgi-bin/chcgi/hello.ch

http://YourComputerName/cgi-bin/chcgi/hello.ch

Note: The first line #!/bin/ch can be taken away from hello.ch and it still works. We keep it there for

consistency with scripts running under Unix.

Delete Ch demos and samples

If you are going to run Ch programs on a production line, you may want to keep only your production code.

You can either delete all Ch provided code or delete the cgi-bin virtual directory

In the Internet Information Services snap-in, select the virtual directory cgi-bin that you want to delete.

Click the Action button next to File button, and select Delete.

Deleting a virtual directory does not delete the corresponding physical directory or files.

11

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

1.3.5 Apache Web Server in Windows NT/2000/XP

If you want to put all of your CGI scripts into one directory, add the following line to your httpd.conf or

srm.conf file. (Note: C:/Program Files/Apache Group/Apache/cgi-bin/ is the directory where CGI scripts

are intended to be put. It can be any directory.)

ScriptAlias /cgi-bin/ "C:/Program Files/Apache Group/Apache/cgi-bin/"

Make sure do not use

ScriptAlias /cgi-bin/ "C:\Program Files\Apache Group\Apache\cgi-bin\"

After you have made this change, stop and restart the Apache service.

The following is a sample portable Ch CGI code that will work in Apache in both Windows and Unix.

In windows, you need to copy CHHOME\bin\ch.exe to X:\bin\ch.exe first, where X is the drive

where the Apache server is installed such as C:.

#!/bin/ch

printf("HTTP/1.0 200 OK\n");

printf("Content-Type: text/html\n\n");

printf("<HTML>\n");

printf("<HEAD>\n");

printf("<Title> Hello World </title>\n");

printf("</Head>");

printf("<BODY>\n");

printf("<h4> Hello, world </h4>\n");

printf("</BODY>\n");

printf("</HTML>\n");

Apache provides an emulation of the UNIX shell (#!/path/to/ch) syntax. Thus, a path to a valid

interpreter can be put at the top to make it work. You may change #!/bin/ch to #!C:\bin\ch.exe

in the above sample code if Ch is installed in C drive.

If you want to enable CGI scripts based on the file extension .ch and CGI outside ScriptAliased directories,

add the following line to either httpd.conf or srm.conf:

AddHandler cgi-script .ch

By default, CGI scripts are not allowed in your DocumentRoot directory, but they are allowed in other

document directories. Document directories are created with the Alias command in either httpd.conf or

srm.conf:

Alias /document/ "D:/documentsamp/"

You can then include files that end in .ch within a document directory. You will still need to include the #!

line with the full path to the ch.exe interpreter, as shown earlier.

If you want to allow CGI scripts in the DocumentRoot directory, add the ExecCGI option to the Options

directive between the <Directory> and </Directory> entry for your DocumentRoot in httpd.conf or ac-

cess.conf.

After you have updated it, your Options directive may look something like:

Options Indexes FollowSymLinks ExecCGI

12

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

1.3.6 Netscape Enterprise Web Server in Windows NT/2000/XP

The following information is for Netscape FastTrack Server 2.0. Other 2.0 and 3.0 Netscape Servers (Com-

munications, Enterprise) should be similar.

To set up Ch for Win32 to run on the FastTrack Server, you need to install the FastTrack Server based on

the documents from Netscape.

After the installation of Ch, you need to restart the Web server.

Set up a Shell CGI directory to run Ch CGI scripts. A regular CGI directory will not work – that is only for

executable files. You set this up with the FastTrack Administrator; see the documentation for details.

If you would like to access Ch CGI scripts in other directories, you need to associate an extension, such as

.ch, with the MIME type. Before you follow these steps, you must add at least one Shell CGI directory - this

will enable shellcgi on your server (you can delete this directory, and shellcgi will remain enabled). Follow

these steps to associate .ch with the MIME type:

• In the Server Administrator, click Server Preferences, then select MIME Types from the frame on the

left.

• Add a new MIME Type with magnus-internal/shellcgi as the Content Type, and ch as the File Suffix.

If a type for magnus-internal/shellcgi already exists, simply add ch to the list of File Suffixes. Don’t

include the leading dot on the file suffix.

• Save and apply these changes. You should be able to put a Ch CGI script in any directory, provided

the script ends with the .ch suffix.

If you are having trouble running CGI scripts on your Netscape server, check the following:

• Ensure that the script is readable by the account used by the Netscape service. Generally, this means

you should make the script readable by the Everyone group.

• Ensure that all supporting files, like the Ch binary files, the Ch library files, and the modules that you

use, are all readable by the account used by the Netscape service (i.e., the Everyone group).

• Check the Error log of the FastTrack server if your CGI script does not work.

• Because Netscape servers run as services, you need to make sure that files and environment variables

are available to them.

• Since Netscape uses associations to run scripts, and POST’ed data is sent through the stdin data

stream to a program, this may be related to the problems of redirection in handling Posted data with

Ch programs.

1.3.7 Configure Other Web Servers to Support Ch CGI

If other Web servers are used, check the server’s documentation on how to set up a CGI interpreter.

In general, set up a directory where executable scripts go, and put your Ch script there. Make sure that the

user account that the Web server uses can read the script, the files may need to be readable for the Everyone

13

1.3. WEB SERVER CONFIGURATION AND SETUP CGI IN WINDOWS
CHAPTER 1. SYSTEM ADMINISTRATION IN WINDOWS

group.

Because most Web servers run as services, you need to take special steps to make sure that files and envi-

ronment variables are available to them.

14

Chapter 2

System Administration in Unix

This chapter describes the system requrements, installation, and administration for the SoftIntegration CGI

Toolkit in Unix.

2.1 System Requirements for Unix

The Ch language environment shall be installed before Ch CGI Toolkit can be installed. One of Ch Standard,

Professional, and Student Editions can be used for CGI programming. The CGI Toolkit is supported in the

following Unix operating systems.

• Solaris 2.6 or above

• HP-UX 10.20 or above

• Linux on Intel architectuer (kernel 2.4.20-8 or above)

• LinuxPPC on Power architecture (kernel 2.6.10-1 or above)

• Mac OS X 10.3 or above

• FreeBSD 5.1 or above

The hardware requirement for the Intel Linux platform is

• Pentium/90Mhz or above

• A minimum of 16 Megabytes of RAM

• Disk space of 2 Mb.

The CGI Toolkit has been tested with the following Web servers: Netscape Enterprise Server (3.0 or above)

and Apache Web Server (1.2.6 or above).

2.2 Install Apache in Unix

The Apache HTTP Server is an open-source secure, efficient and extensible HTTP server that provides

HTTP services in sync with the current HTTP standards. More information concerning the Apache HTTP

Server can be found on the Web at http://httpd.apache.org.

15

2.2. INSTALL APACHE IN UNIX
CHAPTER 2. SYSTEM ADMINISTRATION IN UNIX

The installation procedures and the location of the configuration files and webserver root directory are

Linux distribution dependent. Listed below are installation guidelines for a few common Linux distributions.

Please refer to your specific distribution’s website and the Apache website for more information on installing

and trouble shooting Apache.

2.2.1 Installing Apache under Ubuntu

Login your system and run the Synaptic Package Manager which is a graphical program for installing

packages. You can launch Synaptic from System -¿ Administration -¿ Synaptic Package Manager. The

System menu should be the third menu on the menubar. Synaptic will ask for an adminstrative password.

Scroll the right window pane which shows a listing of available packabes until you find ’apache2’. Right

click on the package and select ’mark for installation’ and then click ’Apply’ at the top of the program. It

will show you a listing of other required packages that need to be installed. Click ’Okay.’ Once all of the

packages have been installed, close Synaptic and open a terminal. Start Apache by running

/etc/init.d/apache2 start

Open a Web browser and type

http://127.0.0.1

into the URL. A page either showing the Apache logo and other information or a page saying “It works”

should be displayed.

By default, the configuration files are located under /etc/apache/. The webserver root directory is under

/var/www/ and the cgi-bin directory is under /usr/lib/cgi-bin.

2.2.2 Installing Apache under Fedora

Login your system and run the Fedora package manager. Under the Fedora menu, select the “Add/Remove

Software.” Then type in your root password when prompted. The package manager window should pop

up. Then click on the ‘Search’ button and search for apache. Select the Apache 2 package by checking

the box located to the left of the package name. Then click the ‘Apply’ button at the bottom right of the

program. The package manager will ask for a confimation to install the packages and any dependencies.

Select ‘Continue’. Once the installation of the packages are complete, exit out of the package manager.

Open a terminal and start the Apache server with

/etc/init.d/httpd start

Open a Web browser and type in

http://127.0.0.1

into the URL. A page either showing the Apache logo and other information or a page saying “It works”

should be displayed.

For Fedora 5.0, by default, the configuration files are located under /etc/httpd/. The webserver document

root directory is under /var/www/html and the cgi-bin directory is under /var/www/cgi-bin.

16

2.3. INSTALL AND UNINSTALL CGI TOOLKIT IN UNIX
CHAPTER 2. SYSTEM ADMINISTRATION IN UNIX

2.2.3 Installing Apache under Gentoo

The Gentoo Wiki has a nice installation page for Apache on the Web at http://gentoo-wiki.com/Apache2 Install.

Open up a terminal. Either log in as root, su into root or use sudo and run emerge -av apache. Once

portage has finished compiling and installing Apache, start it with

/etc/init.d/apache2 start

Open a Web browser and type in

http://127.0.0.1

into the URL. A page either showing the Apache logo and other information or a page saying “It works”

should be displayed.

The configuration files are located under /etc/apache2/. The webserver document root directory is under

/var/www/localhost/html and the cgi-bin directory is under /var/www/localhost/cgi-bin.

2.2.4 Setting up CGI in Apache

Modify the Apache configuration file /etc/apache2/apache2.conf or /etc/httpd/conf/httpd.conf (save backup

before editing just in case new settings fail) with the following lines:

ScriptAlias /cgi-bin/ "/var/www/html/cgi-bin/"

#

"/var/www/cgi-bin" should be changed to whatever your ScriptAliased

CGI directory exists, if you have that configured.

#

<Directory "/var/www/html/cgi-bin/">

AllowOverride None

Options +ExecCGI

Order allow,deny

Allow from all

</Directory>

AddHandler cgi-script .ch

This makes /var/www/html/cgi-bin your CGI folder - apache will be able to interpret any files in this

folder as CGI files. You can change the folder by changing /var/www/html/cgi-bin both places it appears in

the above code.

2.3 Install and Uninstall CGI Toolkit in Unix

2.3.1 Install CGI Toolkit in Unix

If you have older version installed, uninstall that version from the system first..

If you have the CD with you, install the CGI Toolkit in the following steps.

1. Log in as root

17

2.3. INSTALL AND UNINSTALL CGI TOOLKIT IN UNIX
CHAPTER 2. SYSTEM ADMINISTRATION IN UNIX

2. Insert the Ch setup CD into the CD-ROM drive. Depending on how your operating system is config-

ured, your CD drive may be mounted automatically. If the CD drive is not mounted, you must mount

it before continuing.

3. Go to your CD-ROM directory where the CD-ROM is mounted.

4. Run the following command.

ch ./install.ch

2.3.2 Uninstall CGI Toolkit in Unix

Remove all components of CGI Toolkit from the CHHOME directory where you installed Ch. Note that

CHHOME is not the string “CHHOME”. Rather, it is the Unix filesystem path under which Ch

is installed. Under Unix, the default directory for installing Ch version 2.0 is /usr/local/ch2.0, and the

symbolic /usr/local/ch or /usr/ch will be created, and CHHOME will be set to either /usr/local/ch or /usr/ch.

More specifically, remove files libcgi.dl and libwcgi.dl in the directory CHHOME/toolkit/dl,

cgi.h and wcgi.h in CHHOME/toolkit/include, and directories CHHOME/toolkit/lib/cgi

and CHHOME/demos/CGI.

2.3.3 Install CGI Toolkit in Max OS X

1. Download the compressed file from the SoftIntegration website.

2. Your Mac OS X shuttle will uncompress the file and create a directory chcgi-3.5.1.macosx in your

Desktop. If not, you can untar and decompress the downloaded file with the command below.

gzip -cd chcgi-3.5.1.macosx.tgz | tar xvf -

3. Goto chcgi-3.5.1.macosx Folder from Mac OS X Desktop, then double click chcgi-3.5.1.pkg and you

can follow the instructions to install.

2.3.4 Uninstall CGI Toolkit in Mac OS X

You will have to be the root user for uninstalling Ch.

• remove /usr/local/ch/docs/chcgi.pdf

remove /usr/local/ch/toolkit/include/cgi.h

remove /usr/local/ch/toolkit/include/wcgi.h

remove /usr/local/ch/toolkit/dl/libcgi.dl

remove /usr/local/ch/toolkit/dl/libwcgi.dl

remove /usr/local/ch/toolkit/lib/cgi

remove /usr/local/ch/demos/CGI

remove /usr/local/ch/toolkit/release/release_CGI

remove /usr/local/ch/toolkit/license/license_CGI

• remove the package receipt file ”/Library/Receipts/chcgi-3.5.1.pkg”

18

2.4. CONFIGURATION AND SETUP OF WEB BROWSERS IN UNIX
CHAPTER 2. SYSTEM ADMINISTRATION IN UNIX

2.4 Configuration and Setup of Web Browsers in Unix

Ch is denoted by a specific file extension, with .ch as the default Ch file extension, .chs as the safe Ch file

extension. Both the Web browser and server can be configured to take advantage of internet computing.

1. Copy the file CHHOME/config/.mime.types to your home directory or append the following to your

existing file ˜/.mime.types in the user’s home directory

handle CH language environment

application/x-chs chs

2. Then, copy the file CHHOME/config/.mailcap to your home directory or append the following to

your existing file ˜/.mailcap in the user’s home directory.

#handle CH language environment

application/x-chs; ch -S %s

When file ˜/.mailcap in user’s home directory is changed, the Web browser needs to be restarted to make it

effective.

2.5 Configuration and Setup of Web Servers

This section addresses the issues related to the setup and system administration of the CGI Toolkit in Unix,

Mac OS X, and Gumstix.

2.5.1 Apache 1.0 Web Servers

For the Apache Web server, add the following line to file server home dir/conf/mime.types

application/x-chs chs

If you want to enable CGI scripts based on an extension, such as .ch, you need to add the following line to

either httpd.conf or srm.conf or apache2.conf:

AddHandler cgi-script .ch

To use dynamically linked libraries in /usr/ch/extern/lib and /usr/local/lib, add the following line to either

httpd.conf or srm.conf or apache2.conf:

SetEnv LD_LIBRARY_PATH /usr/ch/extern/lib:/usr/local/lib

After the above changes, the Web server needs to restart for the changes to be effective.

To test Ch CGI in a Apache web server in Mac OS X, copy CHHOME/demos/CGI/chhtml directory to

/Library/WebServer/Documents/chhtml, and CHHOME/demos/CGI/chcgi directory to /Library/WebServer/CGI-

Executables/chcgi. Then, click hyperlinks in your web site

http://your.MacMachine.website.com/chhtml/.

19

2.6. TESTING CH CGI SCRIPTS
CHAPTER 2. SYSTEM ADMINISTRATION IN UNIX

2.5.2 Apache 2.0 Web Servers

No configuration modifications are required.

2.5.3 BOA Web Servers on the Gumstix

By default, a BOA Web server is installed and run on Gumxstix. No configuration modifications are

required. By default, the configuration file is located under /etc/boa/. The webserver root directory is

/var/www/ and the cgi-bin directory is /usr/lib/cgi-bin.

2.5.4 Netscape Web Server

If you administer a Web server and want to generate a Ch applet from a Web server, add the following line to

the Netscape WWW server configuration file mime.types located in

server home dir/https-80 or http/config/mime.types

type=application/x-chs exts=chs

2.6 Testing Ch CGI Scripts and demos

To run the sample code of Ch from the Web sever, create a chhtml directory in the Web server document

root directory where your Web documents are located, and create a chcgi directory in your Web server

cgi-bin directory.

2.6.1 Hardcopying the Ch CGI Scripts and Demos

Then, copy all files including the subdirectories from CHHOME/demos/CGI/chhtml to web-server-document-

root/ and all files from CHHOME/demos/CGI/chcgi to webserver-cgi-bin-directory/. Then you will have the

directory web-server-document-root/chhtml and webserver-cgi-bin-directory/chcgi.

For example, under Redhat, copy /usr/local/ch/demos/CGI/chhtml to

/var/www/html and /usr/local/ch/demos/CGI/chcgi to /var/www/cgi-bin using

cp -r /usr/local/ch/demos/CGI/chhtml /var/www/html

cp -r /usr/local/ch/demos/CGI/chcgi /var/www/cgi-bin

2.6.2 Symbolic Linking the Ch CGI Scripts and Demos

Instead of copying files, a symbolic link can be created as follows

ln -s /usr/local/ch/demos/CGI/chhtml /var/www/html/chhtml

ln -s /usr/local/ch/demos/CGI/chcgi /var/www/cgi-bin/chcgi

Some Web servers, such as Apache 2.0, require a modification to the configuration file in order to allow the

system to follow symbolic links. Please refer to your Web server documentation.

20

2.6. TESTING CH CGI SCRIPTS
CHAPTER 2. SYSTEM ADMINISTRATION IN UNIX

2.6.3 Setting Up the Correct Permissions

In order to make sure the permissions are setup correctly, run the following

chmod -R 755 /var/www/html/chhtml

chmod -R 755 /var/www/cgi-bin/chcgi

2.6.4 Trying the Demos

Try the following URLs in your Web browser:

http://127.0.0.1/chhtml/ or

http://localhost/chhtml or

http://YourComputerName.YourDomain/chhtml or

http://YourComputerName/chhtml

21

Chapter 3

Common Gateway Interface

Common Gateway Interface (CGI) is a standard that specifies how external programs interface with a Web

server. One of the most important applications of CGI is handling fill-out forms. A CGI program located

on a host machine’s Web server can accept a user’s input through a fill-out form and generate Web pages

dynamically.

3.1 Common Gateway Interface in Ch

A CGI program can be written in any language that allows it to be executed on a host computer where a Web

server is located. The most commonly used languages for CGI at present are C and Perl. CGI programs

written in C or C++ normally have to be compiled. These compiled programs are difficult to modify and

maintain. Therefore, many people prefer to write CGI programs in Perl which is interpretive and resembles

C language. However, it is difficult to develop and maintain large programs in Perl. Ch can be used for

common gateway interface directly without compilation, so as to speed up the development process greatly.

More importantly, it can leverage a large body of existing C programs.

There are many security features built into the Ch language environment for internet computing. A CGI

program is normally run in a regular Ch shell. A webmaster can examine all CGI programs by looking at

the source code directly. The execution environment for Ch shell can be controlled by modifying the startup

file .chrc in Unix and chrc in Windows. A Ch script starting with

#!/bin/ch

at the first line of the program can be executed as a regular Ch program without any modification by a Web

server in both Unix and Windows.

The path for commands executable by the Ch shell is controlled by system-wide startup file

CHHOME/config/chrc which includes .chrc in Unix and chrc in Windows at the home directory of the ac-

count that executes CGI programs. The startup file .chrc can be modified to restrict the programs executable

by the CGI program.

3.2 Classes for Common Gateway Interface

The enterprise edition of the Ch language environment is capable of common gateway interface. It con-

tains several classes and demonstrations CGI programs. The CGI programs can be found in the directory

CHHOME/demos/CGI. On-line documentation and demos of CGI in Ch are available on the Web. Header

file cgi.h contains the definition of classes such as CResponse, CRequest, CServer, and CCookie classes,

and their member functions as well as defined constants. These classes provide convenient mechanisms

22

3.3. PROCESSING FILL-OUT FORMS
CHAPTER 3. COMMON GATEWAY INTERFACE

for common gateway interface. Member functions of these classes are listed in Tables 3.1 to 3.4. The

CResponse class is typically used with the following syntax:

#include <cgi.h>

/* ... */

class CResponse Response;

/* ... */

Response.setContentType(content);

Response.begin();

/* ... */

Response.end();

Two generic data types chchar and chstrarray are typedefed in the header file cgi.h as follows.

typedef char chchar;

typedef char** chstrarray;

When the Unicode is used, these two generic data types, chchar and chstrarray, are typedefed in the header

file wcgi.h as follows.

typedef wchar_t chchar;

typedef wchar_t** chstrarray;

The content type delivered to the Web browser is handled by function CResponse::setContentType(). Any

CResponse::set*() member function should be called before CResponse::begin() is called. Before the

program ends, the function CResponse::end() should be called. Detailed description of each function can

be found in the chapter about common gateway interface in The Ch Language Environment — Reference

Guide.

3.3 Processing Fill-Out Forms

A simple CGI Ch program for handling forms will be presented by an example of ordering a pizza through

cyberspace as shown on the Web page in Figure 3.1, whose HTML source code is shown in Program 3.1.

Here, the street address and telephone number of a customer are entered through the default text input of a

fill-out form. The choice of topings for the pizza is entered through the check boxes. More than one toping

can be selected. There are two different request methods to handle a fill-out form: one is called POST,

the other is GET. In the default request method of GET, the encoded fill-out form contents are appended to

the URL as if they were a normal query through the environmental variable QUERY STRING. On the other

hand, the fill-out form contents in the method of POST are sent to the server through stdin rather than as a

part of a URL. When the request method of POST is used, the environment variable CONTENT LENGTH

can be used to determine how much data shall be read from stdin. In this example, the request method of

POST is used as shown near the beginning of Program 3.1. The CGI program form.ch located in the default

Ch/CGI program directory cgi-bin/ch of a Web server to process this fill-out form is indicated by the field

ACTION in Program 3.1. The role of CGI in this example is to obtain the customer’s street address, phone

number, and selection of topings. If an automatic pizza making machine is used, pizzas can be made and

delivered automatically.

The simple CGI Ch program form.ch in Program 3.2 can obtain the input submitted through a fill-out

form. As explained before, to run this CGI program as a Ch script in a Web server, the following line of

code

23

3.3. PROCESSING FILL-OUT FORMS
CHAPTER 3. COMMON GATEWAY INTERFACE

Table 3.1: Member functions of class CResponse.

Function Description

addCookie() adds a specified cookie with attributes.

addHeader() adds an HTTP header to the HTTP response.

begin() begins to send output. Mandatory in CGI.

end() ends standard output. For CGI only.

exit() causes the server to stop processing a script and return.

flush() sends buffered HTML output immediately.

getBuffer() retrieves the value of the Buffer property.

getCacheControl() retrieves the value of the CacheControl property.

getCharSet() retrieves the value of the CharSet property.

getContentType() retrieves the value of the ContentType property.

getExpires() retrieves the value of the Expires property.

getExpiresAbsolute() retrieves the value of the ExpiresAbsolute property.

getStatus() retrieves the value of the Status property.

PICS() adds a value to the PICS label field of the header.

redirect() causes the browser to attempt to connect to a different URL.

setBuffer() sets the value of the Buffer property.

setCacheControl() sets the value of the CacheControl property.

setCharSet() sets the value of the CharSet property.

setContentType() sets the value of the ContentType property.

setExpires() sets the value of the Expires property.

setExpiresAbsolute() sets the value of the ExpiresAbsolute property.

setStatus() sets the value of the Status property.

title() sets the title of an HTML page. For CGI only.

i

Table 3.2: Member functions of class CRequest.

Function Description

binaryRead() retrieves the bytes that were read by an HTTP Post and place it into a buffer.

getCookie() retrieves a cookie.

getCookies() retrieves all cookies.

getForm() retrieves a value of the specified name which was read by

POST or GET method.

getForms() retrieves all values of a specified name which were read by POST or

GET method.

getFormNameValue() retrieves all pairs of name and value that were read by POST or GET method.

getServerVariable() retrieves the value of a specified ServerVariable.

getTotalBytes() retrieves the size of the current request in bytes.

Table 3.3: Member functions of class CServer.

Function Description

HTMLEncode() applies HTML encoding to the specified string.

URLEncode() applies URL encoding rules, including escape characters, to the specified string.

mapPath() maps the specified relative or virtual path to the corresponding

physical directory on the server.

24

3.3. PROCESSING FILL-OUT FORMS
CHAPTER 3. COMMON GATEWAY INTERFACE

Table 3.4: Member functions of class CCookie.

Function Description

addPort() adds a new port into the portlist of the cookie. For version 1 only.

getComment() retrieves the Comment attribute of the cookie. For version 1 only.

getCommentURL() retrieves the CommentURL attribute of the cookie. For version 1 only.

getDiscard() retrieves the Discard attribute of the cookie . For version 1 only.

getDomain() retrieves the Domain attribute of the cookie.

getMaxAge() retrieves maximum age of the cookie.

getName() retrieves the name of the cookie.

getPath() retrieves the path on the server to which browser returns the cookie.

getPorts() retrieves all ports in the portlist of the cookie. For version 1 only.

getSecure() determines if the browser is sending the cookie only over a secure protocol.

getValue() retrieves the value of the cookie.

getVersion() retrieves the version of the protocol the cookie complies with.

setComment() sets the Comment attribute of the cookie. For version 1 only.

setCommentURL() sets the CommentURL attribute of the cookie. For version 1 only.

setDiscard() sets the Discard attribute of the cookie. For version 1 only.

setDomain() sets the Domain attribute of the cookie.

setMaxAge() sets maximum age of the cookie.

setName() sets the name of the cookie.

setPath() sets the path on the server to which browser returns the cookie.

setSecure() sets the Secure attribute of the cookie.

setValue() sets the value of the cookie.

setVersion() sets the version of the protocol the cookie complies with.

25

3.3. PROCESSING FILL-OUT FORMS
CHAPTER 3. COMMON GATEWAY INTERFACE

Figure 3.1: Part of the fill-out form for ordering a pizza through the cyberspace.

<HTML>

<TITLE>Fill-Out Form Example </TITLE>

<BODY>

<H1>Fill-Out Form Example </H1>

This is a fill-out form example, with multiple text entry

fields and checkboxes. <P>

<HR>

<FORM METHOD="POST" ACTION="/cgi-bin/ch/form.ch">

<H2>Godzilla’s Pizza -- Internet Delivery Service</H2>

Type in your street address: <INPUT NAME="address"> <P>

Type in your phone number: <INPUT NAME="phone"> <P>

Which toppings would you like? <P>

 <INPUT TYPE="checkbox" NAME="topping" VALUE="pepperoni"> Pepperoni.

 <INPUT TYPE="checkbox" NAME="topping" VALUE="sausage"> Sausage.

 <INPUT TYPE="checkbox" NAME="topping" VALUE="anchovies"> Anchovies.

To order your pizza, press this button: <INPUT TYPE="submit"

VALUE="Order Pizza">. <P>

</FORM>

<HR>

</BODY>

</HTML>

Program 3.1: Fill-out form in html file for ordering pizza.

26

3.3. PROCESSING FILL-OUT FORMS
CHAPTER 3. COMMON GATEWAY INTERFACE

#!/bin/ch

#include <cgi.h>

int main() {

chstrarray value;

class CResponse Response;

class CRequest Request;

Response.setContentType("text/html");

Response.begin();

Response.title("CGI FORM results");

printf("<H1>CGI FORM test script reports:</H1>\n");

printf("The following 4 name/value pairs are submitted<p>\n");

printf("\n");

printf(" <code>address = %s </code>\n", Request.getForm("address"));

printf(" <code>phone = %s </code>\n", Request.getForm("phone"));

Request.getForms("topping", value);

printf(" <code>topping = %s </code>\n", value[0]);

printf(" <code>topping = %s </code>\n", value[1]);

printf("\n");

Response.end();

}

Program 3.2: A CGI program form.ch for processing a fill-out form.

#!/bin/ch

shall be added at the beginning of the program. For an illustrative purpose, in this example, program form.ch

only decodes the user’s input, and generates a dynamic Web page in HTML format. The programming

statement

Response.setContentType("text/html");

indicates that the content type of the output is a text in HTML format. Other content types such as plain

text or graphics can also be generated dynamically. By default, the content type is “text/html” from

Ch-CGI. In Ch-CGI, all properties of a CResponse object such as content type must be set up before the

function CResponse::begin() is called, which starts output. For the content type of html text, member

function CResponse::title() can be used conveniently to add title and body tags. The member function

CResponse::title() is implemented with the following source code.

void CResponse::title(char* titleName) {

printf("<html>\n");

if (titleName != NULL)

printf("<head> <title> %s </title></head>\n", titleName);

printf("<body bgcolor=\"#FFFFFF\">\n");

}

If more elaborative output is desired, the user may write header information directly using function printf()

instead of using function CResponse::title(). If the content type is not “text/html”, member function

CResponse::title() shall not be used.

The names and values submitted in a fill-out form can be obtained in the CGI program by member func-

tions CResponse::getForm(), CResponse::getForms(), or CResponse::getFormNameValue(). Because

27

3.3. PROCESSING FILL-OUT FORMS
CHAPTER 3. COMMON GATEWAY INTERFACE

Figure 3.2: Dynamic Web page in html format generated by CGI program form.ch.

Figure 3.3: Dynamic Web page with plain text generated by CGI program form.ch with option -g.

there are multiple values associated with name topping, member function CResponse::getForms() is

used in the program form.ch. A CResponse object will be terminated by the function CResponse::end().

The Web page in html file format generated dynamically by the CGI program form.ch is shown in Figure 3.2.

A CGI program with -g option turns the Web browser into a text console. The CGI program will print

output in plain text on the Web browser for the convenience of debugging. For example, option -g can be

used in the first line of CGI program form.ch in Program 3.2 by changing

#!/bin/ch

to

#!/bin/ch -g

Although the content type is text/html, the output is displayed as a plain text as shown in Figure 3.3 for the

output of the modified CGI program with option -g.

Note: The latest version of IIS in Windows will display error messages in the browser correctly

without using option -g for CGI.

28

3.4. VERBATIM OUTPUT BLOCKS USING FPRINTF
CHAPTER 3. COMMON GATEWAY INTERFACE

3.4 Verbatim Output Blocks Using fprintf

A block of the verbatim output can be achieved using the feature of function fprintf. The syntax for a block

of verbatim output is

fprintf stream << TERMINATOR

...

TERMINATOR

or

fprintf stream << “TERMINATOR”

...

TERMINATOR

where stream is a valid file stream and terminator TERMINATOR is a valid identifier that have not been used

as a keyword or variable name in the program. Macro names, such as “END”, can be used as the terminator,

since they are processed verbatim without macro expansion in this case. It is recommended that an identifier

of all capital letters is used. The verbatim block output using fprintf has the following constraints.

• White spaces and comments can follow the first terminator.

• White spaces can precede the second terminator.

• The second terminator shall be terminated with a new line character. No character, even a white space,

is allowed to appear after the second terminator.

• All characters, including white characters and comments, between the first and last lines are processed

verbatim.

• The first terminator can be enclosed in double-quotes, whereas the second shall not. If the first ter-

minator is enclosed in double-quotes, the dollar sign ‘$’ within the enclosing block will be treated

verbatim. Otherwise, the single dollar sign ‘$’ is used for variable or expression substitution. Two

syntaxes of

$var and ${var}

can be used for variable substitution. The variable name or symbol to be expanded may be enclosed

in braces, which are optional but serve to protect the variable to be expanded from characters imme-

diately following it which could be interpreted as part of the name.

The variable in a variable substitution could be a predefined identifier; a user-defined variable of string,

pointer to char, integral, floating-point, or complex data type; an environment variable; or undefined

symbol. For a variable substitution, the Ch shell will first search the Ch name space for the variable

name according to its scope rule. If the variable is not defined, then it searches the environment

variables of the current process. If no variable with the specified name is found either in Ch space or

environment space, no substitution will take place and the variable is ignored.

• Expression substitution in the form of

$(expression)

can be used to substitute the valid Ch expression with its result. The expression shall be an expression

of string, pointer to char, integral, floating-point, or complex data type.

• The variable or expression substitution can be prevented by preceding the ‘$’ with a ‘\’. A ‘$’ is

passed unchanged if followed by a blank, tab, or end-of-line.

29

3.4. VERBATIM OUTPUT BLOCKS USING FPRINTF
CHAPTER 3. COMMON GATEWAY INTERFACE

• A value through variable substitution or expression substitution will be printed out using a default

format control string for its data type.

For example, if the program verbat.ch consists of the following programming statements,

#include <stdio.h>

int sum = 2

fprintf stdout << END /* This is a comment */

/* this is verbatim output */

sum = \$$sum

sum + 1 = \$$(sum+1)

END

The result from executing verb.ch is shown as follows.

> verbat.ch

/* this is verbatim output */

sum = $2

sum + 1 = $3

>

In command

sum = \$$sum

the escape character ‘\’ is used to print out as a single dollar sign, and the symbol $sum is substituted with

the value of sum, i.e. 2. In the next command

sum + 1 = \$$(sum+1)

the symbol $(sum+1) indicates an expression substitution. It is replaced by the result of the expression

sum+1, i.e. 3. The comment following the first terminator END and the white spaces preceding the second

END are ignored. But, the comment inside the block is printed out verbatim.

By default, a variable of double type is printed out with four digits after the decimal point whereas a

variable of float type is printed out with two digits after the decimal point. To print out a variable of double,

one may cast it to float before printing it out if the value is within the representable range of float type. For

example, $((float)d) can be printed out with two digits after decimal point, $((int)d) with integral part only.

Often time, a block of HTML code needs to be sent as a standard output stream in a CGI program. For

example, Program 3.3 will generate the code below,

which displays the text Hello, world in a web browser. According to the HTTP protocal, the line

Content-Type: text/html

must start without any white space, and there must be only an empty line without white space following it.

Using the verbatim output feature, the above Ch CGI program can be simplied as Program 3.4. Note that

the value of hello is retrieved by using the dollar sign $ inside the verbatim output block,

30

3.4. VERBATIM OUTPUT BLOCKS USING FPRINTF
CHAPTER 3. COMMON GATEWAY INTERFACE

/* File: genereatehtml.c */

#include <stdio.h>

int main() {

char hello[] = "Hello, world";

printf("Content-Type: text/html\n\n");

printf("<HTML>\n");

printf("<HEAD>\n");

printf("<Title> Hello, world </Title>\n");

printf("</Head>");

printf("<BODY>\n");

printf("<h4> %s </h4>\n", hello);

printf("</BODY>\n");

printf("</HTML>\n");

return 0;

}

Program 3.3: Generating an html file.

#!/bin/ch

/* File: genereatehtml.ch */

#include <stdio.h>

int main() {

char hello[] = "Hello, world";

printf("Content-Type: text/html\n\n");

fprintf stdout << ENDPRINT

<HTML>

<HEAD>

<Title> Hello, world </Title>

</Head>

<BODY>

<h4> $hello </h4>

</BODY>

</HTML>

ENDPRINT

return 0;

}

Program 3.4: Using fprintf for a block output.

31

3.5. DYNAMIC WEB PLOTTING
CHAPTER 3. COMMON GATEWAY INTERFACE

As another example, the function sendApplet() below generates a C program.

void sendApplet(char *x, char *y, char *expr) {

fprintf(stdout, "#include<stdio.h>\n");

fprintf(stdout, "int main() {\n");

fprintf(stdout, " double x = %s;\n", x);

fprintf(stdout, " double y = %s;\n", y);

fprintf(stdout, " printf(\"x = %%f, \", x);\n");

fprintf(stdout, " printf(\"y = %%f \\n\", y);\n");

fprintf(stdout, " printf(\"%s = %%f\\n\", %s);\n", expr, expr);

fprintf(stdout, "}\n");

}

This function sendApplet() can be rewritten in Ch as follows.

void sendApplet(char *x, char *y, char *expr) {

fprintf stdout << ENDFILE

#include<stdio.h>

int main() {

double x = $x;

double y = $y;

printf("x = %f", x);

printf("y = %f\n", y);

printf("$expr = %f\n", $expr);

}

ENDFILE

}

where the values of variables x, y and expr are obtained using operator $.

3.5 Dynamic Web Plotting

Plotting through CGI programs is very useful for many Web-based applications. With Ch Professional

Edition and CGI toolkit, plots can be very easily generated dynamically on-line. How to generate a dynamic

plot will be presented in this section. We will also describe how data is encoded and decoded for transferring

among the browser, Web server, and CGI programs.

In a Web-based plotting, the parameters for plotting are submitted from a Web browser, shown in Fig-

ure 3.4, with its corresponding HTML file in Program 3.5 and encoded by the browser. The parameters as

name-value pairs are decoded by member function CRequest::getFormNameValue() in first CGI program

webplot1.ch shown in Program 3.6. They are then passed as query strings to the second CGI program

webplot2.ch shown in Program 3.7. These parameters are obtained again using member function CRe-

quest::getFormNameValue(). The plot generated as a PNG file and displayed through a Web browser is

shown in Figure 3.5 .

32

3.5. DYNAMIC WEB PLOTTING
CHAPTER 3. COMMON GATEWAY INTERFACE

Figure 3.4: A Web-plotter based on the fill-out form.

<HTML>

<HEAD>

<TITLE>

CGI-Based Web Plot

</TITLE>

</HEAD>

<BODY bgcolor="#FFFFFF" text="#000000" vlink="#FF0000">

<H1>

CGI-Based Web Plotter

</H1>

<HR>

<H2>2D Plotter</H2>

<PRE>

<FORM method="post" action="/cgi-bin/chcgi/toolkit/demos/sample/webplot1.ch">

Function: y = <INPUT name="expression" value="sin(log10(x*x))" size=35>

X-min: <INPUT name="xMin" value="0.1" size=5> X-max: <INPUT name="xMax"

value="1" size=5> Number of points: <INPUT name="numpoints" value="50" size=5>

<INPUT type="submit" value="Plot"> <INPUT type="reset" value="Reset">

<HR>

</BODY>

</HTML>

Program 3.5: HTML file for submitting plotting parameters.

33

3.5. DYNAMIC WEB PLOTTING
CHAPTER 3. COMMON GATEWAY INTERFACE

#!/bin/ch

#include <cgi.h>

int main() {

int i, num;

chstrarray name, value;

class CResponse Response;

class CRequest Request;

class CServer Server;

num = Request.getFormNameValue(name, value);

Response.setContentType("text/html");

Response.begin();

Response.title("Web Plot");

printf("<center>\n");

printf("<img src=\"/cgi-bin/chcgi/toolkit/demos/sample/webplot2.ch");

for (i=0; i<num; i++){

putc(i == 0 ? ’?’ : ’&’, stdout);

fputs(Server.URLEncode(name[i]),stdout);

putc(’=’, stdout);

fputs(Server.URLEncode(value[i]),stdout);

}

printf("\">\n");

printf("</center>\n");

Response.end();

}

Program 3.6: CGI program webplot1.ch

34

3.5. DYNAMIC WEB PLOTTING
CHAPTER 3. COMMON GATEWAY INTERFACE

#!/bin/ch

#include <cgi.h>

#include <chplot.h>

int main() {

double MinX, MaxX, Step, x, y;

int pointsX, pointsY, i;

chstrarray name, value;

class CResponse Response;

class CRequest Request;

class CPlot plot;

Request.getFormNameValue(name, value);

MinX = atof(value[1]);

MaxX = atof(value[2]);

pointsX = atoi(value[3]);

double x1[pointsX], y1[pointsX];

Step = (MaxX - MinX)/(pointsX-1);

for(i=0;i<pointsX;i++) {

x = MinX + (i*Step);

y = streval(value[0]);

x1[i] = x;

y1[i] = y;

}

Response.setContentType("image/png");

Response.begin();

plotxy(x1, y1, value[0], "X", "Y", &plot);

/* output plot in color png file format */

plot.outputType(PLOT_OUTPUTTYPE_STREAM, "png");

plot.plotting();

Response.end();

}

Program 3.7: CGI program webplot2.ch

35

3.6. UPLOADING FILES TO A WEB SERVER
CHAPTER 3. COMMON GATEWAY INTERFACE

Figure 3.5: Plot generated through the Web plotting.

3.6 Uploading Files to a Web Server

Many applications need to upload files to a Web server. For example, files can be uploaded and attached to

an email, then sent through a Web server. Images can be uploaded to a Web server for image processing.

Papers can be submitted to a conference or journal through a Web browser. How to upload files to a Web

server from the client machine using a Web browser using Ch CGI will be illustrated by an example. In this

example, we assume that the user is asked to submit other information besides uploading a file as shown in

Figure 3.6.

36

3.6. UPLOADING FILES TO A WEB SERVER
CHAPTER 3. COMMON GATEWAY INTERFACE

Figure 3.6: A fill-out form for uploading a file.

In this example, it is assumed that the user will upload a PNG image file named filename.png typed in

the fill-out form. The user can also select and upload other files by browsing the file system in his computer.

The corresponding HTML file for the user interface shown in Figure 3.6 is given in Program 3.8.

37

3.6. UPLOADING FILES TO A WEB SERVER
CHAPTER 3. COMMON GATEWAY INTERFACE

<html>

<head>

<title>Upload a File With Ch!</title>

</head>

<body>

<form action="/cgi-bin/upload/chupload.ch" enctype="multipart/form-data" method="post">

<p>

Radio Type

<p>

<input type="radio" name="food" value="apple" checked> Apple

<input type="radio" name="food" value="orange"> orange

<input type="radio" name="food" value="banana"> banana

<p>

Checkbox <input type="checkbox" name="selected" checked> Selected

<p>File Upload:

<input type="file" name="file" value=""> (Select A Local File)

<p>

single text field (new file name) <input type="text" name="newfile" value="">

<p>

single-select

<select name="colors">

<option value="Red">Red

<option value="Green">Green

<option value="Blue">Blue

</select>

<P>

<input type="submit" value="submit" />

</form>

</body>

</html>

Program 3.8: The HTML file for uploading a file.

Depending on the size of file to be uploaded as well as the network speed and traffic, it may take a while

to load a large file. In such a case, it is desirable that the Web brower will display an informative message

that shows that the file uploading is in progress. This can be accomplished by using the HTML File shown

in Program 3.9, which uses a Javascript to display the waiting message while the web browser is uploading

a file to the Web server.

38

3.6. UPLOADING FILES TO A WEB SERVER
CHAPTER 3. COMMON GATEWAY INTERFACE

<html>

<head>

<title>Upload a File With Ch!</title>

<noscript>

<META HTTP-EQUIV=Refresh CONTENT="0; URL=/no_javascript.html">

</noscript>

<script>

function KeyPress() {

if (event.keyCode == 13) {

BeginAttach();

}

}

function BeginAttach() {

document.all.before_attach.style.display = "none";

document.all.middle_attach.style.display = "inline";

document.attachfile.submit();

}

</script>

</head>

<body>

<form name="attachfile" enctype="multipart/form-data" method=POST

action="/cgi-bin/upload/chupload.ch">

<table cellpadding=4 cellspacing=0 border=0 width="100%">

<tr class=frmt><td>Attaching file...</td></tr>

<tr class=frmb><td>Please wait while we attach the file to your message.</td></tr>

</table>

<p>

Radio Type

<p>

<input type="radio" name="food" value="apple" checked> Apple

<input type="radio" name="food" value="orange"> orange

<input type="radio" name="food" value="banana"> banana

<p>

Checkbox <input type="checkbox" name="selected" checked> Selected

<p>File Upload:

<input type="file" name="file" value="" onkeypress="KeyPress()"> (Select A Local File)

<p>

single text field (new file name) <input type="text" name="newfile" value="">

<p>

single-select

<select name="colors">

<option value="Red">Red

<option value="Green">Green

<option value="Blue">Blue

</select>

<P>

<input type="submit" value="submit" onclick="BeginAttach()"/>

</form>

</body>

</html>

Program 3.9: HTML file for uploading a file with a waiting message.39

3.6. UPLOADING FILES TO A WEB SERVER
CHAPTER 3. COMMON GATEWAY INTERFACE

#!/bin/ch

/* This CGI program will process fill-out form and upload a file, say ’filename.png’.

The file will be loaded at C:/filename in Windows, and /tmp/filename.png in Unix */

#include <cgi.h>

class CResponse Response;

class CRequest Request;

char* getNameValue(char *infoStr, char* fileField);

char* getBoundary();

#define RETURN_VAL "\r\n\r\n"

int main() {

Response.begin();

Response.title("Test of Upload");

size_t total = Request.getTotalBytes();

char *binData = Request.binaryRead(&total);

char* boundary = getBoundary();

/* seperate uploaded file data from header and tail with posted info */

char *headInfo=binData;

char *head = strstr(binData, RETURN_VAL);

char* binDataHead;

/* make headInfo contains posted head, and binDataHead the start of uploaded file */

for (head=strstr(binData, RETURN_VAL); head!= NULL;

head = strstr(head, RETURN_VAL))

{

head = head + strlen(RETURN_VAL);

if (strstr(head, "\"; filename=\"") == NULL)

{

binDataHead = head;//binData contains data only

*(head-1)=’\0’; // make headInfo having data of header only

break;

}

}

Program 3.10: CGI program chupload.ch for uploading files to a Web server.

40

3.6. UPLOADING FILES TO A WEB SERVER
CHAPTER 3. COMMON GATEWAY INTERFACE

int boundaryLength = strlen(boundary);

int bmove = 0;

char *tempBinHead = binDataHead;

int fileLen=0;

/* get the uploaded file length in fileLen */

while (1) {

if (*tempBinHead == boundary[bmove]) {

// matched the end of boundary

bmove++;

tempBinHead++;

if (bmove == boundaryLength) {

// get rid of additional tailer ahead of boundary

fileLen -= 4;

break;

}

} else if (bmove > 0) {

/* the match may start in the middle */

tempBinHead = tempBinHead - bmove +1 ;

fileLen++;

bmove = 0;

} else {

tempBinHead++;

fileLen++;

}

}

// all data after binDataHead+fileLen belongs to posted tail data

// take out of file and combins head and tail together

string_t totalHead;

//int i= sprintf(totalHead, "%s%s", headInfo, tempBinHead);

strcpy(totalHead, headInfo);

strcat(totalHead, tempBinHead);

printf("totalhead:string: %s
", totalHead);

Program 3.10: CGI program chupload.ch for uploading files to a Web server (continued).

41

3.6. UPLOADING FILES TO A WEB SERVER
CHAPTER 3. COMMON GATEWAY INTERFACE

char* userAgent = Request.getServerVariable("HTTP_USER_AGENT");

// get the uploaded file path and name

char* filename = getNameValue(totalHead, "filename=");

char* sName;

if (filename != NULL)

{

printf("uploaded filename:[%s]
\n", filename);

printf("file size:[%d]
\n", fileLen);

if (strstr(userAgent, "Win") != NULL) // from windows

{

sName=strrchr(filename, ’\\’);

if (sName != NULL)

sName++;

else //Netscape 6.0 or up

sName = filename;

}

else

{

// from "Mac" or "Unix", just be careful some Mac char is illegal

sName=filename;

}

printf("sName:[%s]
\n",sName);

#ifdef _WIN32_

string_t fullPath= stradd("c:\\", sName);

#else

string_t fullPath=stradd("/tmp/", sName);

#endif

printf("fullPath:[%s]
\n",fullPath);

FILE* fp=fopen(fullPath, "wb");

fwrite(binDataHead, fileLen, sizeof(char), fp);

fclose(fp);

}

char* value = getNameValue(totalHead, "Content-Type");

printf("Content Type::[%s]
\n", value);

value= getNameValue(totalHead, "food");

printf("food:[%s]
\n", value);

value= getNameValue(totalHead, "selected");

if ((value != NULL) && (strcmp(value, "on") == 0))

printf("selected success:[%s]
\n", value);

else

printf(" nont selected
");

value= getNameValue(totalHead, "colors");

printf("colors:[%s]
\n", value);

value= getNameValue(totalHead, "newfile");

printf("new filename:[%s]
\n", value);

Response.end();

}

Program 3.10: CGI program chupload.ch for uploading files to a Web server (continued).

42

3.6. UPLOADING FILES TO A WEB SERVER
CHAPTER 3. COMMON GATEWAY INTERFACE

/* infoStr: contains the input of string containing pair

fileField: contains name

return: the value of fileField name

*/

char* getNameValue(char *infoStr, char* fileField)

{

int len, resultLen, extraLen;

char *startPos, *endPos;

char * result;

len = strlen(fileField);

for (startPos = strstr(infoStr, fileField);

startPos !=NULL;

startPos = strstr(startPos+1, fileField))

{

// guess for handling name/value pair

if (strncmp((startPos + len-1), "=\"", 2) == 0)

{

extraLen= 1;

break;

}

else if (strncmp((startPos + len), ": ", 2) == 0)

{

extraLen= 2;

break;

}

else if (strncmp((startPos + len), "\"\r\n\r\n", 5) == 0)

// guess for handling name/value pair

{

extraLen= 5;

break;

}

}

if (startPos != NULL)

{

endPos = startPos + len + extraLen;

resultLen =0;

// code needs to modify if handling multi-line text or multi-select

while ((*endPos !=’"’) && (*endPos !=’\r’) && (*endPos != ’\n’))

{

resultLen++;

endPos++;

}

if (resultLen !=0)

{

result= malloc(sizeof(char)*(resultLen+1));

strncpy(result, startPos+len+extraLen, resultLen);

result[resultLen]=’\0’;

return result;

}

}

return NULL;

}

Program 3.11: CGI program chupload.ch for uploading files to a Web server (continued).

43

3.7. COOKIES FOR PERSONALIZED CONTENT
CHAPTER 3. COMMON GATEWAY INTERFACE

char* getBoundary()

{

char* contentType = Request.getServerVariable("CONTENT_TYPE");

char* bound;

char* startPos;

for (startPos=strchr(contentType, ’;’); startPos!=NULL;

startPos= strchr(startPos, ’;’))

{

*startPos = ’\0’;

startPos++;

if ((strstr(startPos, "boundary="))!= NULL) {

char *str;

startPos = strstr(startPos, "boundary=");

bound = startPos + strlen("boundary=");

str = bound;

while ((*str) && (!isspace(*str))) {

str++;

}

*str = ’\0’;

break;

}

}

return bound;

}

Program 3.12: CGI program chupload.ch for uploading files to a Web server (continued).

The user interface for both Programs 3.8 and 3.9 is the same as shown in Figure 3.6. They both use the

same CGI program shown in Program 3.10. Program 3.10 will process the names and their corresponding

values submitted through a fill-out form, and print them out as text in HTML file format. A file uploaded

from the Web browser will be saved with the same file name in the directories C:/ and /tmp for Windows

and Unix, respectively.

3.7 Cookies for Personalized Content

3.7.1 What Is Cookie

Cookie is a general mechanism by which the server side of the connection can both store and retrieve

information on the client side. The addition of a simple, persistent, client-side state significantly extends the

capabilities of Web-based client/server applications.

A server, when returning an HTTP object to a client, may also send a piece of state information which

the client will store. Included in that state object is a description of the range of URLs for which that state

is valid. Any future HTTP requests made by the client which fall in that range will include a transmittal of

the current value of the state object from the client back to the server. The state object is called a cookie.

This simple mechanism provides a powerful new tool which enables a host of new types of applications

to be written for Web-based environments. Shopping applications can now store information about the

currently selected items, for fee services it can send back registration information and free the client from

retyping a user-id on next connection. Sites can store per-user preferences on the client, and have the client

supply those preferences every time that site is connected to.

44

3.7. COOKIES FOR PERSONALIZED CONTENT
CHAPTER 3. COMMON GATEWAY INTERFACE

3.7.2 Properties of a Cookie

A cookie is introduced to the client by including a Set-Cookie header as part of an HTTP response. The

Ch cookie class supports both the Version 0 (by Netscape) and Version 1 (by RFC 2965 which obsoletes

RFC 2109). By default, cookies uses version 0. Since RFC 2965 is released on October 2000, and most

browsers might not support the RFC 2965, the users are encouraged to use Version 0 features. All samples

we discussed in this section cover the version 0 only.

Typically the syntax of the Set-Cookie HTTP Response Header which includes some important proper-

ties of the cookie is:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH;

domain=DOMAIN_NAME; secure

NAME=VALUE

This string is a sequence of characters excluding semi-colons, commas and white spaces. If there is a need to

place such data in the name or value, some encoding method such as URL style encoding is recommended,

though no encoding is defined or required. This is the only required property on the Set-Cookie header.

expires=DATE

The expires attribute specifies a date string that defines the valid life time of that cookie. Once the expiration

date has been reached, the cookie will no longer be stored or given out. The date string is formatted as:

Wdy, DD-Mon-YYYY HH:MM:SS GMT

This is based on RFC 822, RFC 850, RFC 1036, and RFC 1123 with the variations that the only legal time

zone is GMT and the separators between the elements of the date must be dashes. Expires is an optional

attribute. If not specified, the cookie will expire when the user’s session ends.

In Ch-CGI, for the convenience of users, the property of MaxAge instead of expires is used.

Note that there is a bug in Netscape Navigator version 1.1 and earlier. Only cookies whose path attribute

is set explicitly to ”/” will be properly saved between sessions if they have an expires attribute.

domain=DOMAIN_NAME

When searching the cookie list for valid cookies, a comparison of the domain attributes of the cookie is made

with the Internet domain name of the host from which the URL will be fetched. If there is a tail match, then

the cookie will go through path matching to see if it should be sent. ”Tail matching” means that domain

attribute is matched against the tail of the fully qualified domain name of the host. A domain attribute of

”softintegration.com” would match the host name ”www.softintegration.com”.

Only hosts within the specified domain can set a cookie for a domain and domains must have at least two

(2) or three (3) periods in them to prevent domains of the form: ”.com”, ”.edu”, and ”va.us”. Any domain

that falls within one of the seven special top level domains listed below only require two periods. Any other

domain requires at least three. The seven special top level domains are: ”COM”, ”EDU”, ”NET”, ”ORG”,

”GOV”, ”MIL”, and ”INT”.

The default value of domain is the host name of the server which generated the cookie response.

path=PATH

The path attribute is used to specify the subset of URLs in a domain for which the cookie is valid. If a cookie

has already passed domain matching, then the pathname component of the URL is compared with the path

attribute, and if there is a match, the cookie is considered valid and is sent along with the URL request. The

path ”/foo” would match ”/foobar” and ”/foo/bar.html”. The path ”/” is the most general path. If the path

is not specified, it as assumed to be the same path as the document being described by the header which

45

3.8. TIPS FOR DEBUGGING CGI PROGRAMS
CHAPTER 3. COMMON GATEWAY INTERFACE

contains the cookie.

secure

If a cookie is marked secure, it will only be transmitted if the communications channel with the host is a

secure one. Currently this means that secure cookies will only be sent to HTTPS (HTTP over SSL) servers.

If secure is not specified, a cookie is considered safe to be sent over unsecured channels.

In addition, properties of Port, Discard, Version, Comment and CommentURL are added for the cookies

of version 1. In Ch-CGI, some of these properties can be set and retrieved by member functions of class

CCookie.

3.7.3 How to Set a Cookie

In Ch-CGI, CCookie class is designed for setting and getting properties of a cookie. In Program 3.13,

member functions of setName(), setValue(), setMaxAge(), setDomain(), setPath() and setSecure() are

used to set properties of cookies. After these properties are set, CResponse.addCookie() sends cookie with

these properties to the client.

3.7.4 How to Get Cookies

In Program 3.14, CRequest::getCookies() retrieves all cookies with properties from the client. Member

functions getName() and getValue() are used to get names and values of cookies.

If you know the name of the cookie which you want to get from the client in advance, the function of

CRequest::getCookie() can be used. It retrieves the cookie from the client by the name. The syntax is

shown below.

chchar *cookieValue = Request.getCookie(cookieName);

The example of using CRequest::getCookie() is shown in Program 3.15

3.8 Tips for Debugging CGI Programs

When you debug and run a CGI program, you will encounter some error messages. In general, it is more

difficult to debug a CGI program than a regular program because a CGI program is run in the account of

a Web server, instead of regular user account. For example, you may see an error message such as the

following one from Netscape browser:

Server Error

This server has encountered an internal error which prevents it

from fulfilling your request. The most likely cause is a

misconfiguration. Please ask the administrator to look for messages

in the server’s error log.

The messages in the Web server’s error log file may appear as follows:

[06/Feb/1996:16:38:08] failure: for host your.host.id.num. trying

to GET /your/path/your.ch, cgi-parse-output reports: the CGI program

/your absolute cgi path/your.ch did not produce a valid header (program

terminated without a valid CGI header. Check for core dump or other

abnormal termination)

46

3.8. TIPS FOR DEBUGGING CGI PROGRAMS
CHAPTER 3. COMMON GATEWAY INTERFACE

#!/bin/ch

#include <stdio.h>

#include <cgi.h>

int main()

{

class CCookie ck, ck2;

class CResponse Response;

// put Cookie with name of testCookie, key of CookieKey and value of Cookievalue

ck.setName("testCookie");

ck.setPath("/");

ck.setValue("CookieValue");

ck.setMaxAge(600);

ck.setDomain("edu");

ck.setSecure(false);

/*
Because there is no browser to support the following properties as yet,

it is not recommended to use them.

ck.setVersion(1);

ck.setMaxAge(600);

ck.addPort(8080);

ck.setComment("This cookie is for test");

ck.setCommentURL("mailto:someone@softintegration.com");

ck.setDiscard(false);

ck.setDomain("softintegration.com");

*/

Response.addCookie(&ck);

ck2.setName("testCookie2");

ck2.setPath("/");

ck2.setValue("CookieValue2");

Response.addCookie(&ck2);

ck2.setName("cookie name");

ck2.setPath("/");

ck2.setValue("cookie value");

Response.addCookie(&ck2);

Response.begin();

printf("Cookie: name=testCookie, value=CookieValue has been added
\n");

printf("Cookie: name=testCookie2, value=CookieValue2 has been added
\n");

printf("Cookie: name=cookie name, value=cookie value has been added\n");

Response.end();

}

Program 3.13: Add a cookie to client.

47

3.8. TIPS FOR DEBUGGING CGI PROGRAMS
CHAPTER 3. COMMON GATEWAY INTERFACE

#!/bin/ch

#include <cgi.h>

int main()

{

class CCookie *pck;

class CResponse Response;

class CRequest Request;

int i, count;

Response.begin();

Response.title("Test of Request.getCookies");

printf("<H1> Test of Request.getCookies </H1><hr>\n");

//get Cookies

count = Request.getCookies(&pck);

for(i=0; i < count; i++)

printf("%s = %s
\n", pck[i].getName(), pck[i].getValue());

Response.end();

}

Program 3.14: Get cookies from client.

#!/bin/ch

#include <cgi.h>

int main()

{

class CResponse Response;

class CRequest Request;

chchar name[] = "testCookie";

chchar *value;

Response.begin();

Response.title("Test of Request.getCookie");

printf("<H1> Test of Request.getCookie </H1><hr> \n");

//get Cookie

value = Request.getCookie(name);

printf("%s = %s
\n", name, value);

value = Request.getCookie("cookie name");

printf("%s = %s
\n", "cookie name", value);

Response.end();

}

Program 3.15: Get a cookie from client by name.

48

3.8. TIPS FOR DEBUGGING CGI PROGRAMS
CHAPTER 3. COMMON GATEWAY INTERFACE

This error message basically indicates that your CGI program did not produce a valid CGI header such

as

Content-type: text/html

or

Content-type: text/plain

You may check the error messages logged by the Web server in a place such as /var/log/httpd/error log (You

may need to be a superuser to read the file). To debug your Ch CGI program, the following steps shall be

taken.

• Make sure the first output statement from the CGI program will produce a valid CGI header such as

the one described above.

• Make sure your program can run successfully from your terminal prompt by just typing the program

name, say, your program.ch. Sometimes, your program may terminate in the middle of execution

if the flow of the program depends on some environment variables passed from the Web server. It is

fine if this is the case. For example, member function CRequest::getFormNameValue() depends on the

environment variables REQUEST METHOD, CONTENT LENGTH, and QUERY STRING. If your

CGI program is not invoked by the Web server, these environment variables are not set. The values

supposedly passed from a FORM will be NULL, and the program may be terminated prematurely if

run from a terminal. But, the program can be run successfully from the Common Gateway Interface.

• Since your CGI program is executed by the Web server, which uses a different user account from

yours, make sure your program is readable and executable by other users in the system. In Unix, you

can change the permission of your program by the following commands

chmod 755 your_program.ch

If Ch is not installed by a superuser or administrator account, make sure CHHOME/bin/ch is exe-

cutable by other users. Subdirectories and files in the Ch home directory should also be accessible

by others so that relevant modules such as header file cgi.h can be accessed by the Web server. The

environment variable CHHOME can be setup at the time before the Ch CGI code is executed by the

command below.

#!/bin/sh

env CHHOME=/your/Ch/home/dir /path/to/cgi-bin/ch_program.ch

The following CGI code can be used to find the user name and home directory where the startup file

.chrc in Unix and chrc in Windows is loated for running the web server.

#!/bin/ch

printf("Content-Type: text/plain\n\n");

printf("The user running the Web server = %s\n", _user);

printf("The home directory of the user running the Web server = %s\n", _home);

• In Windows, even though the current directory is specified in the search paths for header files and

function files in system variables ipath and fpath, respectively, in the web server’s startup file chrc.

A CGI program may still not be able to find the header file and functions in the current directory. In

49

3.8. TIPS FOR DEBUGGING CGI PROGRAMS
CHAPTER 3. COMMON GATEWAY INTERFACE

this case, the directory for the header file and functions need to be specified explicityly in the startup

file. For example, assume the home directory for IIS in Windows is located at C:/inetpub. To

setup Web-based Ch Control System Toolkit, the following two programming statements may need to

be added

_ipath = stradd(_ipath, "C:/inetpub/cgi-bin/chcgi/toolkit/control;");

_fpath = stradd(_fpath, "C:/inetpub/cgi-bin/chcgi/toolkit/control;");

in the startup file chrc in the home directory of the web server account.

• If your CGI program reads and writes a file, make sure the file is readable and writable by the account

of the Web server. Often, you may need to create a temporary file using the function tmpnam() in Ch,

if a temporary file is needed in the CGI program.

• If you can login as the Web server, test your CGI program from the account of the Web server. You

may need to get permission from your system administrator to do so.

• By default, only CGI programs located in the server’s cgi-bin can be executed by the Web server.

If your CGI program is not located in cgi-bin and your Web server is not configured with a file

association to recognize CGI programs with file extension .ch, your Ch program will fail under the

Common Gateway Interface. Check with your system administrator about the setup of your Web

server.

• If your CGI program invokes other Ch programs, you may need to add the following function call

setbuf(stdout,NULL);

or

setvbuf(stdout, NULL, _IONBF, 0);

before the first printing statement of your CGI program. This function will cause output to be flushed

immediately instead of being buffered so that the output will be sent in a proper sequence. By default,

the member function CResponse::begin() executes this function automatically.

• For Web servers in Unix or Apache Web server in Windows, if you use a C program as your CGI

program, make sure to add the following line as the first statement of the program.

#!/bin/ch

For Web servers in Windows such as Microsoft Personal Web Server, Microsoft Information Server,

or Netscape Web Server, the above line is not necessary. For portability, it is recommended that the

above line be added for all Ch CGI programs.

• Unknown Commands in a CGI Program. A Ch CGI program is normally run in regular Ch shell. The

first line

#!/bin/ch

50

3.8. TIPS FOR DEBUGGING CGI PROGRAMS

of your CGI program indicates that the program will be executed in a regular Ch shell. The path for

commands executable by the Ch shell is controlled by the system-wide startup file

CHHOME/config/chrc, which includes startup file .chrc in the home directory of the Web server

(not the home directory of your regular user account)

• Turn your Web browser into a display console by adding the debug option -g at the first line of your

CGI code as

#!/bin/ch -g

This is one of the most useful features for debugging Ch CGI code.

• A CGI code for Ch plotting may produce a HTML output similar to what is shown below

The above code shall display an image generated by the CGI program plot2 1.ch. In case, it does

not display a plot, you can add

#!/bin/ch -g

at the beginning of the program plot2 1.ch and test it directly using the following URL address

http://your_web_server_address.com/cgi-bin/chcgi/toolkit/demos/sample/plot2_1.ch

If there any additional arguments following the program plot2 1.ch, it should also be typed as part
of the URL address such as.

http://your_web_server_address.com/cgi-bin/chcgi/toolkit/demos/

sample/webplot2.ch?expression=x*x&xMin=0.1&xMax=6&npoints=50

• Read the on-line tutorial on the WWW at http://www.softintegration.com about how to

write Ch CGI programs.

• For an Apache Web server running in a Redhat enterprise selinux, you may look into the securiy

configuration.

51

Chapter 4

References for CGI Classes

Common Gateway Interface (CGI) is a standard that specifies how external programs interface with a web

server. One of the most important applications of CGI is handling fill-out form. A CGI program located on

a host machine’s web server can accept user’s input through a fill-out form and generate web pages dynam-

ically.

Header file cgi.h contains the definition of the CResponse, CRequest, and CServer classes, and their

member functions as well as defined constants. These classes contain several utility member functions for

common gateway interface.

Two generic data types chchar and chstrarray are also typedefed in the header file cgi.h as follows.

typedef char chchar;

typedef char** chstrarray;

When the Unicode is used, this two generic data types chchar and chstrarray are typedefed in the header

file wcgi.h as follows.

typedef wchar_t chchar;

typedef wchar_t** chstrarray;

4.1 CResponse Class

When a browser requests data from a web server, the server responds, either with a redirect message, the

requested data, or an error. The CResponse class contains several utility functions for sending information

to the client.

Public Data

None.

Differences Between Ch-CGI and Ch-ASP

Member functions CResponse::begin(), CResponse::end(), and CResponse::title() are available in Ch-

CGI only. They are not valid in Ch-ASP.

Note :

1. CResponse::begin() is mandatory in Ch-CGI for programs to run successfully.

52

4.1. CRESPONSE CLASS CResponse

2. The content type of the output of Ch-CGI is text/html by default.

3. The output is not buffered in Ch-CGI by default.

Public Member Functions

Function Description

addCookie() adds a specified cookie with attributes.

addHeader() adds an HTTP header to the HTTP response.

begin() begins to send output. Mandatory in CGI.

end() ends standard output. For CGI only.

exit() causes the server to stop processing a script and return.

flush() sends buffered HTML output immediately.

getBuffer() retrieves the value of the Buffer property.

getCacheControl() retrieves the value of the CacheControl property.

getCharSet() retrieves the value of the CharSet property.

getContentType() retrieves the value of the ContentType property.

getExpires() retrieves the value of the Expires property.

getExpiresAbsolute() retrieves the value of the ExpiresAbsolute property.

getStatus() retrieves the value of the Status property.

PICS() adds a value to the PICS label field of the header.

redirect() causes the browser to attempt to connect to a different URL.

setBuffer() sets the value of the Buffer property.

setCacheControl() sets the value of the CacheControl property.

setCharSet() sets the value of the CharSet property.

setContentType() sets the value of the ContentType property.

setExpires() sets the value of the Expires property.

setExpiresAbsolute() sets the value of the ExpiresAbsolute property.

setStatus() sets the value of the Status property.

title() sets the title of an HTML page. For CGI only.

53

4.1. CRESPONSE CLASS CResponse::addCookie

CResponse::addCookie

Synopsis

int addCookie(CCookie * cookie);

Purpose

Add a specified cookie with attributes, such as MaxAge, Path, Domain and Secure, to a client.

Return Value

Upon successful completion, zero is returned. Otherwise, a value of non-zero is returned.

Parameters

cookie A pointer to an object of CCookie which contains the information of the cookie to be added.

Description

The function addCookie() adds a specified cookie with attributes such as MaxAge, Path, Domain and Secure

to a client. The CRequest::getCookie() function retrieve a cookie by name, while the CRequest::getCookies()

function retrieves all of cookies.

Note: Properties of Name, Value, MaxAge, Path, Domain and Secure are supported by cookies which com-

ply with Netscape Cookie specifications version 0 and RFC 2965 new version 1. Properties of Discard,

Comment, CommentURL, portList and version are supported only by cookies which comply with RFC

2965 new version 1. Because there is no browser to support the cookie complying with RFC 2965 new

version 1 as yet, these properties are not recommended to use.

Differences Between Ch-CGI and Ch-ASP

In Ch-ASP, addCookie() can add a cookie with properties of only Name, Value, Path, Domain, MaxAge

and Secure.

In Ch-CGI, it can add a cookie with all properties of Name, Value, Path, Domain, MaxAge, Secure, Discard,

Version, Comment and CommentURL and portList. Member function addCookie() shall be called before

member function begin() is called.

Example 1

The program below adds cookies to the client.

#!/bin/ch

#include <cgi.h>

int main() {

class CCookie cookie1, cookie2;

class CResponse Response;

class CRequest Request;

Response.setContentType("text/html");

cookie1.setName("name1");

cookie1.setValue("value1");

cookie1.setDomain("iel.ucdavis.edu");

54

4.1. CRESPONSE CLASS CResponse::addHeader

cookie1.setMaxAge(3600000);

cookie1.setPath("/foo");

cookie1.setSecure(true);

Response.addCookie(&cookie1);

cookie2.setName("name2");

cookie2.setValue("value2");

cookie2.setPath("/");

cookie2.setComment("This cookie is for test");

Response.addCookie(&cookie2);

Response.begin();

Response.title("CGI Cookie results");

printf("<H1>CGI Cookie test script reports:</H1>\n");

printf("two cookies have been sent to the client
\n");

Response.end();

}

Example 2

The program below retrieves cookies which are added in Example 1.

#!/bin/ch

#include <cgi.h>

int main() {

int i, num;

class CCookie *cookie;

class CResponse Response;

class CRequest Request;

int *portlist, portnum, j;

Response.begin();

num = Request.getCookies(&cookie);

if(num == 0) {

printf("No cookie has been retrieved<p>\n");

exit(0);

}

else if(num < 0) {

printf("Error: in Request.getCookies() <p>\n");

exit(0);

}

printf("The following %d Cookies are retrieved<p>\n",num);

printf("\n");

for(i=0; i < num; i++) {

printf(" <code>%s = ",cookie[i].getName());

printf("%s; ",cookie[i].getValue());

printf("</code>\n");

}

printf("\n");

Response.end();

}

This example will display:

The following 2 Cookies are retrieved

name1 = value1;

name2 = value2;

55

4.1. CRESPONSE CLASS CResponse::begin

See Also

CRequest::getCookies(), CRequest::getCookie(), CCookie.

CResponse::addHeader

Synopsis

int addHeader(chchar * headerName, chchar * headerValue);

Purpose

Add an HTTP header to the response.

Return Value

Upon successful completion, zero is returned. Otherwise, a value of non-zero is returned.

Parameters

headerName A string containing the name of the HTTP header.
headerValue A string containing the value of the HTTP header.

Description

The function addHeader() adds an HTTP header to the HTTP response. It always adds a new HTTP header

to the response. It will not replace an existing header of the same name. Once a header has been added, it

cannot be removed.

Example

char *headerName = "CHHEADER";

char *headerValue = "CHHEADERVAL";

Response.addHeader(headerName, headerValue);

This example will add the following header to the client:

CHHEADER:CHHEADERVAL

See Also

None.

CResponse::begin

Synopsis

int begin();

Purpose

Begins to send output. It is mandatory in Ch-CGI and for Ch-CGI only.

Return Value

Upon successful completion, zero is returned. Otherwise, a value of non-zero is returned.

Parameters

None.

56

4.1. CRESPONSE CLASS CResponse::exit

Description

The function begin() starts processing all headers set in CResponse::set*() and CResponse::add*(). It is

mandatory in Ch-CGI. Any CResponse::set*() and CResponse::add*() member functions including CRe-

sponse::setContentType(), CResponse::addCookie(), and CResponse::addHeader() should be called be-

fore this function is called.

Differences Between Ch-CGI and Ch-ASP

This member function is mandatory in Ch-CGI. It is not valid in Ch-ASP.

Example

See CRequest::getFormNameValue().

See Also

CResponse::end(), CResponse::title().

CResponse::end

Synopsis

void end();

Purpose

End the standard output.

Return Value

None.

Parameters

None.

Description

The function end() will flush the buffer if the the Buffering is true and print out </body> and </html>

tags to end an HTML page if its content type is text/html.

Differences Between Ch-CGI and Ch-ASP

This member function works in Ch-CGI only. It is not valid in Ch-ASP.

Example

See CRequest::getFormNameValue().

See Also

CResponse::begin(), CResponse::title().

CResponse::exit

Synopsis

void exit();

57

4.1. CRESPONSE CLASS CResponse::flush

Purpose

Cause the server to stop processing a script and return.

Return Value

None.

Parameters

None.

Description

The function exit() causes the server to stop processing a script and return the current response. When

this function is called, the remaining contents of the file are not processed, and the buffer are flushed if the

Buffering is true.

Example

printf("Output before Response.exit()\n");

Response.exit();

printf("Output after Response.exit()\n");

The example above will only print out the string of

Output before Response.exit()

to the client, and then exit.

See Also

CResponse::getBuffer(), CResponse::setBuffer(), CResponse::flush().

CResponse::flush

Synopsis

int flush();

Purpose

Send buffered output immediately.

Return Value

Upon successful completion, zero is returned. Otherwise, a value of non-zero is returned.

Parameters

None.

Description

The function flush() sends buffered output immediately. This function will cause a run-time error or be

ignored if the Buffer property has not been set to TRUE.

In Ch-CGI, the output is not buffered by default. In Ch-ASP, the output is buffered by default.

58

4.1. CRESPONSE CLASS CResponse::getBuffer

In Ch-ASP If Keep-Alives is set in a web server, the server will maintain Keep-Alive requests made by the

client, unless the CResponse::flush() is called.

HTTP Keep-Alives are an optimizing feature of servers and browsers; an HTTP Keep-Alive maintains a

client connection after the initial request is satisfied. HTTP Keep-Alives are part of the HTTP version 1.1

specification.

When user set the Buffer property to TRUE in a script and do not call the CResponse::flush() method in

the same script, the server will maintain Keep-Alive requests made by the client. The benefit of writing

scripts in this manner is that server performance is improved because the server does not have to create

a new connection for each client request (assuming that the server, client, and any proxies all support bf

Keep-Alive requests).

However, a potential drawback to this approach is that buffering prevents any of the response from being

displayed to the user until the server has finished all script processing for the current .asp file. For long in-

volved scripts, the user might be forced to wait a considerable amount of time before the script is processed.

If this function is called, the server does not honor Keep-Alive requests for that page.

Example

bool buffer_cur;

buffer_cur = Response.getBuffer();

if(buffer_cur)

printf("The current buffering is ture\n");

else {

printf("The current buffering is false and will be set to ture\n");

Response.setBuffer(ture);

}

printf("Output before Response.flush()\n");

Response.flush();

The example above will print out string of

Output before Response.flush()

to the client.

See Also

CResponse::getBuffer(), CResponse::setBuffer().

CResponse::getBuffer

Synopsis

bool getBuffer();

Purpose

Retrieve the current value of the Buffer property.

59

4.1. CRESPONSE CLASS CResponse::getCharSet

Return Value

A boolean data type. If page output is buffered, true is returned. Otherwise, false is returned.

Parameters

None.

Description

The function getBuffer() retrieves the current value of the Buffer property of the object. When page output

is buffered, the server does not send a response to the client until all of the server scripts on the current page

have been processed, or until the CResponse::flush(), CResponse::end() or CResponse::exit() function

has been called.

The function of CResponse::setBuffer can set the current value of the Buffer prope rty of the object.

The Buffer property cannot be set after the server has sent output to the client. For this reason, the call to

CResponse::setBuffer should be done before the CResponse::begin() function is invoked.

Example

See CResponse::flush().

See Also

CResponse::setBuffer(), CResponse::flush().

CResponse::getCacheControl

Synopsis

chchar * getCacheControl();

Purpose

Retrieve a value of the CacheControl property.

Return Value

Upon successful completion, a string which contains the CacheControl value is returned. Otherwise, NULL

is returned.

Parameters

None.

Description

The function getCacheControl() retrieves a value of the CacheControl property.

The CResponse::setCacheControlfunction can be used to override the default value which is Private. By

setting the value to Public, proxy servers will be able to cache output from pages; no-cache, the Response

message MUST NOT be cached anywhere.

Example

See CResponse::setCacheControl().

60

4.1. CRESPONSE CLASS CResponse::getContentType

See Also

CResponse::setCacheControl().

CResponse::getCharSet

Synopsis

chchar * getCharSet();

Purpose

Retrieve a character set to append to the content type header.

Return Value

Upon successful completion, a string which contains a character set is returned. Otherwise, NULL is re-

turned.

Parameters

None.

Description

The function getCharSet() retrieves a character set to append to the content type header.

The CResponse::setCharSet function can be used to set the character set when displaying the current object.

Example

See CResponse::setCharSet().

See Also

CResponse::setCharSet().

CResponse::getContentType

Synopsis

chchar * getContentType();

Purpose

Retrieve the current value of the ContentType property.

Return Value

Upon successful completion, a string which contains the ContentType value is returned. Otherwise, NULL

is returned.

Parameters

None.

Description

The function getContentType() retrieves the current value of the ContentType property of the object and

the CResponse::setContentType function can set the content type. The content type of the output of Ch-

CGI and Ch-ASP is text/html by default.

61

4.1. CRESPONSE CLASS CResponse::getExpiresAbsolute

Example

See CResponse::setContentType().

See Also

CResponse::setContentType().

CResponse::getExpires

Synopsis

int getExpires();

Purpose

Retrieve the current value of the Expires property.

Return Value

Upon successful completion, an integer that indicates the minutes of expires is returned. Otherwise, a nega-

tive value is returned.

Parameters

None.

Description

The function getExpires() retrieves the current value of the Expires property of the object. If the user re-

turns to the same page before it expires, the cached version is displayed. If this property is set more than

once on a page, the shortest time is used.

If the property is never set before it is called, INT MAX will be returned. In this case, the return value

does not make sense.

The CResponse::setExpires function can set a new value to the Expires property.

Example

See CResponse::setExpires().

See Also

CResponse::setExpires().

CResponse::getExpiresAbsolute

Synopsis

chchar * getExpiresAbsolute();

Purpose

Retrieve the current value of the ExpiresAbsolute property.

Return Value

62

4.1. CRESPONSE CLASS CResponse::getStatus

Upon successful completion, a string which contains the value of the ExpiresAbsolute property is returned.

Otherwise, NULL is returned.

Parameters

None.

Description

The function getExpiresAbsolute() retrieves the current value of the ExpiresAbsolute property of the ob-

ject. If the user returns to the same page before the set date and time, the cached version is displayed. If this

property is set more than once on a page, the earliest expiration date or time is used. If the expiration date

and time is not set before this function is called, NULL is returned.

The date string is formatted as:

Wdy, DD-Mon-YYYY HH:MM:SS GMT

This is based on RFC 822, RFC 850, RFC 1036, and RFC 1123, with the variations that the only legal time

zone is GMT(Greenwich Mean Time) and the separators between the elements of the date must be dashes.

The CReponse::setExpiresAbsolute function can be used to set this property.

Example

See CResponse::setExpiresAbsolute().

See Also

CResponse::setExpiresAbsolute().

CResponse::getStatus

Synopsis

chchar * getStatus();

Purpose

Retrieve the current value of the Status property.

Return Value

Upon successful completion, a pointer that points to a string which contains the value of the Status property

is returned. Otherwise, NULL is returned.

Parameters

None.

Description

The function getStatus() retrieves the current value of the Status property of the object. The

CResponse::setStatus function can be used to modify the status line. Status values are defined in the

HTTP1.1 RFC 2068.

63

4.1. CRESPONSE CLASS CResponse::redirect

Example

See CResponse::setStatus().

See Also

CResponse::setStatus().

CResponse::PICS

Synopsis

int PICS(chchar * headerValue);

Purpose

Add a value to the PICS label field of the header.

Return Value

Upon successful completion, zero is returned. Otherwise, a value of non-zero is returned.

Parameters

headerValue A string containing the new PICS value.

Description

The function PICS() adds a value to the PICS label field of the header. It inserts any string in the header,

whether or not it represents a valid PICS label.

If a single page includes multiple tags containing CResponse::PICS function, each instance will replace

the PICS label set by the previous one. As a result, the PICS label will be set to the value specified by the

last instance of CResponse::PICS in the page.

Because PICS labels contain quotes, the author must add a backslash before each quote.

For more details on the PICS standard, see http://www.w3.org/Pics/.

Example

Response.PICS("(PICS-1.1 <http://www.rsac.org/ratingv01.html> labels on

\"1997.01.05T08:15-0500\" until \"1999.12.31T23:59-0000\" ratings (v 0 s

0 l 0 n 0))");

This example will add the following header to the client:

PICS-label:(PICS-1.1 <http://www.rsac.org/ratingv01.html> labels on

"1997.01.05T08:15-0500" until "1999.12.31T23:59-0000" ratings (v 0 s

0 l 0 n 0))

See Also

None.

CResponse::redirect

64

4.1. CRESPONSE CLASS CResponse::setBuffer

Synopsis

int redirect(chchar * URL);

Purpose

Stop the server from processing the current script and then causes the browser to attempt to connect to a

different URL.

Return Value

Upon successful completion, zero is returned. Otherwise, a value of non-zero is returned.

Parameters

URL A string containing the URL.

Description

The function redirect() stops the server from processing the current script and then causes the browser to

attempt to connect to a different URL.

If you have set any response body content in the page, it will be ignored. However, this function does send

to the client other HTTP headers set by this page. An automatic response body containing the redirect URL

as a link is generated. This function sends the following explicit header,

HTTP 1.0 302 Object Moved

Location: URL

where URL is the value passed to the function.

If buffering is set to false and your component attempts to call this function after any body has been sent to

the client, the server will generate an error.

Example

char *URL = "iel.ucdavis.edu"

Response.redirect(URL);

The example above will redirect user to primary web site of IEL.

See Also

CResponse::getStatus().

CResponse::setBuffer

Synopsis

int setBuffer(bool buffering);

Purpose

Set the value of the Buffer property.

Return Value

Upon successful completion, zero is returned. Otherwise, a value of non-zero is returned.

Parameters

65

4.1. CRESPONSE CLASS CResponse::setCacheControl

buffering A boolean value that contains the new Buffer value.

Description

The function setBuffer() sets the current value of the Buffer property of the object. When page output is

buffered, the server does not send a response to the client until all of the server scripts on the current page

have been processed, or until the CResponse::flush, CResponse::end or CResponse::exit function has

been called.

The Buffer property cannot be set after the server has sent output to the client. For this reason, the call to

CResponse::setBuffer should be the first line of the script file.

The function of CResponse::getBuffer can retrieve the current value of the Buffer property of the object.

Note:

Under Ch-CGI debug mode with the first line of a Ch-CGI code as #!/bin/ch -g, this setting has no

effect.

Differences Between Ch-CGI and Ch-ASP

In Ch-CGI, the output is not buffered by default.

In Ch-ASP, the output is buffered by default.

Example

See CResponse::flush().

See Also

CResponse::getBuffer(), CResponse::flush(), CResponse::exit().

CResponse::setCacheControl

Synopsis

int setCacheControl(chchar * cacheControl);

Purpose

Set the value of the CacheControl property.

Return Value

Upon successful completion, zero is returned. Otherwise, a value of non-zero is returned.

Parameters
cacheControl A string containing the new CacheControl value which could be Private(by default), Public

or no-cache. no-cache is only supported by HTTP/1.1 protocal.

Description

The function setCacheControl() sets the value of the CacheControl property of the object. This function

can be used to override the default value which is Private. By setting the value to Public, proxy servers will

be able to cache output from pages; no-cache, the Response message MUST NOT be cached anywhere. The

CResponse::getCacheControl function can retrieve a value for the CacheControl property.

Differences Between Ch-CGI and Ch-ASP

In Ch-ASP, setCacheControl() does not support the parameter of no-cache.

66

4.1. CRESPONSE CLASS CResponse::setContentType

Example

char *cacheControl = "public";

Response.setCacheControl(cacheControl);

printf("The current value of cache control is %s\n",

Response.getCacheControl());

The example above will set the current value of CacheControl property to ”public” and then print out:

The current value of cache control is public

See Also

CResponse::getCacheControl().

CResponse::setCharSet

Synopsis

int setCharSet(chchar * charSet);

Purpose

Set the value of the CharSet property.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

charSet A string containing the new CharSet value.

Description

The function setCharSet() sets the value of the CharSet property of the object.

The CResponse::getCharSet() function can retrieve the character set of the current HTML page.

Example

char *charSet = "ISO-LATIN-1";

Response.setCharSet(charSet);

printf("The current value of character set is %s\n",

Response.getCharSet());

The example above will set current value of CharSet property to ”ISO-LATIN-1” and then print out:

The current value of character set is ISO-LATIN-1

See Also

CResponse::getCharSet().

CResponse::setContentType

Synopsis

int setContentType(chchar * type);

67

4.1. CRESPONSE CLASS CResponse::setExpires

Purpose

Set the value of the ContentType property.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

type A string containing the new ContentType value. Valid ContentType include text/plain,

text/html, image/gif, etc.

Description

The function setContentType() sets the value of the ContentType property of the object. The content type

of the output of Ch-CGI and Ch-ASP is text/html by default.

The CResponse::getContentTypefunction can be used to get the ContentType property of the current

object.

If the content type is plain text set by the member function call of

Response.setContentType("text/plain"), the member function Response.title(title)

which generates a title in HTML format shall not be called.

In Ch-CGI, this function and other CResponse::set*() member functions, should be called before CRe-

sponse::begin() is called.

Example

char *type = "image/JPEG";

Response.setContentType(type);

printf("The current content type is %s\n", Response.getContentType());

The example above will set the current content type to ”image/JPEG” and then print out:

The current content type is "image/JPEG"

See Also

CResponse::getContentType().

CResponse::setExpires

Synopsis

int setExpires(int expiresMinutes);

Purpose

Set the current value of the Expires property.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

expiresMinutes An integer that contains the minutes of new Expires value.

68

4.1. CRESPONSE CLASS CResponse::setExpiresAbsolute

Description

The function setExpires() sets the current value of the Expires property of the object. If the user returns to

the same page before it expires, the cached version is displayed. If this property is set more than once on a

page, the shortest time is used.

CResponse::getExpires() gets the current value of the Expires property of the object. If the property

is never set before it is called, INT MAX will be returned by the function of getExpires(). In this case, the

return value does not make sense.

Example

int expiresMinutes = 10;

Response.setExpires(expiresMinutes);

printf("The current value of expires is %d minutes\n",

Response.getExpires());

The example above will set the current value of Expires property to 10 minutes and then print out:

The current value of expires is 10 minutes

See Also

CResponse::getExpires().

CResponse::setExpiresAbsolute

Synopsis

int setExpiresAbsolute(chchar * expires);

Purpose

Set the value of the ExpiresAbsolute property.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

expires A string containing the new ExpiresAbsolute value.

Description

The function setExpiresAbsolute() sets the value of the ExpiresAbsolute property of the object. If the user

returns to the same page before the set date and time, the cached version is displayed. If this function is

called more than once on a page, the earliest expiration date or time is used.

The date string is formatted as:

Wdy, DD-Mon-YYYY HH:MM:SS GMT

This is based on RFC 822, RFC 850, RFC 1036, and RFC 1123, with the variations that the only legal time

zone is GMT(Greenwich Mean Time) and the separators between the elements of the date must be dashes.

69

4.1. CRESPONSE CLASS CResponse::title

The CReponse::getExpiresAbsolute() function can be used to get the date and time. If the expiration date

and time is not set before this function is called, NULL is returned.

Example

char *expires = "Monday, 17-Dec-2001 14:02:40 GMT";

Response.setExpiresAbsolute(expires);

printf("The current value of expires is \n",

Response.getExpiresAbsolute());

The example above will set the current value of ExpiresAbsolute property to

”Monday, 17-Dec-2001 14:02:40 GMT” and then print out:

The current value of expires is Monday, 17-Dec-2001 14:02:40 GMT

See Also

CResponse::getExpiresAbsolute().

CResponse::setStatus

Synopsis

int setStatus(chchar * status);

Purpose

Set the value of the Status property.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

status A string containing the new Status value.

Description

The function setStatus() sets the value of the Status property of the object. The CResponse::getStatus()

function can be used to obtain the status line returned by the server.

Status values are defined in the HTTP1.1 RFC 2068.

Example

char *status = "401 Unauthorized";

Response.setStatus(status);

printf("The current status line is %s\n", Response.getStatus());

The example above will set current status line to ”401 Unauthorized” and then print out:

The current status line is 401 Unauthorized

See Also

CResponse::getStatus().

70

4.1. CRESPONSE CLASS CResponse::title

CResponse::title

Synopsis

void title(chchar * title);

Purpose

Set the title of an HTML page.

Return Value

None.

Parameters

title A string containing title of the HTML page.

Description

The function title() sets the title by adding <head> and <title> tags into an HTML page. If content

type is text/html, tags of <html> and <body bgcolor="#FFFFFF"> are added by this function

as well, the CResponse::end() function will add </body> and </html> tags at the end of this HTML

page correspondingly.

It is equivalent to the code below:

void CResponse::title(char* titleName)

{

printf("<html>\n");

if (titleName != NULL)

printf("<head> <title> %s </title></head>\n", titleName);

printf("<body bgcolor=\"#FFFFFF\">\n");

}

Differences Between Ch-CGI and Ch-ASP

This member function works in Ch-CGI only. It is not valid in Ch-ASP.

Example

See CRequest::getFormNameValue().

See Also

CResponse::begin(), CResponse::end().

71

4.2. CREQUEST CLASS CRequest

4.2 CRequest Class

The CRequest class contains several utility functions for receiving the content from a browser. One of the

most important applications of CRequestis handling fill-out forms. The program located on a host ma-

chine’s web server can accept user’s input through a fill-out form and generate web pages dynamically.

Public Data

None.

Differences Between Ch-CGI and Ch-ASP

By default, there is no difference in CRequest between Ch-CGI and Ch-ASP.

Public member functions.

Function Description

binaryRead() retrieves the bytes that were read by an HTTP Post and place it into a buffer.

getCookie() retrieves a cookie.

getCookies() retrieves all cookies.

getForm() retrieves a value of the specified name which was read by

POST or GET method.

getForms() retrieves all values of a specified name which were read by POST or

GET method.

getFormNameValue() retrieves all pairs of name and value that were read by POST or GET method.

getServerVariable() retrieves the value of a specified ServerVariable.

getTotalBytes() retrieves the size of the current request in bytes.

72

4.2. CREQUEST CLASS CRequest::getCookie

CRequest::binaryRead

Synopsis

char * binaryRead(size t * count);

Purpose

Retrieve the bytes that were read by an HTTP Post and places it into a buffer.

Return Value

Upon successful completion, a pointer that points to a buffer which contains the retrieved bytes is returned.

Otherwise, NULL is returned.

Parameters

count A pointer that points to a value of type size t. Before execution, this value specifies how many bytes

to read from the client. After this function returns, count will contain the number of bytes successfully

read from the client. The total number of bytes that will actually be read is less than or equal to the

value returned by the CRequest::getTotalBytes function.

Description

The function binaryRead() retrieves the bytes that were read by an HTTP Post and places it into a buffer.

This function is used to read the raw data sent by the client as part of a POST request and it is used for

low-level access to this data, as opposed to, for example, using the CRequest::getForm function view form

data sent in a POST request.

Once this funtion has been called, any execution of CRequest::getForm, CRequest::getForms or CRe-

quest::getFormNameValue function will cause an error. Conversely, once these CRequest::getForm*

functions have been called, calling this function will cause an error.

Example

size_t count;

char * buffer;

count = Request.getTotalBytes();

printf("The size of the current Request in bytes is : %d\n", count);

buffer = Request.binaryRead(&count);

printf("The raw data is : %s\n", buffer);

printf("The actually read bytes is : %d\n", count);

The example above will print out the size of the current request , the raw data which is actually read and its

size.

See Also

CRequest::getTotalBytes(), CRequest::getForm(), CRequest::getForms(), CRequest::getFormNameValue().

CRequest::getCookie

73

4.2. CREQUEST CLASS CRequest::getCookies

Synopsis

chchar * getCookie(chchar* cookieName);

Purpose

Retrieve the value of a cookie by its name.

Return Value

Upon successful completion, a string which contains the value of a cookie is returned. Otherwise, NULL is

returned.

Parameters

cookieName A string which contains the name of a cookie.

Description

The function getCookie() retrieves the value of a cookie by its name. The CRequest::getCookies() function

can get all cookies. The CResponse::addCookie() function adds a cookie to a client.

Differences Between Ch-CGI and Ch-ASP

In Ch-ASP, the cookies added by addCookie() can be retrieved by getCookie() or getCookes() in the same

program. In Ch-CGI, the cookies added by addCookie() cannot be retrieved by getCookie() or getCookies()

in the same program.

Example

Program 1:

class CCookie cookie1;

char *cookieName = "name1";

char *cookieValue = "value1";

cookie1.setName(cookieName);

cookie1.setValue(cookieValue);

Response.addCookie(&cookie1);

Program 2:

printf("The value of %s is %s \n", cookieName,

Request.getCookie(cookieName));

The program 2 of this example will print out :

The value of name1 is value1

See Also

CResponse::addCookie(), CRequest:getCookies(), CCookie.

CRequest::getCookies

Synopsis

int getCookies(CCookie** cookies);

74

4.2. CREQUEST CLASS CRequest::getForm

Purpose

Retrieve all of cookies.

Return Value

Upon successful completion, the number of cookies actually retrieved is returned. Otherwise, a negative

value is returned.

Parameters

cookies A pointer to an array of CCookie objects which contains the retrieved cookies.

Description

The function getCookies() retrieves all of cookies. The CRequest::getCookie() function retrieves the value

of a cookie by its name. The CResponse::addCookie() function adds a cookie to a client.

Differences Between Ch-CGI and Ch-ASP

In Ch-ASP, the cookies added by addCookie() can be retrieved by getCookie() or getCookes() in the same

program. In Ch-CGI, the cookies added by addCookie() cannot be retrieved by getCookie() or getCookies()

in the same program in Ch-CGI.

Example

See CResponse::addCookie().

See Also

CResponse::addCookie(), CRequest::getCookie(), CCookie.

CRequest::getForm

Synopsis

chchar * getForm(chchar * name);

Purpose

Retrieve a value of the specified name which was read by POST or GET method.

Return Value

Upon successful completion, a value for the specified name read by POST or GET method is returned. Oth-

erwise, NULL is returned.

Parameters

name A string which contains the name of the specified item.

Description

The function getForm() retrieves a value of the specified name which was read by POST or GET method.

If there are multiple values for the specified name, the first one is returned. The CRequest::getForms func-

tion retrieves all values of items with the specified name, and the CRequest::getFormNameValue function

retrieves all pairs of name and value.

Example

75

4.2. CREQUEST CLASS CRequest::getForms

char *name = "favorite";

char *value;

value = Request.getForm(name);

if(value == NULL)

printf("No item named %s has been submitted\n", name);

else

printf("The value of items named %s is %s\n", name, value);

The example above will retrieve all unparsed values of items with name of ”favorite” which is read by POST

or GET methods, then print these values out as a single string.

See Also

CRequest::getForms(), CRequest::getFormNameValue().

CRequest::getForms

Synopsis

int getForms(chchar * name, chstrarray & values);

Purpose

Retrieve all values of the specified name which were read by POST or GET method.

Return Value

Upon successful completion, number of repeated values of the specified name is returned. Otherwise, zero

is returned.

Parameters

name A string which contains the name of the specified item.
value A reference of an array which contains all values of the specified name.

Description

The function getForms() retrieves all values of the specified name which were read by POST or GET

method. The CRequest::getForm function retrieves the first value of the specified name, and the CRe-

quest::getFormNameValue function retrieves all pairs of name and value.

Example

int num;

char *name = "favorite";

chstrarray value;

num = Request.getForms(name, value);

if(num == 0)

printf("No item named %s has been submitted\n", name);

else if (num < 0)

printf("Error: in Request.getForms()\n");

else {

printf("The following %d values are submitted with the name of %s\n",

num, name);

printf("\n");

76

4.2. CREQUEST CLASS CRequest::getFormNameValue

for(i=0; i < num; i++)

if(value[i])

printf(" <code> %s </code>\n",value[i]);

printf("\n");

}

The example above will retrieve all values of items with name of ”favorite” which is read by POST or GET,

then print these values out seperately.

See Also

CRequest::getForm(), CRequest::getFormNameValue().

CRequest::getFormNameValue

Synopsis

int getFormNameValue(chstrarray & names, chstrarray & values);

Purpose

Retrieve all name/value pairs that were read by POST or GET method.

Return Value

Upon successful completion, the number of name/value pairs is returned. Otherwise, -1 is returned.

Parameters

names A reference of an array that contains names of the pairs.
values A reference of an array that contains values of the pairs.

Description

The function getFormNameValue() retrieves all pairs of name and value that were read by POST or GET

method. The name and value in one pair will be saved in corresponding positions of the retrieved ar-

rays. CRequest::getForms function retrieves all values of items with the specified name, while CRe-

quest::getForm function retrieves the first value.

Characters like &, %, and $ typed into the text entry field in a fill-out form are automatically escaped into

hex form — a percent sign followed by a two-digit hex value corresponding to the ASCII value of the char-

acter when the query is constructed in a Web browser. For example, string ”&%$” becomes ”%26%25%24”.

Example

The program below can be used to obtain all names and values from a fill-out form, and print them out in
content type of text in HTML file format.

#!/bin/ch

#include <cgi.h>

int main() {

int i, num;

chstrarray name, value;

class CResponse Response;

class CRequest Request;

77

4.2. CREQUEST CLASS CRequest::getServerVariable

Response.setContentType("text/html");

Response.begin();

Response.title("CGI FORM results");

printf("<H1>CGI FORM test script reports:</H1>\n");

num = Request.getFormNameValue(name, value);

if(num == 0) {

printf("No name/value has been submitted<p>\n");

Response.exit();

}

else if(num < 0) {

printf("Error: in Request.getFormNameValue() <p>\n");

Response.exit();

}

printf("The following %d name/value pairs are submitted<p>\n",num);

printf("\n");

for(i=0; i < num; i++) {

printf(" <code>%s = ",name[i]);

if(value[i])

printf("%s",value[i]);

printf("</code>\n");

}

printf("\n");

Response.end();

}

See Also

CRequest::getForm(), CRequest::getForms().

CRequest::getServerVariable

Synopsis

chchar * getServerVariable(chchar * variableName);

Purpose

Retrieve the value of a specified server variable.

Return Value

Upon successful completion, a string which contains the value of a specified server variable. Otherwise,

NULL is returned.

Parameters

variableName A string which contains the name of a specified server variable.

Description

The function getServerVariable() retrieves a specified ServerVariable value. If a client sends a header other

than those specified in the table below, the value of that header can be retrieved by prefixing the header name

with HTTP in the call to this function. For example, if the client sent the header

SomeNewHeader:SomeNewValue

SomeNewValue can be retrieved by using the following syntax:

headerValue = Request.getServerVariable("HTTP_SomeNewHeader");

78

4.2. CREQUEST CLASS CRequest::getServerVariable

Server Variables

Variable Description

ALL HTTP All HTTP headers sent by the client.

ALL RAW All headers in raw form.

APPL MD PATH The metabase path for the Application for the ISAPI DLL.

APPL PHYSICAL PATH The physical path corresponding to the metabase path.

AUTH PASSWORD The value entered in the client’s authentication dialog.

AUTH TYPE The authentication method used by server.

AUTH USER Raw authenticated user name.

CERT COOKIE Unique ID for client certificate.

CERT FLAGS Determine if the client certificate is present.

CERT ISSUER Issuer field of the client certificate.

CERT KEYSIZE Number of bits in Secure Sockets Layer connection key size.

CERT SECRETKEYSIZE Number of bits in server certificate private key.

CERT SERIALNUMBER Serial number field of the client certificate.

CERT SERVER ISSUER Issuer field of the server certificate.

CERT SERVER SUBJECT Subject field of the server certificate.

CERT SUBJECT Subject field of the client certificate.

CONTENT LENGTH The length of the content as given by the client.

CONTENT TYPE The data type of the content.

GATEWAY INTERFACE The revision of the CGI specification used by the server.

HTTP_<HeaderName> The value stored in the header HeaderName.

HTTP ACCEPT The value of the Accept header.

HTTP ACCEPT LANGUAGE A string describing the language to use for

displaying content.

HTTP USER AGENT A string describing the browser that sent the request.

HTTP COOKIE The cookie string that was included with the request.

HTTP REFERER A string containing the URL of the page that referred

the request to the current page, but does not include redirect requests.

79

4.2. CREQUEST CLASS CRequest::getTotalBytes

Server Variables (Contd.)

Variable Description

HTTPS ON if the request came in through secure channel (SSL) or

OFF if the request is for a non-secure channel.

HTTPS KEYSIZE Number of bits in Secure Sockets Layer connection key size.

HTTPS SECRETKEYSIZE Number of bits in server certificate private key.

HTTPS SERVER ISSUER Issuer field of the server certificate.

HTTPS SERVER SUBJECT Subject field of the server certificate.

INSTANCE ID The ID for the IIS instance in textual format.

INSTANCE META PATH The metabase path for the instance of response.

LOCAL ADDR The Server Address on which the request came in.

LOGON USER The Windows account that the user is logged into.

PATH INFO Extra path information as given by the client.

PATH TRANSLATED A translated version of PATH INFO.

QUERY STRING Query information stored in the string following

the question mark (?) in the HTTP request.

REMOTE ADDR The IP address of the remote host making the request.

REMOTE HOST The name of the host making the request.

REMOTE USER Unmapped user-name string sent in by the user.

REQUEST METHOD The method used to make the request.

SCRIPT NAME A virtual path to the script being executed.

SERVER NAME The server’s host name.

SERVER PORT The port number to which the request was sent.

SERVER PORT SECURE A string that contains either 0 or 1.

SERVER PROTOCOL The name and revision of the request information protocol.

SERVER SOFTWARE The name and version of the server software.

URL Gives the base portion of the URL.

Example

char *variableName = "SERVER_NAME";

char *variableValue;

variableValue = Request.getServerVariable(variableName);

printf("The hostname of the web server is : %s\n", variableValue);

The example above will print out the hostname of the web server.

See Also

None.

CRequest::getTotalBytes

Synopsis

size t getTotalBytes();

Purpose

Retrieve the size of the current request in bytes.

80

4.2. CREQUEST CLASS CRequest::getTotalBytes

Return Value

Upon successful completion, a value of type of size t that contains the size of the current request in bytes is

returned. Otherwise, -1 is returned.

Parameters

None.

Description

The function getTotalBytes() retrieves the size of the current request in bytes.

Example

See CRequest::binaryRead().

See Also

CRequest::binaryRead().

81

4.3. CSERVER CLASS CServer

4.3 CServer Class

The CServer class contains several utility functions for high-level access to the web server.

Public Data

None.

Differences Between Ch-CGI and Ch-ASP

By default, there is no difference in CServer between Ch-CGI and Ch-ASP.

Public member functions.

Function Description

HTMLEncode() applies HTML encoding to the specified string.

URLEncode() applies URL encoding rules, including escape characters, to the specified string.

mapPath() maps the specified relative or virtual path to the corresponding

physical directory on the server.

82

4.3. CSERVER CLASS CServer::URLEncode

CServer::HTMLEncode

Synopsis

chchar * HTMLEncode(chchar * in);

Purpose

Apply HTML encoding to the specified string.

Return Value

Upon successful completion, a string which contains the HTML encoded text is returned. Otherwise, NULL

is returned.

Parameters

in A string containing the text to be HTML encoded.

Description

The function HTMLEncode() applies HTML encoding to the specified string. If a browser get a encoded

text, it will display it in HTML format, rather than in plain text. For example, if the parameter contains a

string with symbols of < >, the returned value would contain the HTML code for those characters as <

>. A browser would display these two symbols as < >.

Example

char *in = "< >";

char *result;

result = Server.HTMLEncode(in);

printf("The string \"< >\" is encoded by %s\n", result);

The example above will print out:

The string "< >" is encoded by < >

to the client. But the user will actually see:

The string "< >" is encoded by < >

in the HTML page. .

See Also

CServer::URLEncode().

CServer::URLEncode

Synopsis

chchar * URLEncode(chchar * in);

Purpose

Apply URL encoding rules, including escape characters, to the specified string.

83

4.3. CSERVER CLASS CServer::mapPath

Return Value

Upon successful completion, a string which contains the URL encoded text is returned. Otherwise, NULL

is returned.

Parameters

in A string containing the text to be URL encoded.

Description

The function URLEncode() applies URL encoding rules, including escape characters, to the specified string.

Example

char *in = "x*sin(x)";

char *result;

result = Server.URLEncode(in);

printf("The string \"x*sin(x)\" is encoded by %s\n", result);

The example above will print out:

The string "x*sin(x)" is encoded by x%2Asin%28x%29

to the client.

See Also

CServer::HTMLEncode().

CServer::mapPath

Synopsis

chchar * mapPath(chchar * path);

Purpose

Map the specified relative or virtual path to the corresponding physical directory on the server.

Return Value

Upon successful completion, a string which receives the physical path is returned. Otherwise, NULL is

returned.

Parameters

path A string containing relative or virtual path.

Description

The function mapPath() maps the specified relative or virtual path to the corresponding physical directory

on the server. This function does not check whether the path it returns is valid or exists on the server. Be-

cause it maps a path regardless of whether the specified directories currently exist, the user can use it to map

a path to a physical directory structure, and then pass that path to a component that creates the specified

directory or file on the server.

Example

84

4.3. CSERVER CLASS CServer::mapPath

char *path = ".";

char *result;

result = Server.mapPath(path);

printf("The virtual path of .\\ is mapped to : %s\n", result);

The example above will print out the current directory of the web server.

See Also

None.

85

4.4. CCOOKIE CLASS CCookie

4.4 CCookie Class

A cookie is a small amount of information sent by a web server to a Web browser, saved by the browser, and

later sent back to the server. A cookie’s value can uniquely identify a client, so cookies are commonly used

for session management.

The CCookie class contains several utility functions for setting or getting the name and value of a cookie, as

well as optional attributes. The CCookie class supports both the Version 0 (by Netscape) and Version 1 (by

RFC 2965 which obsoletes RFC 2109). By default, Ch cookies uses version 0. Since RFC 2965 is released

on October 2000, most browsers might not support RFC 2965, the users are encouraged to use Version 0

features.

Note: Properties of Name, Value, MaxAge, Path, Domain, Secure and Version are supported by cookies

which comply with both of Netscape Cookie specifications version 0 and RFC 2965 new version 1. Proper-

ties of Discard, Comment, CommentURL, and portList are supported only by cookies which comply with

RFC 2965 new version 1. Because there is no browser to support the cookie complying with RFC 2965 new

version 1 as yet, these properties are not recommended to use.

Public Data

None.

Differences Between of Ch-CGI and Ch-ASP

By default, there is no difference in CCookie between Ch-CGI and Ch-ASP.

86

4.4. CCOOKIE CLASS CCookie

Public Member Functions

Function Description

addPort() adds a new port into the portlist of the cookie. For version 1 only.

getComment() retrieves the Comment attribute of the cookie. For version 1 only.

getCommentURL() retrieves the CommentURL attribute of the cookie. For version 1 only.

getDiscard() retrieves the Discard attribute of the cookie . For version 1 only.

getDomain() retrieves the Domain attribute of the cookie.

getMaxAge() retrieves maximum age of the cookie.

getName() retrieves the name of the cookie.

getPath() retrieves the path on the server to which browser returns the cookie.

getPorts() retrieves all ports in the portlist of the cookie. For version 1 only.

getSecure() determines if the browser is sending the cookie only over a secure protocol.

getValue() retrieves the value of the cookie.

getVersion() retrieves the version of the protocol the cookie complies with.

setComment() sets the Comment attribute of the cookie. For version 1 only.

setCommentURL() sets the CommentURL attribute of the cookie. For version 1 only.

setDiscard() sets the Discard attribute of the cookie. For version 1 only.

setDomain() sets the Domain attribute of the cookie.

setMaxAge() sets maximum age of the cookie.

setName() sets the name of the cookie.

setPath() sets the path on the server to which browser returns the cookie.

setSecure() sets the Secure attribute of the cookie.

setValue() sets the value of the cookie.

setVersion() sets the version of the protocol the cookie complies with.

87

4.4. CCOOKIE CLASS CCookie::addPort

CCookie::addPort

Synopsis

int addPort(int portNum);

Purpose

Add a new port into the portlist of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

portNum An integer which indicates the new port to be added.

Description

The function addPort() adds a new port into the portlist of the cookie. This portlist contains some ports to

which a cookie may be returned in a Cookie request header.

The CCookie::getPorts() function can be used to retrieve this portlist.

Example

The program below sets and gets properties of a cookie locally.

#!/bin/ch

#include <cgi.h>

int main() {

class CCookie cookie1;

class CResponse Response;

int *portlist, portnum, j;

Response.setContentType("text/html");

Response.begin();

Response.title("CGI Cookie results");

printf("<H1>CGI Cookie test script reports:</H1>\n");

// set properties of cookie

cookie1.setName("name1");

cookie1.setValue("value1");

cookie1.setVersion(1);

cookie1.addPort(8080);

cookie1.addPort(8081);

cookie1.setComment("This cookie is for test");

cookie1.setCommentURL("");

cookie1.setDiscard(false);

cookie1.setDomain("iel.ucdavis.edu");

cookie1.setMaxAge(3600000);

cookie1.setPath("/foo");

cookie1.setSecure(true);

// get properties of cookie

printf(" <code>%s = ",cookie1.getName());

88

4.4. CCOOKIE CLASS CCookie::getCommentURL

printf("%s; ",cookie1.getValue());

printf("Version = %d; ",cookie1.getVersion());

printf("Comment = %s; ",cookie1.getComment());

printf("CommentURL = %s; ",cookie1.getCommentURL());

printf("Discard = %d; ",cookie1.getDiscard());

printf("Domain = %s; ",cookie1.getDomain());

printf("MaxAge = %d; ",cookie1.getMaxAge());

printf("Path = %s; ",cookie1.getPath());

printf("Secure = %d; ",cookie1.getSecure());

portnum = cookie1.getPorts(portlist);

if(portnum > 0)

for(j = 0; j < portnum; j++)

printf("port[%d] = %d; ", j, portlist[j]);

printf("</code>\n");

printf("\n");

Response.end();

}

See Also

CCookie::getPorts(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getComment

Synopsis

chchar * getComment();

Purpose

Retrieve the Comment attribute describing the purpose of this cookie.

Return Value

Upon successful completion, a string which contains the value of the Comment attribute of the cookie is

returned. Otherwise, NULL is returned.

Parameters

None.

Description

The function getComment() retrieves the Comment attribute describing the purpose of this cookie. Be-

cause cookies can be used to derive or store private information about a user, the value of the Comment

attribute allows an origin server to document how it intends to use the cookie. The user can inspect the

information to decide whether to initiate or continue a session with this cookie. Characters in value MUST

be in UTF-8 encoding. [RFC2279]

Property of Comment are not supported by Netscape Version 0 cookies.

The CCookie::setComment() function can be used to set the Comment attribute of the cookie.

Example

See CCookie::addPort().

See Also

89

4.4. CCOOKIE CLASS CCookie::getDiscard

CCookie::setComment(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getCommentURL

Synopsis

chchar * getCommentURL();

Purpose

Retrieve the CommentURL attribute of the cookie.

Return Value

Upon successful completion, a string which contains the value of the CommentURL attribute of the cookie

is returned. Otherwise, NULL is returned.

Parameters

None.

Description

The function getCommentURL() retrieves the CommentURL attribute of the cookie. Because cookies can

be used to derive or store private information about a user, the CommentURL attribute allows an origin

server to document how it intends to use the cookie. The user can inspect the information identified by the

URL to decide whether to initiate or continue a session with this cookie.

The CCookie::setCommentURL() function can be used to set the CommentURL attribute of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::setCommentURL(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getDiscard

Synopsis

bool getDiscard();

Purpose

Retrieve the Discard attribute of the cookie.

Return Value

A boolean value which contains the Discard attribute of the cookie is returned.

Parameters

None.

Description

The function getDiscard() retrieves the Discard attribute of the cookie. The Discard attribute instructs the

90

4.4. CCOOKIE CLASS CCookie::getMaxAge

user agent to discard the cookie unconditionally when the user agent terminates.

The CCookie::setDiscard() function can be used to set the Discard attribute of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::setDiscard(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getDomain

Synopsis

chchar * getDomain();

Purpose

Retrieve the Domain attribute of the cookie.

Return Value

Upon successful completion, a string which contains the value of the Domain attribute of the cookie is

returned. Otherwise, NULL is returned.

Parameters

None.

Description

The function getDomain() retrieves the Domain attribute of the cookie. The value of the Domain attribute

specifies the domain for which the cookie is valid. If an explicitly specified value does not start with a dot,

the user agent supplies a leading dot.

The CCookie::setDomain() function can be used to set the Domain attribute of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::setDomain(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getMaxAge

Synopsis

int getMaxAge();

Purpose

Retrieve the maximum age of the cookie.

Return Value

91

4.4. CCOOKIE CLASS CCookie::getPath

Upon successful completion, an integer which indicates the maximum age of the cookie in seconds is re-

turned. Otherwise, a negative value is returned.

Parameters

None.

Description

The function getMaxAge() retrieves the maximum age of the cookie. The value of the maximum age is the

lifetime of the cookie in seconds. It is a decimal non-negative integer. To handle cached cookies correctly, a

client should calculate the age of the cookie according to the age calculation rules in the HTTP/1.1 specifi-

cation [RFC2616]. When the age is greater than delta-seconds seconds, the client should discard the cookie.

A value of zero means the cookie should be discarded immediately.

The CCookie::setMaxAge() function can be used to set the maximum age of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::setMaxAge(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getName

Synopsis

chchar * getName();

Purpose

Retrieve the name of the cookie.

Return Value

Upon successful completion, a string which contains the name of the cookie is returned. Otherwise, NULL

is returned.

Parameters

None.

Description

The function getName() retrieves the name of the cookie. The CCookie::setName() function can be used

to set the name of the cookie.

Example

See CResponse::addCookie().

See Also

CCookie::setName(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getPath

92

4.4. CCOOKIE CLASS CCookie::getPorts

Synopsis

chchar * getPath();

Purpose

Retrieve the Path attribute of the cookie.

Return Value

Upon successful completion, a string which contains the value of the Path attribute of the cookie is returned.

Otherwise, NULL is returned.

Parameters

None.

Description

The function getPath() retrieves the path on the server to which browser returns the cookie. The cookie is

visible to all the pages in the directory you specify, and all the pages in that directory’s subdirectories.

Consult RFC 2109 (available on the Internet) for more information on setting path names for cookies.

The CCookie::setPath() function can be used to set the Path attribute of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::setPath(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getPorts

Synopsis

int getPorts(int ** portList);

Purpose

Retrieve all ports in the portlist of the cookie.

Return Value

Upon successful completion, an integer which indicates the number of the ports in the portlist is returned.

Otherwise, a negative value is returned.

Parameters

portList An integer array which contains all ports in the portlist.

Description

The function getPorts() retrieves all ports in the portlist of the cookie. This portlist contains the ports to

which a cookie may be returned in a Cookie request header.

The CCookie::addPort() function can be used to add a new port into the portlist of the cookie.

93

4.4. CCOOKIE CLASS CCookie::getValue

Example

See CCookie::addPort().

See Also

CCookie::addPort(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getSecure

Synopsis

bool getSecure();

Purpose

Retrieve the Secure attribute of the cookie.

Return Value

A boolean value which contains the Secure attribute of the cookie is returned.

Parameters

None.

Description

The function getSecure() retrieves the Secure attribute of the cookie. It indicates to the browser whether

the cookie should only be sent using a secure protocol, such as HTTPS or SSL.

The default value of Secure attribute is false and the cookie is sent from the browser to the server using any

protocol. If the value of Secure attribute is set to true, sent on only a secure protocol.

The CCookie::setSecure() function can be used to set the Secure attribute of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::setSecure(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getValue

Synopsis

chchar * getValue();

Purpose

Retrieve the value of the cookie.

Return Value

Upon successful completion, a string which contains the value of the cookie is returned. Otherwise, NULL

is returned.

94

4.4. CCOOKIE CLASS CCookie::setComment

Parameters

None.

Description

The function getValue() retrieves the value of the cookie. The CCookie::setValue() function can be used to

set the value of the cookie.

Example

See CResponse::addCookie().

See Also

CCookie::setValue(), CResponse::addCookie(), CRequest::getCookies().

CCookie::getVersion

Synopsis

int getVersion();

Purpose

Retrieve the Version attribute of the cookie.

Return Value

Upon successful completion, an integer which indicates the version of the cookie is returned. Otherwise, a

negative value is returned.

Parameters

None.

Description

The function getVersion() retrieves the version of the cookie. Version 1 complies with RFC 2965, and ver-

sion 0 complies with the original Netscape Cookie Specification. Cookies provided by a browser use and

identify the browser’s cookie version. By default, the value of Version is 0.

The CCookie::setVersion() function can be used to set the version of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::setVersion(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setComment

Synopsis

int setComment(chchar * comment);

Purpose

95

4.4. CCOOKIE CLASS CCookie::setCommentURL

Set the Comment attribute which describes the purpose of this cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

comment A string containing the value of the Comment attribute of the cookie.

Description

The function setComment() sets the Comment attribute which describes the purpose of this cookie. Be-

cause cookies can be used to derive or store private information about a user, the value of the Comment

attribute allows an origin server to document how it intends to use the cookie. The user can inspect the

information to decide whether to initiate or continue a session with this cookie. Characters in value MUST

be in UTF-8 encoding. [RFC2279]

Comments are not supported by Netscape Version 0 cookies.

The CCookie::getComment() function can be used to retrieve the Comment attribute of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::getComment(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setCommentURL

Synopsis

int setCommentURL(chchar * commentURL);

Purpose

Set the CommentURL attribute of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

commentURL A string containing the value of the CommentURL attribute of the cookie.

Description

The function setCommentURL() sets the CommentURL attribute of the cookie. Because cookies can be

used to derive or store private information about a user, the CommentURL attribute allows an origin server

to document how it intends to use the cookie. The user can inspect the information identified by the URL to

decide whether to initiate or continue a session with this cookie.

The CCookie::getCommentURL() function can be used to retrieve the CommentURL attribute of the

cookie.

96

4.4. CCOOKIE CLASS CCookie::setDomain

Example

See CCookie::addPort().

See Also

CCookie::getCommentURL(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setDiscard

Synopsis

int setDiscard(bool discard);

Purpose

Set the Discard attribute of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

Parameters

discard A boolean value that contains the new value of the Discard attribute.

Description

The function setDiscard() sets the Discard attribute of the cookie. The Discard attribute instructs the user

agent to discard the cookie unconditionally when the user agent terminates.

The CCookie::getDiscard() function can be used to retrieve the Discard attribute of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::getDiscard(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setDomain

Synopsis

int setDomain(chchar * domain);

Purpose

Set the Domain attribute of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

domain A string containing the value of the Domain attribute of the cookie.

97

4.4. CCOOKIE CLASS CCookie::setName

Description

The function setDomain() sets the Domain attribute of the cookie. The value of the Domain attribute spec-

ifies the domain for which the cookie is valid. If an explicitly specified value does not start with a dot, the

user agent supplies a leading dot.

The CCookie::getDomain() function can be used to retrieve the Domain attribute of the cookie.

Example

See CResponse::addCookie().

See Also

CCookie::getDomain(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setMaxAge

Synopsis

int setMaxAge(int maxAge);

Purpose

Set the maximum age of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

maxAge An integer specifying the maximum age of the cookie in seconds;

Description

The function setMaxAge() sets the maximum age of the cookie. The value of the maxmimum age is the

lifetime of the cookie in seconds. It is a decimal non-negative integer. To handle cached cookies correctly, a

client should calculate the age of the cookie according to the age calculation rules in the HTTP/1.1 specifi-

cation [RFC2616]. When the age is greater than delta-seconds seconds, the client should discard the cookie.

A value of zero means the cookie should be discarded immediately.

The CCookie::getMaxAge() function can be used to retrieve the maximum age of the cookie.

Example

See CResponse::addCookie().

See Also

CCookie::getMaxAge(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setName

Synopsis

int setName(chchar * name);

98

4.4. CCOOKIE CLASS CCookie::setSecure

Purpose

Set the name of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

name A string containing the name of the cookie.

Description

The function setName() sets the name of the cookie. The CCookie::getName() function can be used to

retrieve the name of the cookie.

Example

See CResponse::addCookie().

See Also

CCookie::getName(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setPath

Synopsis

int setPath(chchar * path);

Purpose

Set the Path attribute of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

path A string specifying a path.

Description

The function setPath() sets the the path on the server to which browser returns the cookie. The cookie is

visible to all the pages in the directory you specify, and all the pages in that directory’s subdirectories.

Consult RFC 2109 (available on the Internet) for more information on setting path names for cookies.

The CCookie::getPath() function can be used to retrieve the Path attribute of the cookie.

Example

See CResponse::addCookie().

See Also

CCookie::getPath(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setSecure

99

4.4. CCOOKIE CLASS CCookie::setVersion

Synopsis

int setSecure(bool secure);

Purpose

Set the Secure attribute of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

secure A boolean value that contains the new value of the Secure attribute.

Description

The function setSecure() sets the Secure attribute of the cookie. It indicates to the browser whether the

cookie should only be sent using a secure protocol, such as HTTPS or SSL.

The default value of Secure attribute is false and the cookie is sent from the browser to the server using any

protocol. If the value of Secure attribute is set to true, sent on only a secure protocol.

The CCookie::getSecure() function can be used to retrieve the Secure attribute of the cookie.

Example

See CResponse::addCookie().

See Also

CCookie::getSecure(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setValue

Synopsis

int setValue(chchar * value);

Purpose

Set the value of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters
value A string containing the value of the cookie.

Description

The function setValue() sets the value of the cookie. The CCookie::getValue() function can be used to

retrieve the value of the cookie.

Example

See CResponse::addCookie().

100

4.4. CCOOKIE CLASS CCookie::setVersion

See Also

CCookie::getValue(), CResponse::addCookie(), CRequest::getCookies().

CCookie::setVersion

Synopsis

int setVersion(int version);

Purpose

Set the version of the cookie.

Return Value

Upon successful completion, zero is returned. Otherwise, non-zero value is returned.

Parameters

version An integer indicates the version of the cookie.

Description

The function setVersion() sets the version of the cookie. Version 1 complies with RFC 2965, and version 0

complies with the original Netscape Cookie Specification. Cookies provided by a browser use and identify

the browser’s cookie version. By default, the value of Version is 0.

The CCookie::getVersion() function can be used to retrieve the version of the cookie.

Example

See CCookie::addPort().

See Also

CCookie::getVersion(), CResponse::addCookie(), CRequest::getCookies().

101

Index

.mailcap, 19

.mime.types, 19, 20

$ expression substitution, 29

$ variable substitution, 29

home, 20

addCookie(), 24, see CResponse, 53, 54, see CRe-

sponse

addHeader(), 24, see CResponse, 53, 56, see CRe-

sponse

addPort(), 25, see CCookie, 87, 88, see CCookie

Apache Web Server, 1, 12, 15

begin(), 24, see CResponse, 53, 56, see CResponse

binaryRead(), 24, see CRequest, 72, 73, see CRe-

quest

BOA Web server, 20

CCookie, 86

addPort(), 25, 87, 88

getComment(), 25, 87, 89

getCommentURL(), 25, 87, 90

getDiscard(), 25, 87, 90

getDomain(), 25, 87, 91

getMaxAge(), 25, 87, 91

getName(), 25, 87, 92

getPath(), 25, 87, 93

getPorts(), 25, 87, 93

getSecure(), 25, 87, 94

getValue(), 25, 87, 94

getVersion(), 25, 87, 95

setComment(), 25, 87, 95

setCommentURL(), 25, 87, 96

setDiscard(), 25, 87, 97

setDomain(), 25, 87, 97

setMaxAge(), 25, 87, 98

setName(), 25, 87, 98

setPath(), 25, 87, 99

setSecure(), 25, 87, 99

setValue(), 25, 87, 100

setVersion(), 25, 87, 101

CGI, 1, 22, 52

CHHOME, 2, 3, 6, 12

Common Gateway Interface, 1, 22, 52

cookie class, see CCookie, 44

cookies, 44

copyright, i

CRequest, 72

binaryRead(), 24, 72, 73

getCookie(), 24, 72, 73

getCookies(), 24, 72, 74

getForm(), 24, 72, 75

getFormNameValue(), 24, 72, 77

getForms(), 24, 72, 76

getServerVariable(), 24, 72, 78

getTotalBytes(), 24, 72, 80

CResponse, 52

addCookie(), 24, 53, 54

addHeader(), 24, 53, 56

begin(), 24, 53, 56

end(), 24, 53, 57

exit(), 24, 53, 57

flush(), 24, 53, 58

getBuffer(), 24, 53, 59

getCacheControl(), 24, 53, 60

getCharSet(), 24, 53, 61

getContentType(), 24, 53, 61

getExpires(), 24, 53, 62

getExpiresAbsolute(), 24, 53, 62

getStatus(), 24, 53, 63

PICS(), 24, 53, 64

redirect(), 24, 53, 64

setBuffer(), 24, 53, 65

setCacheControl(), 24, 53, 66

setCharSet(), 24, 53, 67

setContentType(), 24, 53, 67

setExpires(), 24, 53, 68

setExpiresAbsolute(), 24, 53, 69

setStatus(), 24, 53, 70

title(), 24, 53, 71

CServer, 82

102

INDEX CCookie::setVersion

HTMLEncode(), 24, 82, 83

mapPath(), 24, 82, 84

URLEncode(), 24, 82, 83

end(), 24, see CResponse, 53, 57, see CResponse

exit(), 24, see CResponse, 53, 57, see CResponse

expression substitution, 29

flush(), 24, see CResponse, 53, 58, see CResponse

fprintf, 29

getBuffer(), 24, see CResponse, 53, 59, see CRe-

sponse

getCacheControl(), 24, see CResponse, 53, 60, see

CResponse

getCharSet(), 24, see CResponse, 53, 61, see CRe-

sponse

getComment(), 25, see CCookie, 87, 89, see CCookie

getCommentURL(), 25, see CCookie, 87, 90, see

CCookie

getContentType(), 24, see CResponse, 53, 61, see

CResponse

getCookie(), 24, see CRequest, 72, 73, see CRequest

getCookies(), 24, see CRequest, 72, 74, see CRe-

quest

getDiscard(), 25, see CCookie, 87, 90, see CCookie

getDomain(), 25, see CCookie, 87, 91, see CCookie

getExpires(), 24, see CResponse, 53, 62, see CRe-

sponse

getExpiresAbsolute(), 24, see CResponse, 53, 62, see

CResponse

getForm(), 24, see CRequest, 72, 75, see CRequest

getFormNameValue(), 24, see CRequest, 72, 77, see

CRequest

getForms(), 24, see CRequest, 72, 76, see CRequest

getMaxAge(), 25, see CCookie, 87, 91, see CCookie

getName(), 25, see CCookie, 87, 92, see CCookie

getPath(), 25, see CCookie, 87, 93, see CCookie

getPorts(), 25, see CCookie, 87, 93, see CCookie

getSecure(), 25, see CCookie, 87, 94, see CCookie

getServerVariable(), 24, see CRequest, 72, 78, see

CRequest

getStatus(), 24, see CResponse, 53, 63, see CRe-

sponse

getTotalBytes(), 24, see CRequest, 72, 80, see CRe-

quest

getValue(), 25, see CCookie, 87, 94, see CCookie

getVersion(), 25, see CCookie, 87, 95, see CCookie

Gumstix, 20

gumstix, 20

HP-UX, 15

HTMLEncode(), 24, see CServer, 82, 83, see CServer

IIS, 1, 3, 6, 8

install, 18

install CGI, 1

install CGI in Windows, 1

install CGI toolkit in Mac OS X, 18

install CGI Toolkit in Unix, 17

install.ch, 18

Internet Information Server, 1

Linux, 15

LinuxPPC, 15

mapPath(), 24, see CServer, 82, 84, see CServer

MIME type, 13

Netscape Enterprise Server, 1, 15

Netscape Enterprise Web Server, 13

PICS(), 24, see CResponse, 53, 64, see CResponse

redirect(), 24, see CResponse, 53, 64, see CResponse

request class, see CRequest, 23

response class, see CResponse, 23

server class, see CServer, 23

setBuffer(), 24, see CResponse, 53, 65, see CRe-

sponse

setCacheControl(), 24, see CResponse, 53, 66, see

CResponse

setCharSet(), 24, see CResponse, 53, 67, see CRe-

sponse

setComment(), 25, see CCookie, 87, 95, see CCookie

setCommentURL(), 25, see CCookie, 87, 96, see CCookie

setContentType(), 24, see CResponse, 53, 67, see

CResponse

setDiscard(), 25, see CCookie, 87, 97, see CCookie

setDomain(), 25, see CCookie, 87, 97, see CCookie

setExpires(), 24, see CResponse, 53, 68, see CRe-

sponse

setExpiresAbsolute(), 24, see CResponse, 53, 69, see

CResponse

setMaxAge(), 25, see CCookie, 87, 98, see CCookie

setName(), 25, see CCookie, 87, 98, see CCookie

setPath(), 25, see CCookie, 87, 99, see CCookie

setSecure(), 25, see CCookie, 87, 99, see CCookie

103

INDEX CCookie::setVersion

setStatus(), 24, see CResponse, 53, 70, see CResponse

setValue(), 25, see CCookie, 87, 100, see CCookie

setVersion(), 25, see CCookie, 87, 101, see CCookie

Solaris, 15

substitution

expression substitution, 29

variable substitution, 29

system requirements, 1, 15

title(), 24, see CResponse, 53, 71, see CResponse

typographical conventions, ii

uninstall, 18

uninstall CGI, 2

uninstall CGI in Unix, 18

uninstall CGI in Windows, 2

uninstall CGI toolkit in Mac OS X, 18

upload file, 36

URLEncode(), 24, see CServer, 82, 83, see CServer

variable substitution, 29

verbatim output block, 29

Web plotting, 32

web server, 19

Windows 2000, 1

Windows 7, 1

Windows NT, 1

Windows Vista, 1

Windows XP, 1

104

	System Administration in Windows
	System Requirement for Windows NT/2000/XP/Vista/Windwows 7
	Installation in Windows
	Install CGI Toolkit in Windows
	Uninstall CGI Toolkit in Windows

	Web Server Configuration and Setup CGI in Windows
	IIS in Windows NT/2000/XP
	IIS in Windows Vista
	IIS in Windows 7
	Testing Ch CGI in the Web Server in Windows
	Apache Web Server in Windows NT/2000/XP
	Netscape Enterprise Web Server in Windows NT/2000/XP
	Other Web Servers

	System Administration in Unix
	System Requirements for Unix
	Install Apache in Unix
	Installing Apache under Ubuntu
	Installing Apache under Fedora
	Installing Apache under Gentoo
	Setting up CGI in Apache

	Install and Uninstall CGI Toolkit in Unix
	Install CGI Toolkit in Unix
	Uninstall CGI Toolkit in Unix
	Install CGI Toolkit in Max OS X
	Uninstall CGI Toolkit in Mac OS X

	Configuration and Setup of Web Browsers in Unix
	Configuration and Setup of Web Servers
	Apache 1.0 Web Servers
	Apache 2.0 Web Servers
	BOA Web Servers on the Gumstix
	Netscape Web Server

	Testing Ch CGI Scripts
	Hardcopying the Ch CGI Scripts and Demos
	Symbolic Linking the Ch CGI Scripts and Demos
	Setting Up the Correct Permissions
	Trying the Demos

	Common Gateway Interface
	Common Gateway Interface in Ch
	Classes for Common Gateway Interface
	Processing Fill-Out Forms
	Verbatim Output Blocks Using fprintf
	Dynamic Web Plotting
	Uploading Files to a Web Server
	Cookies for Personalized Content
	What Is Cookie
	Properties of a Cookie
	How to Set a Cookie
	How to Get Cookies

	Tips for Debugging CGI Programs

	References for CGI Classes
	CResponse Class
	addCookie
	addHeader
	begin
	end
	exit
	flush
	getBuffer
	getCacheControl
	getCharSet
	getContentType
	getExpires
	getExpiresAbsolute
	getStatus
	PICS
	redirect
	setBuffer
	setCacheControl
	setCharSet
	setContentType
	setExpires
	setExpiresAbsolute
	setStatus
	title

	CRequest Class
	binaryRead
	getCookie
	getCookies
	getForm
	getForms
	getFormNameValue
	getServerVariable
	getTotalBytes

	CServer Class
	HTMLEncode
	URLEncode
	mapPath

	CCookie Class
	addPort
	getComment
	getCommentURL
	getDiscard
	getDomain
	getMaxAge
	getName
	getPath
	getPorts
	getSecure
	getValue
	getVersion
	setComment
	setCommentURL
	setDiscard
	setDomain
	setMaxAge
	setName
	setPath
	setSecure
	setValue
	setVersion

	Index

