Bessel functions

-0.6 1 1 1 1 1

The Ch Language Environment

Version 8.0

User’s Guide

How to Contact SoftIntegration

Mail Softlntegration, Inc.
216 F Street, #68
Davis, CA 95616
Phone + 1530297 7398
Fax + 1530297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright (©2016 by SoftIntegration, Inc. All rights reserved.
Revision 8.0, November 2016

Permission is granted for registered users to make one copy for their own personal use. Further reproduction,
or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited.

Softlntegration, Inc. is the holder of the copyright to the Ch language environment described in this docu-
ment, including without limitation such aspects of the system as its code, structure, sequence, organization,
programming language, header files, function and command files, object modules, static and dynamic loaded
libraries of object modules, compilation of command and library names, interface with other languages and
object modules of static and dynamic libraries. Use of the system unless pursuant to the terms of a license
granted by SoftIntegration or as otherwise authorized by law is an infringement of the copyright.

SoftIntegration, Inc. makes no representations, expressed or implied, with respect to this documenta-
tion, or the software it describes, including without limitations, any implied warranty merchantability
or fitness for a particular purpose, all of which are expressly disclaimed. Users should be aware that
included in the terms and conditions under which SoftIntegration is willing to license the Ch lan-
guage environment as a provision that SoftIntegration, and their distribution licensees, distributors
and dealers shall in no event be liable for any indirect, incidental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of the Ch language environment,
and that liability for direct damages shall be limited to the amount of purchase price paid for the Ch
language environment.

In addition to the foregoing, users should recognize that all complex software systems and their doc-
umentation contain errors and omissions. SoftIntegration shall not be responsible under any circum-
stances for providing information on or corrections to errors and omissions discovered at any time in
this documentation or the software it describes, even if SoftIntegration has been advised of the errors
or omissions. The Ch language environment is not designed or licensed for use in the on-line control
of aircraft, air traffic, or navigation or aircraft communications; or for use in the design, construction,
operation or maintenance of any nuclear facility.

Ch, ChIDE, SoftIntegration, and One Language for All are either registered trademarks or trademarks of
SoftIntegration, Inc. in the United States and/or other countries. Microsoft, MS-DOS, Windows, Windows
2000, Windows XP, Windows Vista, and Windows 7 are trademarks of Microsoft Corporation. Solaris and
Sun are trademarks of Sun Microsystems, Inc. Unix is a trademark of the Open Group. HP-UX is either a
registered trademark or a trademark of Hewlett-Packard Co. Linux is a trademark of Linus Torvalds. Mac
OS X and Darwin are trademarks of Apple Computers, Inc. QNX is a trademark of QNX Software Systems.
AIX is a trademark of IBM. All other trademarks belong to their respective holders.

Preface

Ch (pronounced C H) is an embeddable C/C++ interpreter. The Ch language environment was originally
designed and implemented by Dr. Harry H. Cheng for teaching introductory computer programming in C
for engineering applications and his research projects in mechatronics and computational kinematics. As
the user’s base increases, Ch has been evolved from a special-application program to a general-purpose
language environment with wide applicability. Similar to using a natural language, it was intended to use
One Language for All programming purposes.

The C language was selected for its compact syntax, expressive power, and wide availability. But, for
many applications, an interpreter is more desirable. As a result, a C interpreter has been developed over
the years. To distinguish it from many existing C compilers, this C interpreter is called Ch. But, Ch was
never meant to be a new language. Conforming to the C standard is its prevailing design goal for Ch. We
believe that Ch is the most complete C interpreter in existence. As a complete C interpreter, Ch supports all
features of the ISO C90 standard ratified in 1990. Ch supports some major features in C++ for object-based
programming. C was originally designed for system programming. It has many deficiencies for applications
in engineering and science. Ch extends C for very high-level numerical computing and graphical plotting,
shell programming, and embedded scripting.

Our work on extending C for numerical computing overlapped with the ASNI C Standard Committee’s
effort in revising the C standard. Ch has greatly benefited from our participation in ANSI X3J11 and ISO
S22/WG14 C Standard Committees since 1993. Many new features such as complex numbers, variable-
length arrays (VLA), binary constants, and function name ___func___ first implemented in Ch had been
added in the latest C standard called C99. In its current implementation, Ch supports more new features
added in the ISO C99 than most existing C compilers. C programmers are encouraged to use these new fea-
tures such as complex numbers, variable length arrays (VLA), IEEE floating-point arithmetic, type generic
mathematical functions described in this manuscript because they significantly simplify many programming
tasks. In addition to these numerical features in C99, Ch also supports computational arrays as first-class
objects as in Fortran 90 and MATLAB for linear algebra and matrix computations.

A proposal was submitted to the C Standard Committee to add classes in C++ to the C99 standard. Due
to the time constraint and other reasons, the proposal was not adopted in C99. Nevertheless, Ch added classes
in C++ mainly based on this proposal. In addition, Ch supports reference type in C++ for convenience of
passing values by reference to functions as in Fortran.

Different from many other software packages, Ch bridges the gap between low-level languages and very
high-level languages. As a superset of C, Ch retains low-level features of C such as accessing memory for
hardware interface. However, Ch is a very high-level language (VHLL) environment. Ch supports shell
programming with a built-in string type. Some problems, which might take thousands of lines of C code,
can be easily solved with only a few lines of Ch code. Ch enables programmers to increase their productivity
significantly.

Furthermore, Ch is designed to be platform-independent. It can run in an heterogeneous computing
environment with different computer hardware and operating systems including Windows, Linux, Mac OS
X, and Unix. A program developed in one platform can run in any other platforms.

il

This manuscript is written to help readers learn how to program in C/Ch with new features in C99.
Although prior knowledge of programming language is not required, it will be helpful to understand the
basics of Ch. The emphasis of this manuscript is on extensions of C99 over C90. Extensions to C in Ch are
highlighted. Features not explained in this manuscript follow the interpretation of the ISO C99 standard.
The examples include many testing codes used during the development of Ch. Whether you are a novice
computer user or experienced professional programmer, we hope that Ch will make your programming tasks
more enjoyable and that you will like Ch.

This user’s guide is prepared for different editions of Ch. There are Standard, Professional, and Stu-
dent Editions for Ch. All features in this manual are available for both Professional and Student Editions.
Features described in chapters and on computational array, plotting, and numerical analysis,
respectively, are not available for Ch Standard Edition.

If you are one of those impatient C/C++ programmers, you may jump to Appendices [Bl and [C] which
highlight the differences between Ch and C/C++ with an overview of new features in Ch extended over
C/C++. After that, you can start programming in Ch quickly without lengthy compile/link/execute/debug
cycles. You can just run your C/C++ programs in a Ch command shell by typing program names such
as hello.cor hello.cpp. You can also run C/C++ programs in Ch from an Integrated Development
Environment (IDE).

Typographical Conventions

The following list defines and illustrates typographical conventions used as visual cues for specific elements
of the text throughout this document.

e Interface components are window titles, button and icon names, menu names and selections, and
other options that appear on the monitor screen or display. They are presented in boldface. A sequence
of pointing and clicking with the mouse is presented by a sequence of boldface words.

Example: Click OK

Example: The sequence Start->Programs—>Ch7.0->Ch indicates that you first select Start. Then
select submenu Programs by pointing the mouse on Programs, followed by Ch7.0. Finally, select
Ch.

e Keycaps, the labeling that appears on the keys of a keyboard, are enclosed in angle brackets. The label
of a keycap is presented in typewriter-like typeface.

Example: Press <Enter>

e Key combination is a series of keys to be pressed simultaneously (unless otherwise indicated) to
perform a single function. The label of the keycaps is presented in typewriter-like typeface.

Example: Press <Ctr1><Alt><Enter>

e Commands presented in lowercase boldface are for reference only and are not intended to be typed
at that particular point in the discussion.
Example: “Use the install command to install...”

In contrast, commands presented in the typewriter-like typeface are intended to be typed as part of an
instruction.

Example: “Type install to install the software in the current directory.”

il

e Command Syntax lines consist of a command and all its possible parameters. Commands are dis-
played in lowercase bold; variable parameters (those for which you substitute a value) are displayed
in lowercase italics; constant parameters are displayed in lowercase bold. The brackets indicate items
that are optional.

Example: Is [-aAbcCdfFgilLmnopqrRstux1] [file ...]

e Command lines consist of a command and may include one or more of the command’s possible
parameters. Command lines are presented in the typewriter-like typeface.

Example: 1s /home/username
e Screen text is atext that appears on the screen of your display or external monitor. It can be a system

message, for example, or it can be a text that you are instructed to type as part of a command (referred
to as a command line). Screen text is presented in the typewriter-like typeface.

Example: The following message appears on your screen

usage: rm [-fiRr] file

1ls [-aAbcCdfFgillmnopgrRstuxl] [file ...]

e Function prototype consists of return type, function name, and arguments with data type and param-
eters. Keywords of the Ch language, typedefed names, and function names are presented in boldface.
Parameters of the function arguments are presented in italic. The brackets indicate items that are
optional.

Example: double derivative(double (*func)(double), double x, ... [double *err, double £));

e Source code of programs is presented in the typewriter-like typeface.

Example: The program hello.ch with code

int main () {
printf ("Hello, world!\n");

will produce the output Hello, world! on the screen.

e Variables are symbols for which you substitute a value. They are presented in italics.

Example: module n (where n represents the memory module number)

e System Variables and System Filenames are presented in boldface.

Example: startup file /home/username/.chrc or .chre in directory /home /username in Unix and
C:\ > _chre or _chre in directory C:\ > in Windows.

e Identifiers declared in a program are presented in typewriter-like typeface when they are used inside
a text.

Example: variable var is declared in the program.

e Directories are presented in typewriter-like typeface when they are used inside a text.

Example: Ch is installed in the directory /usr/local/chin Unix and C: /Ch in Windows.

v

Environment Variables are the system level variables. They are presented in boldface.

Example: Environment variable PATH contains the directory /ust/ch.

Other Relevant Documentations

The core Ch documentation set consists of the following titles. These documentation come with the CD and
are installed in CHHOME/docs, where CHHOME is the Ch home directory.

The Ch Language Environment — Installation and System Administration Guide, version 8.0, Softln-
tegration, Inc., 2016.

This document covers system installation and configuration, as well as setup of Ch for Web servers.

The Ch Language Environment, — User’s Guide, version 8.0, SoftIntegration, Inc., 2016.

This document presents language features of Ch for various applications.

The Ch Language Environment, — Reference Guide, version 8.0, SoftIntegration, Inc., 2016.

This document gives detailed references of functions, classes and commands along with sample source
code.

The Ch Language Environment, — SDK User’s Guide, version 8.0, SoftIntegration, Inc., 2016.

This document presents Software Development Kit for interfacing with C/C++ functions in static or
dynamical libraries.

The Ch Language Environment CGI Toolkit User’s Guide, version 3.5, SoftIntegration, Inc., 2016.

This document describes Common Gateway Interface in CGI classes with detailed references for each
member function of the classes.

Table of Contents

|Ch Graphics Gallery xvii
[Introduction 1

[[__The Language Features 5

1 Getting §§g]§1ed 6
L1 Startup e e e e e 6

Vi

“ Portable Int tive Command Shell and Shell Bmg]:ammind 47
Ié_l 1 Shell Promntq .. 47
4.2 TInteractive Execution of Commands sttt 48

vii

87
87
88
89
91
91
92
93
93
93
96

98

98

98
101
103
104
104
106
106
107
107
108
108
108
109
110
112
112
112
112
113
116
116
118
119

i Operators and Expressions 122
(.1 _Arithmetic ggggga_.tggf 125
[Z.2_Relational Operatord v o i e e e e e 125
7.3 Logical Operators 128

7.4 Bitwise Operators v e e e e e e e e e e e 128

ﬁ%@d ... 133
7

8 Statements and Control Flow 136
Mm%d 136
8.2 Expression and Null Statementd o e e e 136
83 Selection Statementst 137

831 IfStatementdo 137
8.3.2 If-Else STAlemMents v v v v v e e e e e e 138
8.3.3 Else-If Statements e e e 138
8.3.4 Switch STAEMENLS« « o\ o e e e 138
8.4 TIteration Statements ot 140
|8 4.1 While Looa 140
842 DO-While LOOP . . -« o o o oot e 140
8.4.3 For L000| .. 141
844 Foreach LOOP« o v o o oo 142
[8.5 Jump Staterm .. 142
8.5.1 Break SIACMENLS . - . -« . o o e e e e 143
852 Continue Statementdo 143
8,53 Refurn StAEMENL . - .« « « o o v o e 144
854 Goto STEMEntS . .« o o o o o 144
B.6 Labeled Statementd 145

9 Pointers 147
9.0 Pointer Arithmetid 147
9.2 Dvnamic Allocation of Memorq 149

gi %%ﬁﬁi Ef Eggfﬁﬁé .. 151
‘ i 1153 4 [153

10.5.2 Prototypes of Nested Functions o o v v v i i i 170

[10.5.3 Nested Recursive Functiond oo i 171
hﬂ.ﬁJlmng.&nnﬂ&&Ea&&AIgum@ms_oLEummeimsﬂ 179
[10.7 Variable Number Arguments in Functiond 179
[10.8 Pointer 0 FUNCHONS . . .« o o o oo oo e 186
[10.9 Communication between Functiond 188
[10.10The main () Function and Command-Line Argumentd 190
DOIIFunction Filed o o o oo 196

ix

hLBmg:ammjng_uziIh_Com.pJﬁx_N.umherﬂ 221
[13.1 Complex NUmberd oo ot ot it 221
Iw%mm 221
13.2 Complex Planes and Complex Metanumberd« v v v v v v e e 222

[132.1 DataConversionRuled 224

226

227

227

228

230

230

233

234

237

239
239
240
240
241
244
244
245

[15.4_Pointers to Array of Assumed-Shapd 265

1541 Declarationl o oo 265
15.4.3 Function Profofype SCOPE . . « « v v v ov e e 267

1544 Typedell e e e 268
Arrays with Explicit Lower and Upper Bounds 271
15.5.1 Arrays of Fixed Subscript Range 272
Arrays of Variable Subscript Range o L. 275
Passing Arravs with Explicit Lower and Upper Bounds to Functiond 277
6 Passing Arrays of Fixed Subscript Range 277

[16.5_Array Operati
|16 5.1 Arithmetic Operationd o o o 290

16.5.2 Assignment Operationd 292

16.5.4 Relational Qgg;gjjgnsl 294
1655 Logic Operations 294

%ﬁ 296
16.5.7 Address Operationd v vt e e e e e e e 296

[16.7 P2

|l§§§ Cast Qgg;gggnsl 297
16.6 Promotion of Scalars to Computational Arrays in Operations] 297
omputationa] 1nctions

S 299
16.7.3 Deferred-Shape Arrayd 302
16.7.4 Arrays in Variable Number Argumentsi 304

|l§ 1.5 _Arrays of Bgig;gggd 304
16.8 Computational Arrays with Value NULLI 312

X1

[16.12Pointer to Computational Arravd

330
330
331
331
332
332
334
334
335
337
338
339

340
340
341
341
342

344
344
344
346
346
347
348
351
352

hﬂi’mhisﬂ
19.9.1 Polymorphic Generic Mathematical Functions

1993 PolvmomhiE E]]BEEEBQ

19.9.4 Polvmorphic Member Functions of Clasd

Xii

352
353
353
354
359
362
363
363
368

D322 PolarPlof o oo 443
D323 2D Plotins Frcrr]

Xiii

|24 2 Data Analysis and Statisticq ; 470

|24.6 Nonlinear Eggggg_msl 498
24.6.1 Solve a Nonlinear EQUation o o o o oo 498

24.6.2 Solve System of Nonlinear Equation« oot i e 498

X1v

skv Decomposition e e e 517

IB_Comparison with C and Implementation-Defined Behaviors 543
IEI New C99 Features §gg;_zg;;%1 INCH « o o 543
B.2 Summary of Extensions to Q 544
% 546

B.3.1 _Unlimited Propertied 0 e e 546

547

XV

554
554
555
555
557

558
558
561

562
563
565
] ontrol FIowWl e e e e 574

F %;ggggg'ggg with EQE!EQI_J 575
1 Reference in Ch versus Equivalence in FORTRAN o o o v oo i 575

IE2__Call-by-Reference in Ch and in FORTRAN o oo oo 576

579
579
580
580
581
581
581

582

585
585
585

[Index 587

Xvi

Ch Graphics Gallery

Plotting

Polar 3D curve

Bessel functions

Cylindrical 3D Mesh 3D Mesh

ONRM~OO®

Xvil

Graphical User Interface

i The WinMenu Program =] E3
sIEW Edit Background Timer Help

[ey

Upen...
Save
Save AsS. .

Erint...

Exit

Graphics and Animation

XViil

Introduction

What is Ch?

Ch is C+. Ch is an embeddable C/C++ interpreter. It is an interpretive implementation of C with salient
features from C++, other languages and software packages for scripting, rapid application development,
deployment, and integration with legacy systems. Ch is designed for both experienced C/C++ programmers
and new comers. Leveraging their C language skills, programmers can learn C once, and use it anywhere
for any programming purpose.

Ch is embeddable. Unlike C/C++ compilers, Ch can be embedded as a scripting engine in C/C++ appli-
cations and hardware. It can relieve users from developing and maintaining a macro language or interpreter
for many applications.

Ch is for 2D/3D graphical plotting and numerical computing. It is especially designed for applications
in engineering and science. Ch has built-in graphical support, generic mathematic functions and computa-
tional arrays for linear algebra and matrix computations, 2D/3D graphic plotting, and advanced high-level
numerical functions for linear systems, differential equation solving, integration, non-linear equations, curve
fitting, Fourier analysis, etc. For example, linear system equation b = A * x can be written verbatim in Ch.
The user does not need to worry about the underlying optimization with fast and accurate numerical al-
gorithms. Ch is the only computing environment in existence that can perform numerical computing with
consistent numerical results under the IEEE floating-point arithmetic in the entire real domain and complex
domain using an extended complex plane for a Riemman sphere. The extensions to C makes Ch an ideal
choice for numerical computing in C/C++ domain.

Ch is for shell programming. Ch is a C-compatible shell whereas the so-called C-shell csh is a C-like
shell. Ch is a very high-level language (VHLL) environment. Ch in Windows supports frequently used
Unix utilities and commands such as vi, Is, awk, sed, mv,rm, cp, find, grep, etc. for cross platform shell
programming. It can be used to automate repetitive tasks. Some complicated problems, which might take
thousand of lines of C code, can be solved in a few lines of Ch code. The interactive Ch command shell is
especially suitable for rapid prototyping, teaching, and learning.

Ch has borrowed features and ideas from many other languages and software packages. Ch owes its
most to C/C++. The following is a short list of other languages and software packages which in one way or
another have influenced the development of Ch.

o Like C shell, Ch can be used as a login shell and for shell programming. But, as a superset of C, Ch
is a genuine C shell.

e Like Basic, Ch is designed for and has been used by beginners with limited computer experience.

e Like Perl, Ch can be used for common gateway interface (CGI) in a Web server.

e Like Java, Ch can be used for internet computing. A Ch applet can be executed across a network on
different computer platforms on the fly.

e Like JavaScript, Ch scripts can be embedded in HTML files such as active server pages (ASP).

e Like Fortran 77/90, Ch can be used for scientific computing.

o Like MATLAB/Mathematica, Ch can be used for rapid prototyping.

C++

Fortran

Figure 1: Relation of Ch with some other languages and software packages.

The relation of Ch with some of these languages and software packages is shown in Figure [T}

Major Features

Ch supports all features in the ISO 1990 C standard (C90), wide characters in Addendum 1 for C90, major
new features in the latest ISO 1999 C standard (C99) including complex numbers, variable length arrays
(VLAs), IEEE 754 floating-point arithmetic, generic functions. Ch supports classes, objects, and encapsu-
lation in C++ for object-based programming, as well as many computer industry standards such as POSIX
and socket/Winsock, Windows, X11/Motif, OpenGL, ODBC, GTK+. Ch has many extensions to C. Major
features of Ch are summarized as follows:

e No Learning Curve Every C programmer can start to use Ch by executing C code in a Ch virtual
machine without learning a new language. One can use the features of the C language to complete all
tasks. It minimizes the hassles of learning and memorizing many different language syntaxes.

o Interpretive C programs can be executed in Ch without tedious compile/link/execute/debug cycles.

e [nteractive One can run the C code interactively, entering the code line by line. Thus, it is very
intuitive for beginners to learn C. It is a very effective tool to teach and learn programming in C with
the latest C99 features. Also, one can easily test new functions. It is an ideal environment for real-time
interactive computing.

Numerical Computing In addition to supporting all C types such as char, int, float, double, and the new
type complex and variable length array (VLA) as introduced in ISO C99, Ch treats a computational ar-
ray as a first-class object. Many high-level numerical functions, such as differential equation solving,
integration, Fourier analysis, along with 2D/3D plotting make Ch a very powerful language environ-
ment for solving problems in engineering and science. Programs using 2D/3D plotting features can
also be compiled in C++ compilers using SoftIntegration Graphical Library in C++.

Very High-Level Language Ch bridges the gap between low-level languages and very high-level lan-
guages (VHLL). As a superset of C, Ch retains low-level features of C such as accessing memory for
hardware interface. As a command shell, Ch is a very high-level language. Some problems, which
might take thousands of lines of C code, can be easily solved with only a few lines of Ch code.

Object-Based Ch supports classes, objects, and encapsulation in C++ for object-based programming
with data abstraction and information hiding, as well as simplified I/O handling. For example, only
a single control class is used to implement Ch Control System Toolkit for high-level control system
design and analysis. To keep Ch simple, complicated features in C++ are excluded in Ch.

Text Handling Ch has advanced text handling features such as built-in string data type and foreach-
loop. These features are specially useful for system administration, shell programming, and Web-
based applications.

Cross platform Shell Ch provides a universal shell for the convenience of users. It can be used as a
login command shell similar to C-Shell, Bourne shell, Bash, tcsh, or Korn shell in Unix, as well as
MS-DOS shell in windows. Ch has more built-in enhanced features for shell programming to auto-
mate repetitive tasks, rapid prototyping, regression test, and system administration across different
platforms.

Safe Network Computing Safe Ch is designed from scratch with different secure layers, such as sand-
box, programmer/administrative control, suppressed pointers, restricted functions, automatic memory
management for string type, and auto array bound checking effectively address security problems for
network computing.

Portable C standard-conforming programs are portable. But the compilation process is platform-
dependent. A Ch program can run across different platforms including Windows and Unix. A pro-
grammer can develop and maintain programs in one machine, deploy them in all platforms supported
by Ch.

Libraries All existing C libraries and modules can be part of the Ch libraries. Therefore, the potential
of Ch libraries is almost unlimited. For example, Ch supports POSIX, TCP/IP socket, Winsock,
Win32, X11/Motif, GTK+, OpenGL, ODBC, LAPACK, XML, NAG statistics library, Intel OpenCV
for computer vision and image processing, National Instruments’ NI-DAQ and NI-Motion, PCRE for
regular expression, etc.

Interface with Binary Modules Using Ch SDK, Ch can interface binary objects without restarting a
new process. It can seamlessly integrate different components. A Ch program can call functions in a
static or dynamic library for integration with legacy systems and existing C/C++ code. Vice versa, a
function in a binary object can call a Ch function.

Web Enabled With development modules, such as classes for Common Gateway Interface (CGI) for
Web servers, Ch allows rapid development and deployment of Web-based applications and services.

o Embeddable Ch is embeddable. Embedded Ch can be embedded in other application programs, hard-
ware and handheld devices. This will relieve users from developing and maintaining proprietary
scripting languages across different platforms.

Organization of this Documentation

Ch contains all features of C. Chapter 1 gives a brief overview of Ch and on how to run C/C++ programs in
the Ch language environment. Chapters 2, 5-10, 14, 17-18, 20 describe features in C. Chapters 12, 13, and
15 present new features added in C99 with IEEE floating-point arithmetic and type generic mathematical
functions, complex numbers, and variable length arrays (VLA), respectively. Chapters 11 and 19 present
features of reference types and classes available in C++, respectively. Like any C compiler, Ch also contains
some unique features with different setup and configuration. Features described in Chapters 3 and 24 are
related to setup and configuration of Ch as an interpreter. Two and three dimensional plotting capabilities
described in Chapter 23 are available in both Ch and C++. Computational arrays described in Chapter 16
and safe Ch in Chapter 21 are available in Ch only. Based on computational arrays, advanced numerical
functions in Chapter 24 are convenient for many applications in engineering and science.

Appendix [Al lists known problems and platform specific features. Appendix [Bl lists implementation
defined behaviors and highlights the extension of Ch over C. Appendix [Ccompares the differences between
Ch and C++. Ch is a portable command shell. Appendices [DI[El and[El compare Ch with C shell, MATLAB,
and Fortran, respectively. Appendix |Gl lists commonly used commands for portable shell programming in
Ch across different platforms.

Part I

The Language Features

Chapter 1

Getting Started

This chapter gives an overview of the Ch language environment.

1.1 Startup

1.1.1 Startup in Unix

You can type the command ch in any command shell to go into the Ch command shell.

Startup in Mac OS X x86

Once you have downloaded and installed the software, you can click the icon Ch on the dashboard on in the
Application folder to get into the Ch command shell.

For Ch Professional or Student Edition, you can also click the icon for ChIDE on the dashboard on in
the Application folder to luanch ChIDE. You can then click the icon Ch in the ChIDE to get into the Ch
command shell.

Startup in Linux

In Linux, you can launch Ch by clicking the icon Ch under the entry System Tools in the startup menu.
You can also click Run Program in the startup menu. Then, enter ch and check Run in terminal to
lanch Ch.

For Ch Professional or Student Edition, you can also click the icon for ChIDE under the entry
Programming Tools in the startup menu. You can then click the icon Ch in the ChIDE to get into
the Ch command shell.

The command

ch —-d

will create an icon for Ch on the desktop. If Ch is installed with a ChIDE, an icon for ChIDE will also be
created on the d esktop.

Startup in Unix as a Login Shell

You can login to a Unix computer system through a terminal that may be directly wired to the system, or
through a modem to the internet or a local area network. To log into the system, type your user name at
the system login prompt, which will begin the execution of program login. The program displays the string

1.1. STARTUP CHAPTER 1. GETTING STARTED

password: at the terminal and waits for you to type the password. Once you have typed your password,
the program proceeds to verify your login name against the corresponding entry in the file /etc/passwd.
Similarly, your password will be checked. The file /etc/passwd contains one line for each user of the system.
The information in this line specifies, among other things, the login name, home directory, and the program
to be executed when the user logs in. The program that will start up after the login process is specified in
the entry after the last colon. If nothing follows the last colon, by default, the system will use the Bourne
shell /bin/sh. For example, if file /etc/passwd contains the following three lines for three users of the system:
harry, john,andmarry.

harry:x:121:15::/home/harry:/bin/ch
john:x:125:20::/home/john:/bin/csh
marry:x:130:25::/usr/data:/usr/data/bin/word_processor

The home directory for user harry is /home/harry. When harry logs in the system, the Ch shell will start
execution. The home directory for user john is /home/john, john will get C shell when he logs in. When
marry logs in the system, the program word_processor that may be a special-purpose word processing
software package will be invoked.

You can remotely login to another workstation which acts as a client. However, your local workstation
may refuse connection to the client; the remote client fails and displays an error message. A proper commu-
nication has to be established so that the client will be able to determine which server receives the output of
the client. At the same time, your workstation’s X server will allow the remote system to send the output.
This is accomplished by setting the environment variable DISPLAY on the client and adding the client to
the name list of remote systems on your workstation’s X server by the command xhost. For example, if you
login to the remote machine mouse from the local machine cat and want the output of mouse to be sent to
cat, you should execute the command

cat> xhost mouse
on the local machine cat and execute the command

mouse> putenv ("DISPLAY=cat:0.0")
on the remote machine mouse. If the machine mouse is often used remotely, you may want to put the com-
mand putenv ("DISPLAY=cat:0.0") in the startup file .chrc in your home directory of the machine
mouse and set the following alias in the startup file of the local machine cat

alias ("mouse", "xhost mouse; rsh mouse");

Then, the command mouse will add the remote machine mouse to the list of the remote systems of the local
X server and start the remote login process. The name of the host machine can be obtained by the command
hostname.

If Ch is the login shell, you can readily use the Ch language environment. If not, you can type command
ch at a terminal prompt to launch the Ch language environment.

If the user resizes a Window under xterm command shell in the X-Window system by dragging the
window borders using a mouse, the command resize can be used to set terminal settings to the current xterm
window size. Because the command resize does not recognize Ch as a command shell, the user may type
function _resize () in a Ch shell to set the environment variables COLUMNS and LINES to the current
xterm window sizes.

1.1.2 Startup in Windows

Once you have downloaded and installed the software, there are four ways to get into the Ch language
environment. For example, to start Ch Standard Edition 6.3,

1. Click the icon Ch Standard on the Desktop screen to get into the regular Ch shell, similar to MS-
DOS.

1.2. COMMAND MODE CHAPTER 1. GETTING STARTED

2. Click Start->Programs—>SoftIntegration Ch 6.3 Standard->Ch 6.3.
3. Click Start, followed by Run, then type ch . exe.
4. Go to the MS-DOS prompt, and type ch.

For Ch Professional or Student Edition, you can click the icon for ChIDE on the Desktop screen to
launch ChIDE.

1.2 Command Mode

When Ch is launched or a Ch program is executed, by default, it will execute the startup file .chrc in Unix or
_chrc in Windows in the user’s home directory if it exists. This startup file typically sets up search paths for
commands, functions, header files, etc. In Windows, a startup file _chrc with default setup is created in the
user’s home directory during installation of Ch. However, there is no startup file in a user’s home directory in
Unix by default. The system administrator may add such a startup file in a user’s home directory. However,
the user can execute Ch with the option -d as follows

> ch -d

to copy a sample startup file from the directory CHHOME/config to the user’s home directory if there is no
startup file in the home directory yet. Note that CHHOME is not the string “CHHOME”, instead it uses the
file system path under which Ch is installed. In Linux, the above command will also create an icon for Ch
on the desktop. If Ch is installed with a ChIDE, an icon for ChIDE will also be created on the desktop.

The Ch language environment can be introduced with a famous programming output statement

hello, world

that was popularized by Kernighan and Ritchie (1978). The level of difficulty in printing this statement along
with other criteria is often used to judge the simplicity and friendliness of a language. Users with previous C
or FORTRAN experience may remember that, to print this statement, one has to first go through compilation
and link processes to get the executable object code, and then run the program to get the output. For a large
program, the make utility may have to be used to maintain the program’s integrity. No compilation and link
processes are necessary for running a Ch program. Ch can be used interactively and provides a quick system
response. As a specific example, the prompt of the screen in C-shell is shown below:

o)
°

The output from the system, as shown in this system prompt, is displayed in italics. To invoke the Ch
language environment, one types ch on the terminal keyboard. The screen will become:

>

This prompt indicates that the system is in the Ch language environment and is ready to accept the user’s
terminal keyboard input. Ch can also be set as the default shell in the file /etc/passwd so that, whenever
the user logs in, the Ch programming environment will be invoked automatically as shown in the previous
section.

Any syntactically correct terminal input entered at the Ch command prompt will be executed. Following
successful completion of the command(s), the Ch prompt > will be printed. If a command fails, an error
message shall be printed.

At the Ch prompt >, any Unix commands such as cd, 1s,and pwd can be executed. In this scenario,
Ch is used as a Unix shell in the same manner as Bourne-shell, C-shell, or Korn-shell. For example, to print
the current working directory, one can type pwd. Then, the screen may appear as follows:

1.2. COMMAND MODE CHAPTER 1. GETTING STARTED

> pwd
/usr/local/ch
>

where the input typed in from the terminal is in the typewriter font. In Ch, if there is any output from the
system resulting from executing a command, it will be printed out. In this case, assume /usr/local/ch
is the current working directory, it becomes the output from execution of the command pwd,

Because Ch is a superset of ISO C, it is more powerful than the conventional Unix shells. If an expression
is typed in, it will be evaluated by Ch and the result will be printed out immediately. For example, if the
expression 1+3«2 is typed in, the output will be 7. If the input is 8, the output will also be 8. Any valid Ch
expressions can be evaluated in this command mode. Therefore, Ch can be used as a calculator by novice
users. Command help can help new users of Ch getting started with some illustrative examples.

> help
(display messages ...)
>

The first lesson that a C programmer learns may be to use the standard I/O function printf() to get the
output hello, world. Because Ch is a superset of C, the output can be obtained by the I/O function
printf() as follows:

> printf ("hello, world")
hello, world
>

All variables including system variables such as _path can be printed out using function printf() in C or
cout in C++ syntax. In interactive command mode, one can just type a variable name to display the value of
the variable. For example,

> int 1

> 1i =10

> ixi

100

> printf ("\%d", i)
10

> cout << 2%i

20

>

The following four functions in Ch can be used to handle environment variables. The function putenv()
can add an environment variable to the system. The function getenv() returns the value of a given envi-
ronment variable. The function remenv() can remove an environment variable. The function isenv() can
test if a symbol is an environmental variable. The interactive command execution below demonstrates their
application.

> putenv ("ENVVAR=value")
> getenv ("ENVVAR")

value

> isenv ("ENVVAR")

1.3. PROGRAM MODE CHAPTER 1. GETTING STARTED

1

> remenv ("ENVVAR")
> isenv ("ENVVAR")
0

>

There are hundreds of commands along with their online documentation in the system. No one knows all
of them. Every computer wizard has a small set of working tools that are used all the time, plus a vague idea
of what else is out there. Appendix [Glgives a list of common commands grouped by their functions. Details
about these commands as well as command line options can be found using the command man followed by
the command in query.

1.3 Program Mode

1.3.1 Command Files

A C program can be executed without compilation in the Ch language environment. The command-line
argument interface in Ch is C compatible. C programs are called command files or simply commands in
Ch. A command file shall have both read and execute permissions. In Ch, a command file can be executed
without compilation. For example, one can create a command file named hello. c using a text editor. If
the program hello. c is as follows:

/* A simple program =/
#include <stdio.h>
int main () {
printf ("hello, world\n");
return 0;

}

One can type the command hello. c to get the output of hello, world as follows.

> hello.c
hello, world
>

In order to use a file as a command in Unix, it has to be executable. To make the program hello.c
executable, the following command may need to be executed.

chmod +x hello.c

To run a command file in command mode, the file name must be a valid identifier in Ch or start with a
relative or absolute directory path such as “. /’, ‘. ./’, *7/’, and ‘/’. For example, if we change the above
file name from hello.chto 20, it becomes a number rather than an identifier.

> mv hello.ch 20
> 20

20

> ./20

hello, world

>

Many Integrated Development Environments (IDE) support Ch. For example, ChIDE can be used to
edit, run, or debug a program as shown in Figure [L.Il The user interface of ChIDE can be displayed in over
30 different local languages such as German, French, Chinese, and Japanese.

10

1.3. PROGRAM MODE

B4 hello.c - ChIDE - Professional Edition - |D|ﬂ

File Edit Search Wiew Tools Debug Animate Options Language Buffers Help

CHAPTER 1. GETTING STARTED

DEER|& R X|- = |84 Ra?|th C:\Ch\demos\chdemos ~|

| Fotart $Cortinue ®Abort %EStep ENext 2=lp “=lown SBreak UClear | $=Parse PRun ©Stop

1hello.c |
chdemos ﬂ 1 -/* File: hello.c ~
Directories and Files 2 Print 'Hello, world' on the screen. */
=9 3 #include <stdio.h>
Ch data2D.ch 4 .)
C debug.c 5 int main()
€h func2D ch 5 -1]
C hello.c 7 printf ("Hello, world\n") ;
Chhello.ch g , return 0;
O vibration.c
FP 10 -
RN JaLkl | >
»ch -u "hello.c”
Hello, world
=Exit code: 0
J ol
li=1 co=1 INS (LF) Y
Figure 1.1: Edit and run a program using ChIDE.

1.3.2 Script Files

A program that can run in Ch, but cannot be compiled using a C or C++ compiler, is called a script. For
example, a program without function main() or starting with #! /bin/chis a script. Statements, functions,
and commands can be grouped as a script file or script in Ch. Like a command file, a script file shall have
both read and execute permissions. For example, if the script file prog contains the following statements:

#!/bin/ch
int i = 90;
/% copy hello.c to hello.ch =/
cp hello.c hello.ch
printf("i is equal to %d from the script file\n", 1i);

it can be executed interactively as follows:

> prog
i is equal to 90 from the script file

>

Or, it can be executed in two separate steps as follows:

>
>
i
>

chparse
chrun

prog

is equal to 90 from the script file

where the command chparse prog parses the script file prog first, and the built-in command chrun
then executes the parsed program. After execution of the script file prog, the file hello. c will be copied

11

1.4. COMPLEX NUMBERS CHAPTER 1. GETTING STARTED

to a Ch program named hello.ch by the statement cp hello.c hello.ch. With the file exten-
sion . ch, the program hello.ch can be executed in the Ch language environment as command hello.
Program prog can be invoked by other scripting languages such as C-shell or Korn shell.

1.3.3 Function Files

A Ch program can be divided into many separate files. Each file can include many related functions at the
top level that are accessible to any part of the program. A file that contains more than one function is usually
suffixed with . ch to identify itself as part of a Ch program. Besides command files and script files, there are
Sfunction files in Ch. A function file in Ch is a program that contains only one function definition. A function
file shall be readable. By default, the extension of a function file is .chf. The names of the function file and
function definition inside the function file shall be the same. The functions defined using function files are
treated as if they were the system built-in functions in a Ch programming environment. For example, if the
program addition.chf contains the following statements:

int addition(int a, int b) {
int c;
c = a + b;
return c;

}

it can be invoked automatically to add two integers as shown in the following interactive execution session:

> int 1 = 9

> i = addition (3, 1)
12

>

Integer value 3 and integer variable i with the value of 9 are added together by the function addition ()
first, the result is then assigned to variable i. In this case, the function addition () is treated as if it was a
built-in function like sin() or cos().

1.4 Complex Numbers

A second order polynomial equation
ar’ +br+c=0

can be solved by the formula
. —b £ Vb2 — dac
2a
According to the formula (L), two real solutions (x1; = 2) and (x5 = 3) for equation

(1.1)

22 -5 +6=0

They can be obtained by Program [L.1]
Program [L.1] gives the following output:

x1l = 3.000000
x2 = 2.000000

12

1.5. COMPUTATIONAL ARRAYS CHAPTER 1. GETTING STARTED

#include <stdio.h>
#include <math.h>

int main () |

double a =1, b = -5, ¢ = 6, x1, x2;
x1 = (b +sqgrt (bxb-4xax*c))/ (2*a);
x2 = (-b —sqgrt (bxb-4xaxc))/ (2*a);

printf ("x1 = $f\n", x1);
printf ("x2 = $f\n", x2);

Program 1.1: The solution for z? — 5z + 6 = 0.

For equation
22 —4r +13 =0,

two complex solutions (r1 = 24-13) and (2 = 2 —13) exist. These complex numbers cannot be represented
in the double data type. Attempting to solve the equation in the real domain will result in invalid results. Ch

reports the invalid results as NaN that stands for Not-a-Number. Refer to Program [[.2] and its corresponding
output.

#include <stdio.h>
#include <math.h>

int main() {
double a =1, b = -4, ¢ = 13, x1, x2;
x1 = (-b +sqgrt (bxb-4xaxc))/ (2*a);
x2 = (b —-sqgrt (bxb-4xax*c))/ (2*a);

printf ("x1 = $f\n", x1);
printf ("x2 = %$f\n", x2);

Program 1.2: The solution for 22 — 4z + 13 = 0 in the real domain.

Program [I.2] gives the following output:

x1l = NaN
x2 = NaN

Using complex numbers, equation

2’ —4x+13 =0
with two complex solutions of z1 = 2 + 3 and x5 = 2 — i3 can be solved by Program [1.3|
Program gives the following output.

x1l = complex(2.000000,3.000000)
X2 complex (2.000000,-3.000000)

1.5 Computational Arrays

Arrays in Ch are ISO C compatible. They are intimately tied with pointers. For numerical computing and
data analysis, computational arrays are introduced in Ch, available in Ch Professional and Student Edition.

13

1.5. COMPUTATIONAL ARRAYS CHAPTER 1. GETTING STARTED

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main () |
double complex a =1, b= -4, ¢ = 13, x1, x2;
x1 = (-b +sqgrt (bxb-4xaxc))/ (2*a);
x2 = (-b —-sqgrt (bxb-4xaxc))/ (2*a);
printf ("x1 = $f\n", x1);
printf ("x2 = %$f\n", x2);

Program 1.3: The solution for z? — 42 + 13 = 0 in the complex domain.

Computational arrays can be handled as a first-class object in Ch. For example, the following array formula

x=Ab+ 3b (1.2)
with
1 2 2 5
A=|4 4 6 |andb=| 6
7 8 9 8

can be calculated by Program The array expression Ab+3b is computed using three different methods.
Execution of Program [1.4] gives the following output.

x = 48.000 110.000 179.000
x = 48.000 110.000 179.000
x = 48.000 110.000 179.000

In Program [L.4] arrays A, b and x are declared as computational arrays of double data type. The macro
array of type qualifier for computational arrays is defined in header file array.h. The program includes this
header file to use computational arrays. The values for arrays A and b are initialized at declaration. The value
for array x is first calculated in the function main (). Next, it is calculated in function arrayexp1l () and
with the result passed back to the main program through a function argument. Finally, it is calculated by
function arrayexp () which returns a computational array of double data type with three elements. Ch can
also handle variable length arrays (VLAs) of C arrays and computational arrays very conveniently. Details
about VLAs will be described in later chapters.
For example, the following linear system of equations

Ax=Db (1.3)
with
1 2 2 5
A=|4 4 6 |andb=| 6
7 8 9 8

can be solved by Program In Program function inverse () returns a computational array. The
program gives the following output.

x = —-5.000 2.000 3.000

14

1.5. COMPUTATIONAL ARRAYS

#include <stdio.h>

#include <array.h>

void arrayexpl (array double A[3][3],
X = A*xb+3xb;

}

array double arrayexp?2 (array double A[3][3],
array double x[3];

Axb+3%b;

return x;

X =

int main() {
array double A[3][3] = {{1,2,2},
{4,4,6},
{7,8,9}};
array double b[3] = {5,6,8}, x[3];

x = Axb+3xb;
printf("x = %$.3f", x);
arrayexpl (A, b, x);
printf("x = $.3f", x);
x = arrayexp2 (A, b);
printf("x = $.3f", x);

array double b[3],

CHAPTER 1. GETTING STARTED

array double x[3]) {

array double b[3]) [3] {

Program 1.4: Calculation of array expression Ab+3b.

#include <stdio.h>
#include <numeric.h>

int main() {
array double A[3][3] = {{1,2,2},
{4,4,6},
{7,8,9}};
array double b[3] = {5,6,8}, x[3];

linsolve (x, A, Db);
// or x = inverse (A) xb;
printf("x = %.3f\n", x);

Program 1.5: Solution for Ax=b.

15

1.6. PLOTTING CHAPTER 1. GETTING STARTED

#include <math.h>
#include <chplot.h>

int main () |
array double x[100], y[100]; // Use 100 data points
char xtitle="sine wave", // Define labels
*xlabel="radian",
*ylabel="amplitude";

lindata (-M_PI, M_PI, x); // X-axis data
y = sin(x); // Y-axis data
plotxy (x,y,title,xlabel,ylabel); // Call plotting function

Program 1.6: Plot function sin(z) with —7 < x < 7.

1.6 Plotting

A convenient plotting library is available in Ch Professional and Student Edition. Program[L.6lplots function
sin(z) with z in the range of —7 < x < . The output from Program[L.6lis shown in Figure [L.2

16

1.6. PLOTTING CHAPTER 1. GETTING STARTED

sine wave

0.8 | \]
0.6 | / \ B

04| / -

02 | / \ y

amplitude
o

0.4 | \ / -

-0.6 \ E

-0.8 | \\ .

radian

Figure 1.2: Plot for function sin(z) with —7 < z < 7.

17

Chapter 2

Lexical Elements

A Ch source file is a sequence of characters selected from a character set. A token is the minimal lexical
element of the language. The categories of tokens are: keywords, identifiers, constants, string literals, and
punctuators. Constants and string literals are described in Chapter [6]

2.1 Character Set

The character set used in Ch includes the following members: the 26 uppercase letters of the Latin alphabet

F G H I J K L M

A B C D E
N O P Q R S T U V W X Y 2

the 26 lowercase letters of the Latin alphabet

)
o
Q
0.
o

Q
=
=

U
o
—
3

T G T S :
i< o= > 2 [N 1 °~ _ {1 } ~s

the space character, and control characters representing horizontal tab, vertical tab, and form feed, as well
as control characters representing alert, backspace, carriage return, and new line. The graphic characters $
(dollar sign) and “ (accent grave or back quotation marks) are not part of the C standard. The dollar sign
$ is used as an event designator in command mode, and variable substitution in both command mode and
programs. The accent grave * is used for command substitution.

2.1.1 Trigraphs

In Ch, all occurrences in a source file of the following sequences of three characters (called trigraph se-
quences)), which all begin with two consecutive question mark characters, are replaced with the correspond-
ing single character shown below, so that the users of Ch can write Ch programs using the ISO 646-1083
Invariant Code Set.

18

2.2. KEYWORDS CHAPTER 2. LEXICAL ELEMENTS

?27= # ?27?)] 272! |
272 ([2727 " 27> }
2?2/ \ ?27< { 27— -

No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above is not
changed.

To prevent interpretation of the sequence of three characters listed above to its replaced character, use
the character escape code ” \ 2’ . For example,

> printf ("?22!M)

|

> printf ("2\2!")
272!

>

the string "2\ ?! ", which includes the character escape code ’ \?’, can be used to represent the string
"22 1" whereas the trigraph form "?7? ! " represents the character |. Escape codes are described in sec-
tion[6.3.11

2.2 Keywords

2.2.1 Keywords

Following symbols are default keywords in Ch. Their semantics in a program follow the interpretation of
the C standard and Unix/C convention.

Language Syntax Keywords

ComplexInf ComplexNaN Inf NaN NULL auto break const complex char case continue class double
default delete do else enum extern float for foreach fprintf goto if inline int long new operator printf
private public register restrict return scanf static struct short signed sizeof string_t switch this union
unsigned volatile void while

Keywords from C++ The semantics of the following keywords are the same as those in C++.
class delete new private public this

Keywords not in C/C++ The following additional keywords have been added in Ch.

ComplexInf ComplexNaN Inf NaN NULL foreach fprintf printf scanf string_t

The symbol NaN stands for Not-a-Number. Inf represents the mathematical value oo of infinity. Com-
plex Not-a-Number and complex infinity under a Riemman sphere are represented by ComplexNaN and
ComplexInf, respectively. The keyword NULL in Ch resolves the problem of inconsistent use of macro
NULL for pointer value (void =) 0 and integral value of O in C. NULL in Ch has the value of (voidx) 0
when it is is used as pointer type and the value of O when it is used as an integral type.

The semantics for the standard functions fprintf, printf, and scanf defined in header file stdio.h in C
are retained in Ch. But fprintf, printf, and scanf are extended in Ch as described in Chapter 20l

The new built-in data type string_t of the first-class object is added to solve memory problems related
to strings of characters in C. The keyword foreach is added for foreach-loop construction. It is mainly
used to handle loops with an index of string type. More information about these two keywords is given in
Chapter

19

2.2. KEYWORDS CHAPTER 2. LEXICAL ELEMENTS

Generic Functions

The generic functions available in Ch are listed below.

abs access acos acosh alias asin asinh atan atan2 atanh atexit ceil clock conj cos cosh dlerror dlopen
dirunfun dlsym exp elementtype fgets floor fmod fprintf fread free frexp fscanf getenv gets imag ioctl
ldexp log logl0 max memcpy memmove memset min modf open polar pow printf read real scanf
setrlimit shape sin sinh sprintf sqrt sscanf stradd strcat strchr strcmp strcoll strepy strerror streval
strlen strncat strncpy strparse strtod strtok strtol strtoul strxfrm tan tanh transpose umask vprintf
viprintf vsprintf

A generic function is a built-in system function. It is an extension of the standard C function. Most
generic functions are polymorphic. For example, the function call sin(x) uses the built-in system function
so that argument x can be any valid data type for function sin(). For example, the following code is valid.

#include <array.h> // for the macro array

int ij;

float £;

double df;

complex z;

double complex dz;

array double af[2][3];

array double complex az[2][3];

f = sin(1i);
f = sin(f);
df = sin (df);

z = sin(z);
dz = sin(dz);
a = sin(a);
az = sinf(az);

Note that the return type in function call of sin (i) is different from the argument type. Details about
generic functions are further described in section [10.121

The function iskey() defined in header file chshell.h can be used to determine if a name is a keyword in
Ch. If the argument is not a keyword, 0 is returned; if the argument is the name of a generic function, 1 is
returned; and if the argument is a keyword or a reserved symbol, 2 is returned. For example

iskey ("abcde")
iskey ("abs")

iskey ("while")

2.2.2 Reserved Symbols

The following symbols are reserved for possible future extension for features of inheritance and exception
handling in C++.

20

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

virtual protected try catch
The following symbols are reserved for possible future extension of multi-tasking.

event_t recvevent sendevent beginparalleltask endparalleltask

2.3 Identifiers

An identifier is a sequence of characters that forms the name of a variable, class, type, function, etc. An
identifier can consist of the underscore character, the lower case and upper case Latin letters, numerical
characters and other characters. The dollar sign character / $’ cannot be used in an identifier. Lower case
and upper case letters are distinct. The first character must not be a number. The maximum length of an
identifier is 5119. When preprocessing tokens are converted to tokens, if a preprocessing token could be
converted to either a keyword or an identifier, it is converted to a keyword.

2.3.1 Predefined Identifiers

The identifiers listed in Table 2.1l are predefined in Ch. The default values of these predefined identifiers are
given in Table The major constraints are listed below.

e The delimiters for entries in _ipath, fpath, and _Ipath _path, are "; :" for Unix and "; " for
Windows, respectively. A space can be used as part of a directory path in both Unix and Windows.
Details about these system variables will be described in the next chapter.

e When system variables _cwd, _cwdn, _home, lang, lc_all, lc_collate, lc_ctype, _lc_monetary,
Jc_numeric, _Ic_time, logname, _path, _shell, _term, _tz, _user are updated, the corresponding en-
vironment variables HOME, LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_.MONETARY,
LC_NUMERIC, LC_TIME, LOGNAME, PATH, PWD, SHELL, TERM, TZ, USER will also be
updated.

o CHHOME in the path names is not the string “CHHOME?”, instead it represents the file system path
under which Ch is installed. For instance, use C : \Ch for CHHOME in Windows and /usr/local/ch
for CHHOME in Unix. Similarly, WINDIR and SYSTEMDIR in path names are the values of sys-
tem variables WINDIR and SYSTEMDIR, respectively.

21

2.3. IDENTIFIERS

CHAPTER 2. LEXICAL ELEMENTS

Table 2.1: Predefined identifiers.

Identifier Data Type Description

_argc int Equivalent to argc in main(int argc, char**argv).

_argv char** Equivalent to argv in main(int argc, char*argv [1).

_class__ char [] the class name inside a member function.

__class_func__ char [] the class and function names inside a member function.

—cwd string_t Current working directory.

—cwdn string_t Current working directory name.

_environ char** An array of pointers to C strings. Each array entry points to an environment
string.

_errno int System call error number.

formatf string_t the default output format for float.

formatd string_t the default output format for double.

fpath string_t Path for function files.

fpathext string_t Function file name extension.

_func__ char [] the function name inside a function.

_histnum string_t History number of a command saved.

histsize int Size of history of commands saved.

_home string_t Home directory.

_host string_t Host name of the computer.

-ignoreeof int If it is true, the shell ignores EOF from terminals. This protects against
accidentally killing a Ch shell by typing a Ctrl-d.

-ignoretrigraph int If it is true, the shell ignores trigraphs.

_ipath string_t Path for header files with the preprocessing directive #included.

Jlang string_t The name of the locale to use for locale categories when both _lc_all and
the corresponding system variable (beginning with “_Ic_") do not specify
a locale.

dc_all string_t The name of the locale to be used to override any values for locale
categories specified by the setting of _lang or any system variable
beginning with “_lc_".

JAc_collate string_t The name of the locale for collation information.

Ac_ctype string_t The name of the locale for character information.

Jdc_monetary string_t The name of the locale containing monetary-related numeric editing
information.

_c_numeric string_t The name of the locale containing numeric editing (i.e., radix character)
information.

lc_time string_t The name of the locale for date/time formatting information.

Jdogname string_t The name of the initial working directory of the user from the user database.

Ipath string_t Path for searching dynamically loaded lib used in function
dlopen(const char *pathname, int mode)). If pathname does not contain an
embedded /, path in _Ipath will be searched first. Then, follow the search
order of the native function call. For example, the environment variable
LD_LIBRARY PATH will be search in SunOS.

_new_handler void (*)() Pointer to user defined handler function for operator new.

22

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

Table 2.1: Predefined identifiers (Contd.).

Identifier Data Type Description

_path string _t Path for commands.

_pathext string_t Command name extension.

_ppath string_t Path for adding paths for _fpath, _ipath, _ipath used in #pragma package
<packagename>

_prompt string_t Prompt for interactive Ch shell.

_setlocale int If it is true, function setlocale (CL.ALL, "") will be called
to handle multi-byte functions in header files wchar.h and wctype.h.

_shell string _t Name of the shell in use.

_status int Exit value indicating the status of the executed command. O for successful
execution, non-zero for failure.

_term string_t Terminal type.

tz string _t Time zone information.

_user string_t User account name.

_warning int 3 with all warning messages.

2 most warning messages.
1 serious warning messages only.
0 no warning message.

23

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

Table 2.2: Default values of predefined identifiers.

Identifier Data Type Default Values

_argc int Command dependent

_argv char* [] Command dependent

__class__ static const char [] 7

__class_func__ static const char [] “”

cwd string_t Current working directory, if cwd is not available, _cwd uses the value
of _home

cwdn string_t Current working directory name

_environ char** An array of pointers to C strings. Each array entry points to an
environment string

_errno int 0

formatf string_t "o2f"

formatd string_t "o41E"

fpathext string_t “chf”

_fpath string_t "CHHOME/lib/libc; CHHOME/lib/libch;"
"CHHOME/lib/libopt; CHHOME/lib/libch/numeric;"
for regular Ch;

"CHHOME/lib/libc; CHHOME/1lib/libch; "
"CHHOME/lib/libch/numeric; " for safe Ch

_func__ static const char [] “”

“histnum string_t “0” (changed internally as commands are processed)

histsize int 128

_home string_t value of environment variable HOME, if it is set. Otherwise, home
directory for Unix and current_drive:/ or C:/ for Windows

_host string_t Host name of the computer

-ignoreeof int 0

_ignoretrigraph int 0

_ipath string_t "CHHOME/include; CHHOME/toolkit/include; "

Jlang string_t “C”

Ac_all string_t NULL

Jdc_collate string_t NULL

Ac_ctype string_t NULL

Jc_monetary string_t NULL

_c_numeric string_t NULL

JAc_time string_t NULL

Jdogname string_t Name of the initial working directory

Ipath string_t "CHHOME/1ib/dl; CHHOME /toolkit/dl;"

_new_handler void (*)() NULL

24

2.3. IDENTIFIERS CHAPTER 2. LEXICAL ELEMENTS

Table 2.2: Default values of predefined identifiers (Contd.).

Identifier ~ Data Type Default Values

_path string_t in regular Ch
"CHHOME /bin/; CHHOME/sbin;
CHHOME /toolkit/bin; CHHOME/toolkit/sbin;
/bin; /usr/bin; /sbin; " for Unix;
"CHHOME /bin/; CHHOME/sbin;
CHHOME /toolkit/bin; CHHOME/toolkit/sbin;
/bin; /usr/bin; /sbin; /usr/openwin/bin; " for SunOS/Solaris;
"CHHOME /bin; CHHOME/sbin;
CHHOME/toolkit/bin; CHHOME/toolkit/sbin;
WINDIR; WINDIR/COMMAND;
WINDIR/SYSTEMDIR; " for Windows 95/98/ME;
"CHHOME /bin; CHHOME/sbin;
CHHOME/toolkit/bin; CHHOME/toolkit/sbin;
WINDIR; WINDIR/SYSTEMDIR; " for Windows NT/2000/XP;

in safe Ch
"CHHOME/sbin; CHHOME/toolkit/sbin;
for all diff OS.

_pathext string _t “ in Unix and “.com;.exe;.bat;.cmd” in Windows

_ppath string_t "CHHOME /package; "

_prompt string_t stradd(_cwdn,"> ") for regular user, stradd(_cwdn," # ") for
superuser

_setlocale int 0

_shell string_t Name of the shell in use

_status int 0

_term string_t The value of the environment variable TERM

tz string_t Local time zone

_user string _t User account name

_warning int 1

25

2.4. PUNCTUATORS CHAPTER 2. LEXICAL ELEMENTS

2.4 Punctuators

A punctuator is a symbol that has independent syntactic and semantic significance. Depending on context, it
may specify an operation to be performed in which case it is known as an operator. An operand is an entity
on which an operator acts. The following punctuators are valid in Ch:

o\°

Dol=# #4 S $= & && &= * *= + ++ += - —— —=
> . .x ./ / /=< K< K<K= <K= = == > >= >> >>= ?

A O R T

2.5 Comments

There are two forms of comments in Ch. Comments of a Ch program can be enclosed within a pair of
delimiters /+ and = /. These two comment delimiters cannot be nested. Except within a character constant,
a string literal, or a comment, the characters /* introduce a comment. The contents of a comment are exam-
ined only to identify multibyte characters and to find the characters */ that terminate it.

The symbol // in Ch will comment out a subsequent text terminated at the end of a line. A // can be used
to comment out /* or =/ and /* =/ can be used to comment out / /. Except within a character constant,
a string literal, or a comment, the characters // introduce a comment that includes all multibyte characters
up to, but not including, the next new-line character. The contents of such a comment are examined only to
identify multibyte characters and to find the terminating new-line character. For example,

"a//b" // four-character string literal
/] x/ // comment, not syntax error
£ = g/*x//h; // equivalent to f = g / h;
//\
1(); // part of a two-line comment
/\
/ 30); // part of a two-line comment
/%l /x/ 1(); // equivalent to 1();
m = n//*x/o
+ pi // equivalent to m = n + p;

These two companion methods provide a convenient mechanism to comment out a section of code
that contains comments. When a comment does not start at the beginning of a line, the use of // is rec-
ommended. A combined use of preprocessor directives #1f, #elif, #else, and #endif can also
comment out a large section of code.

Comments cannot be used in the place of argument of command statements. For example,

> int i=2 // comment ok

> ix4 /* comment ok %/
8

> 1s // comment bad

> cmd /* comment bad =/

In the above example, comments cannot be applied to command statements Is and cmd.

26

Chapter 3

Program Structure

3.1 Directories and Files in the Ch Home Directory

Directories and files in the Ch home directory are shown in Table The information about the latest
release is kept in file CHHOME/release/release_Ch, where CHHOME is the home directory for Ch. Note
that CHHOME is the file system path under which Ch is installed, instead of the string “CHHOME”. For
instance, C: \Ch is used for CHHOME in Windows and /usr/local/chfor CHHOME in Unix.

Table 3.1: Directories and files in the Ch home directory.

Directory Name Contents
README Important information

bin Executable binary files
config Configuration files

demos Demo programs

dl Dynamically loaded libraries
docs Documentation

extern Interface with other languages and binary objects
include Header files used in Ch

lib Libraries

license License information

package Ch packages

sbin Commands for safe Ch
toolkit Toolkits

WWW Web related programs

3.2 Startup

The user can get into the Ch language environment by clicking the Ch icon on the desktop in Windows to
start a Ch command window, or typing commands below

ch - for regular shell
ch -s —-—————-— for safe shell (the same as chs)
chs @ ————— for safe shell

27

3.2. STARTUP CHAPTER 3. PROGRAM STRUCTURE

Table 3.2: Ch startup files.

Startup files in Windows Descriptions

~/_chre Included by CHHOME!/config/chre.

~/_chsrc Included by CHHOME!/config/chsrc.

~/_chlogin Included by CHHOME!/config/chlogin.

~/_chslogin Included by CHHOME!/config/chslogin.

~/_chlogout Read by login shells at logout.

Startup files in Unix Descriptions

~/.chrc Included by CHHOME/config/chre. Read at the beginning of
execution by regular shell.

~/.chsrc Included by CHHOME!/config/chsrc. Read at beginning of execution
by safe shell.

CHHOME/config/chlogin Read by Igoin shells after execution of chrc at login for regular shells.

~/.chlogin Included by CHHOME!/config/chlogin.

CHHOME/config/chslogin Read by safe ch login shells after execution of chsrc login for safe
shells.

~ /.chslogin Incldued by CHHOME!/config/chslogin.

~ /.chlogout Read by login shells at logout.

in a command window of Windows or command shell of Unix. Assume the environment variable CHHOME
is the top directory where Ch is installed. It can be /usr/ch in Unix or C:\Ch in Windows. Startup files
in Table are executed when the Ch language environment is invoked.

When first started, the Ch shell normally performs commands from CHHOME/config/chrc which in-
cludes the .chre file in your home directory, provided that it is readable. If the shell is invoked with a name
that starts with ‘-’, as when started by the login program in Unix, the shell runs as a login shell. In this
case, after executing commands from CHHOME/config/chrc which includes the .chre file in your home
directory, the shell executes commands from the .chlogin file in your home directory; the same permission
checks as those for .chre are applied to this file. Typically, the .chlogin file contains commands to specify
the terminal type and environment.

As a login shell terminates, it performs commands from the .chlogout file in your home directory; the
same permission checks as those for .chre are applied to this file.

When Ch is started with -d option, it first checks if file .chre exists in your home directory. If not, Ch
will copy CHHOME/config/.chrc to your home directory.

When Ch is started with option -f for fast startup, files CHHOME/config/chrc and ~/.chrc are not
executed.

The startup procedure for safe Ch shell is the same as that for regular shell. But, startup files chsrec,
.chsrc, .chslogin, and chslogout, instead of chre, .chre, .chlogin, and chlogout, are used.

In Windows, startup files _chre and _chsre, instead of .chre and .chsre, for regular and safe Ch in your
home directory will be used, respectively.

By default, the value for system variable _fpath for the paths of function files is “CHHOME /1ib/1libc;
CHHOME/1ib/libch;CHHOME/1ib/libopt;CHHOME/1ib/libch/numeric” for regular Ch and
“CHHOME/1ib/libc;CHHOME/1ib/libch; CHHOME/1lib/libch/numeric” for safe Ch, respec-
tively. Functions defined in function files not located in the above default directories cannot be used in
startup files .chre, .chsre, chre, and chsre. But, generic functions can be used in the startup files.

28

3.2. STARTUP CHAPTER 3. PROGRAM STRUCTURE

umask (0022) ;

_warning = 3; // print all warning. default is 1 with serious warning message only
_format = 8; // output format for double "%.’format’lf" and float "%.’format-2'f"
_ignoreeof = 1; // ignore EOF. defalut is 0

_path = stradd(_path, ".;");

//_ppath = stradd(_ppath, "/my/package/path;");
//_fpath = stradd(_fpath, "/my/function/path;");
//_ipath = stradd(_ipath, "/my/headerfile/path;");
//_lpath = stradd(_ipath, "/my/dynloadlib/path;");
//_pathext = stradd(_pathext, ";.ch");

#define RLIMIT_CORE 4
struct rlimit {int rlim_cur, rlim max;} rl={0,0};
setrlimit (RLIMIT_CORE, &rl); /% no core dump */

if (_prompt != NULL) { // change the default prompt "cwdn> "
_prompt = stradd(_user, "@", _host, ":", _cwd, _histnum, "> ");

}

putenv ("TERM=xterm") ;

alias("rm", "rm -i");

alias ("mv", "mv -i");

alias ("cp", "cp -i");

alias("1ls", "ls -F");

alias("go", "cd /very/long/dir");

alias ("opentgz", "gzip -cd _argv([l] | tar -xvf -");

Program 3.1: Example of the startup file .chre.

3.2.1 Sample Startup Files

Samples of startup files can be found in the directory CHHOME /config. After installation of Ch, the
system administrator can modify these startup files according to different system configurations. Users can
customize their individual startup files in the home directories. For the convenience of users, a sample of the
startup file will be copied from the directory CHHOME / config to the user’s home directory by command
ch -d.

Program is an example of the startup file .chrc the user’s home directory in Unix. In this example,
function umask(0/mn) allows the user to specify permission settings for new files or directories. The first
digit ‘0’ in the parameter indicates an octal number. The subsequent three digits /mn represent a three-
number octal code used as summing access code for each access group. The most left number / is for the
owner, the second number m for the group, and n for everyone else. Read access is 4, write access is 2,
execute or search access is 1. The function umask() is used to disable the unwanted access. The function
call

umask (0022) ;

removes the write access for the group and others. The system variable _warning indicates how the shell
displays the warning messages. The meanings of different values of _warning are defined in Table 2.11
The statement

_warning = 3;

changed its value from 1, the default value, to 3 to display all warning messages.
The default output format for values of float and double are " .2f" and " .41f", respectively. These
default formats can be changed by resetting the system variables _formatf and formatd. The statements

29

3.2. STARTUP CHAPTER 3. PROGRAM STRUCTURE

_formatf = ".6f";
_formatd ".61lf";

change the default output format for values of float and double to " . 6£" and " . 61£", respectively.
The statement

_lignoreeof = 1;

sets the system variable _ignoreeof to true. Therefore, the shell ignores EOF from terminals. This protects
against accidentally killing a Ch shell by typing a Ct r1-d. The statement

_path = stradd(_path, ".;");

adds the current working directory into the system variable _path, so that Ch will search it for commands.
By default, the above statement has been commented out in the startup file for Unix. To make files in the
current directory executable from the command shell, the above statement shall be uncommented. Similarly,
the subsequent commands in this example for the system variables of _fpath, _Ipath, _ipath, and _ppath
add directories to these variables. The system variable _pathext of string type contains file extension of
commands. To invoke a Ch command, such as prog. ch without typing the file extension . ch explicitly,
one may add the file extension .ch to the system variable _pathext. The meanings and default values of
these system variables can be found in Table

The C function setrlimit() can be used to control maximum resource consumption. The first argument
of this function represents the resource to be controlled. For example, the resource RLIMIT_CORE indicates
the maximum size of a core file in bytes. The second argument is the rlimit structure which represents the
resource limits. The rlim_cur member of rlimit specifies the current or soft limit and the rlim_max member
specifies the maximum or hard limit. Soft limits may be changed by a process to any value that is less than
or equal to the hard limit. A process may lower its hard limit to any value that is greater than or equal to the
soft limit. The code below

#define RLIMIT_CORE 4
struct rlimit {int rlim_cur, rlim_max;} rl={0,0};
setrlimit (RLIMIT_CORE, &rl)

changes both of the soft and hard limits of maximum size of a core file to O to prevent the creation of
it. The system variable _prompt contains the symbol of the prompt for the interactive Ch shell. For the
regular user, its default value is the result of command stradd (_.cwdn, "> "), i.e. the current working
directory name and the symbol ‘>’. The statement

_prompt = stradd(_user, "@", _host, ":", _cwd, _histnum, "> ");

in Program [3.1] changes the default prompt to the string including the username, the symbol ‘@’, the ma-
chine name, the current working directory, the command history number, and the symbol ‘>’, for example,
“user@machine:/path/dir#>".

The environment variables maintain the special information of the user’s environment. The functions
putenv() and getenv() can put and get the environment information. The statement

putenv ("TERM=xterm") ;

changes the environment variable TERM to xt e rm, where TERM is an environment variable that indicates
the type of terminal. Some applications, such as vi, use this variable to determine what type of terminal the
user is using. The last part of this example is about the alias command. The allias command makes an
abbreviation for a frequently used command or series of commands. For example, the command

30

3.2. STARTUP CHAPTER 3. PROGRAM STRUCTURE

alias("rm", "rm -i");

makes the command rm equilvalent to rm -i. Most commonly used Unix commands such as rm, mv, cp,

Is are available in Ch for Windows. Ch also contains all MS-DOS commands. Because different commands

are used in different operating systems, the startup files for Windows can be slightly different. For example,

command alias ("del", "del /P") can be setup for MS-DOS command del in Ch for Windows.
The alias

alias("go", "cd /very/long/dir");

allows the user to only type the command go for changing the current working directory to
/very/long/dir. The alias

alias("opentgz", "gzip -cd _argv[l] | tar -xvf -");

can be used to decompress and untar an archive file with file extension .tgz or .tar.gz. The formal
argument _argv [1] will be replaced by the actual argument in the typed command. For example, with this
alias, the command

opentgz file.tar.gz
is equivalent to
gzip —-cd file.tar.gz |tar -xvf -

More information about alias can be found in section

If Ch is used as a login shell, the command stty in the startup file .chlogin in the user’s home directory
sets the terminal characteristics, such as the erase character making a backspace, kil1l character can-
celling the current command line, intr character interrupting the current command, and susp character
suspending the current command. In this example, the command

stty intr ’°C’ erase ’"?’ kill ’""U’ susp '"Z’

changes the interrupt character to Ct r1-C, the erase character to Ct r1-H, the kill character to Ctr1-U
, and the suspend character to Ct r1—-Z. The user can use the command stty —a to display all current
settings.

3.2.2 Command Line Options

A non-interactive Ch shell can execute a command supplied as an argument on its command line with the
syntax as follows:

ch [-Sacdfghinruw] [argument...]

Except for the following command line options, the remaining words from the command line are passed as
arguments to the invoked command.

- S Safe shell. Many functions, such as system(), are not available for safe shell. Many generic functions
are disabled after the execution of CHHOME/config/chsrc and CHHOME/config/chlogin in the
case of the login shell. See Chapter 21l for more details.

- a Portable code such as applets. Platform-dependent functions in CHHOME/1ib/1libopt cannot be
used.

31

3.3. CH PROGRAMS CHAPTER 3. PROGRAM STRUCTURE

- ¢ Read commands from the first filename argument (which must be present and readable). Remaining
arguments are passed as arguments to _argv. If the program is a Ch command with function main(int
argc, char *argv[]), arguments will also be passed to argv of function main().

-d When ch is started, it first checks if file .chre exists in the user’s home directory. If not, Ch will copy
CHHOME/config/.chrc to the user’s home directory. When chs is started, it first checks if file .chsrc
exists in the user’s home directory. If not, Ch will copoy CHHOME/config/.chsrc to the user’s home
directory. In Windows, startup files _chre and _chsre instead of .chrc and .chsre, will be used for
regular Ch and safe Ch, respectively.

- f Fast start. Read neither the chre and .chre files, nor the chlogin and .chlogin files (if a login shell) upon
startup.

- g For CGI script debug. It turns the Web browser into a text shell.
- h Display Ch usage message for help.
- i Reserved for forced interactive shell (ignored).

- n Parse (interpret), but do not execute commands. This option can be used to check Ch shell scripts for
syntax errors. The warning flag for system variable _warning will be set to the highest level. All
warning messages will be printed out. Start up files will be parsed only without execution.

-r Redirect stderr stream to stdout. This option is useful for debugging programs running in Windows
operating systems. For example, command ch -r chcmd > junkfile will send error messages
from stderr stream in program chcmd to file junkfile.

- u Unbuffer the stdout stream mainly for handling I/O in IDE.
- v Print out Ch edition and version number in the stdout stream.

- w The warning flag for system variable _-warning will be set to the highest level for both parsing and
execution of the program. All warning messages will be printed out.

Option —a can be used to test if a Ch program is portable across different platforms. For example, the
command below will test if program cmd . ch is portable.

ch —-a cmd.ch
Option —g is very useful for debugging CGI code. If a CGI script starting with the first line of
#!/bin/ch -g

the Web browser is turned into a text shell. All output including error messages from executing the CGI
script will be displayed inside a Web browser.

3.3 Ch Programs

3.3.1 Command Files

A C program can be executed without compilation in a Ch language environment. The command-line
argument interface in Ch is C compatible. C programs are called command files or simply commands in Ch.
A file is identified as a Ch program if it has read/execute permission and starts with one of the following
tokens:

32

3.3. CH PROGRAMS CHAPTER 3. PROGRAM STRUCTURE

1. Comment symbols / * or //

A type specifier, type qualifier, or storage-class specifier.
Symbol # followed by a preprocessor directive.

Symbol # followed by ! /bin/chor ! /bin/sch
Identifier main.

Function name printf.

A

Dot *’, which is used for execution of the program in the current shell, when it is entered in a Ch shel
prompt.

In a Ch programming environment, a command file can be executed without compilation. The system
variable _pathext of string type contains file extension of commands. The default value of variable _pathext
is ""in Unix and " . com; .exe; .bat; .cmd" in Windows. To invoke a Ch command with file extension
.ch, such as hello.ch without typing the file extension .ch explicitly, one may add the file extension
. ch to the system variable _pathext in the startup file .chre in Unix or _chre in Windows in the user’s home
directory. For example, if the hello—-wor1ld program is saved in a file hel 1o . ch and _pathext contains
. ch, it can be executed as follows.

> hello
hello, world
>

A Ch program shall have both read and execute permissions for the user to execute it. The permission
of a program can be changed by command chmod. For example, command

chmod 755 program.ch

will change program program. ch with read/write/execute permission for the owner of the program and
read/execute permission for the group and others.

If a command name is preceded with a relative or absolute path, Ch will search for it in the specified
path. Otherwise, Ch will search the paths specified in the system variable _path, one after another. The
default value of _path is listed in Table 2.2l Generic function stradd() can be used to add paths into _path.
For example, the command below adds the path /home /mydir/binto the end of _path.

> _path = stradd(_path, "/home/mydir/bin;")

/usr/ch/bin/; /usr/ch/sbin; /usr/ch/tocolkit/bin;
/usr/ch/toolkit/sbin; /bin; /usr/bin; /sbin; /home/mydir/bin;
>

If this path is to be automatically added each time when Ch is started, the command below
_path = stradd(_path, "/home/mydir/bin;")

should be added in the startup file, such as .chre in Unix or _chrc in Window in the user’s home directory.
More information about how to customize the startup files can be found in section

In both Unix and Windows, a path name in system variable _path may contain blank spaces, for example,
C:/Program Files/package. The paths for dynamically loaded libraries with file extension .d11
in Windows may also be added to _path.

Function system() can handle programs with file extension . ch just like they are included in _pathext.
For example,

33

3.3. CH PROGRAMS CHAPTER 3. PROGRAM STRUCTURE

system("help.ch")
or

system (" /usr/ch/bin/help.ch")

3.3.2 Script Files

The Ch language environment can recognize other shell scripts and programs. To be recognized by other
shells and programs such as for WWW Common Gateway Interface, a Ch program shall start with

#!/bin/ch

followed by command line options such as —S for safe shell, and —f for fast start up. Although not
recommended, the use of spaces before the sign # and after the sign ! are allowed. A program that can
run in Ch, but cannot be compiled using a C or C++ compiler, is called a script. For example, a program
without function main() or starting with #! /bin/ch is a script. It is treated in the same manner as a
command. Inside a script , system variables _argec and _argv can be used for command line interface. These
two command line interface variables are available even for a command file.

3.3.3 Function Files

A Ch program can be divided into many separate files. Each file consists of many related functions at the
top level that are accessible to any part of a program. A file that contains more than one function is usually
suffixed with . ch to identify itself as part of a Ch program. Besides command files and script files, there are
function files in Ch. A function file in Ch is a program started with a function definition. A function file shall
be readable. The extension of a function file is specified by the system variable _fpathext of string type.
The default value of the system variable fpathext is " . chf". The names of the function file and function
definition inside the function file shall be the same. The functions defined using function files are treated
as if they were the system built-in functions in Ch. For example, if program addition.chf contains the
following statements,

/**%% function file for adding two integers *#*#*x*/
int addition(int a, int b) {

int c;

c = a + b;

return c;

}

Function addition () can be invoked automatically to add two integers. It is suggested that, inside a
function file, there is only one function definition which may nest many local functions. A program that
invokes the function addition () from a function file can be prototyped as

extern int addition(int a, int b);

This prototype for a function from a function file is optional in the program.
The preprocessing directive #endi £ described in Chapter [3] shall not fall after the closing parenthesis
for the arguments of the function in a function file. For example, the following code is invalid.

34

3.3. CH PROGRAMS CHAPTER 3. PROGRAM STRUCTURE

int fun(int argl,
#ifdef NeedWidePrototypes
int arg2z,
double arg3) {
#else
char arg2,
float arg3) {
#endif
/x .. *x/
}

Instead, it should be written as

int fun(int argl,
#ifdef NeedWidePrototypes
int arg2,
double arg3
#else
char arg2,
float arg3
#endif
) A

/*x ... %/
}

The included file before the function definition inside a function file will be processed first, before the
function definition is parsed. For example, the following code is valid.

#include<stdio.h>
FILE xfopen(const char xfilename, const char x*type) {
return _fopen(filename, type);

}

The preprocessing directives before the function definition of a function are ignored, when the function
file is used as a function prototype for a program. These directives will be parsed when the function is
processed at the end of the program. If a function in a function file is invoked in command mode at prompt,
all directives except #include will be processed and the included header file will be parsed before the
function prototype in the function file is used. Therefore, conditional preprocessing directives inside a
function file are valid before the function definition, only when the function is used inside a program.
Function func () defined in the following function file can be used in a program, but not in command
mode at prompt.

#ifdef HEADERI1
#include<headerl.h>

felse
#include<header2.h>
#endif

int func() {

35

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

The function can be used in both program and command mode, if the above code is changed to

#include<header.h> // include hearerl.h and hearder2.h conditionally
int func () {

}

Ch will search for function files in the the paths specified in the system variable _fpath, one after another.
The default value of _fpath is listed in Table 2.2l Additional paths for function files can be added to the
system variable _fpath. For example, the command below adds the path /home /mydir/1ib to the end
of _fpath.

> _fpath = stradd(_fpath, "/home/mydir/lib;")
/usr/ch/1lib/libc; /usr/ch/1ib/1libch; /usr/ch/lib/libopt;
/usr/ch/lib/libch/numeric; /home/mydir/lib;

>

If the system variable _fpath is modified in command mode, it will be effective only for functions invoked
in the current shell interactively. The function search paths in the current shell will not be used and inherited
in subshells. To make function files in this path available to the current Ch shell and all Ch programs, the
command below

_fpath = stradd(_fpath, "/home/mydir/lib;")

should be added in the startup file _chrc in Windows or .chrc in Unix at the user’s home directory. If the
search paths for function files have not been properly setup, a warning message such as

WARNING: function 'addition ()’ not defined

will be displayed, when the function addition () is called.

When a function is called in command mode, the function file will be loaded. If you modify a function
file after the function has been called, the subsequent calls in command mode will still use the old version
of the function definition that had been loaded. To invoke the modified version of the new function file, you
can either remove the function definition, say addition, in the system by command

> remvar addition

or start a new Ch shell.

A .chf file can contain multiple function and class definitions. A .chf file with multiple function and class
definitions should not be treated as a function file. Rather, it should be loaded explicitly using a pragma
directive. For example, the code below

#pragma importf <myfunc.chf>
#pragma importf <myclass.chf>

will load files myfunc.chf and myclass.chf with multiple function and class definitions located in a
directory specified by the system variable _fpath. This pragma directive can be placed in a header file that
may typically be included in applications.

3.4 Program Execution

The program startup occurs when a designated Ch program is invoked by the execution environment. The
program is parsed to form an internal data structure first, then it is executed. All objects in static storage are
initialized (set to their initial values) before program execution. Program termination returns control to the
execution environment.

36

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

3.4.1 Execution of Programming Statements in Command Mode

At a Ch shell prompt, all expressions, programming statements and functions parsed and executed immedi-
ately. For example,

> int i

> for (1 = 0; i < 3; i++) printf("i = %d\n", 1)
i=20

i=1

i=2

> int funcl(int i) {int J; 7 = i+i; return j;}
> i = funcl (10)

20

> int func2 (int i) {int Jj; J = i=*i;\

return j;}

> 1 = func2(i)+funcl (1)

402

> 2%1

804

>

In the example above, the for-loop and definitions of functions funcl () and func?2 () are typed at a
shell prompt. The ending semicolons are not necessary at prompt. All programming statements have to
be completed in one command line which may consist of multiple lines separated with a line continuation
symbol ‘\’ immediately followed by a carriage return character as shown for the definition of function
func2 (). Otherwise, Ch gives error messages. For example, if the for-loop in the previous example is
broken into two lines, the result is wrong. If the definition of function is broken into more than one line, Ch
treats it as a syntax error.

> int i

> for (1 = 0; 1 < 3; 1i++) // break the for-loop into two lines
> printf("i = %d4", i) // and the result is unexpected

i =3

> int funl (int i) {int 7J; // the definition of funl () is broken

ERROR: missing '}’

WARNING: missing return statement for function funl () and
default zero is used

>

3.4.2 Program Startup

A Ch program is normally executed according to the following sequences. First, a startup file
CHHOME/config/chre is executed. All values for global and system variables inside the startup file are
retained for use in the current executed program. The program including all modules from so-called prepro-
cess directives are then parsed to form an internal program tree. Each executable statement in the internal
program tree is then executed. Finally, either function main() or WinMain() is executed, if it has been
declared.

Function main() shall be defined with a return type of int and in one of the following forms, with no
parameters:

37

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

int main(void) { /* ... %/ }

or with two parameters referred to here as argc and argv, though any names may be used, as they are
local to the function in which they are declared:

int main (int argc, char =*argv([]) { /* ... */ }

or
int main (int argc, char =*=*argvl[]) { /> ... */ }
Or with three parameters
int main (int argc, char =*argv([], char xxenviron) { /* ... */ }
Function WinMain() in Windows shall be defined according to the Windows API as

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)
{ /*x ... %/}

If they are declared, the parameters to function main() will obey the following constraints:
e The value of argc is nonnegative.
e argv[argc] is anull pointer.

o If the value of argc is greater than zero, the array members argv [0] through argv [argc—1]
inclusively contain pointers to strings.

e If the value of argc is greater than zero, the string pointed to by argv [0] represents the pro-
gram name. If the value of argc is greater than one, the strings pointed to by argv [1] through
argv[argc—1] represent the program parameters.

e The parameters argc and argv and the strings pointed to by the argv array shall be modifiable by
the program, and retain their last-stored values between program startup and program termination.

e The parameter environ is a pointer to the table of environmental variables.

More information about these functions can be found in section[I0.10l The constraints and values for system
variables _argc and _argyv are the same as parameters argc and argv, respectively. More information about
these two system variables _arge and _argy are available in section

3.4.3 Program Termination

The return type of function main() shall be a type compatible with int. A return from the initial call to
function main() is equivalent to calling the exit function with the value returned by function main() as its
argument. The status value is stored in system variable _status.

38

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

3.4.4 Search Order
Order of Things in a Program

For a given identifier, the Ch language environment will interpret it according to the following search se-
quence:

e Check if it is a defined macro.
e Check if it is a keyword.
e Check if it is a defined variable including variable of a function.

e Check if it is followed by an open parenthesis *(’. If it is followed by an open parenthesis, attach the
name with a file extension from a list of extensions in the system variable _fpathext. For each file
extension, search each directory specified by the system variable _fpath for a function file until it is
found.

e Check if it is a command in each directory specified by the system variable _path. Then, attach
the name with a file extension from a list of extensions in the system variable _pathext. For each
file extension, search each directory specified by the system variable _path for the executable and
readable command until it is found.

Order of Things at Prompt

When an identifier is given in interactive mode at the prompt. It is first tested against the list of aliases.
Then, follow the search sequence described in the previous section.
The Ch program which described in Chapter] can be used to tell how a given identifier is interpreted.

3.4.5 Running Programs with Multiple Files

In this section, running programs with mulitple files will be described. Handling of packages in Ch will be
presented in section

The file name of a Ch program is the command name. The extension of a command can be specified
by the system variable _pathext. A program, consisting of multiple files, can be organized using import
and import f following preprocessor directive pragma described in section Unlike included header
files which search the directory specified in system variable _ipath, the directories specified in system vari-
ables _path and _fpath are searched for the program following import and importf, respectively. In
addition, a string can follow import and importf. In this case, the file will be searched in the cur-
rent directory first. If the file pointed to by the string expression does not exist, the pragma statement
shall be ignored. For example, assume command command consists of four separate files command. c,
modulel.c,module2.c,module3. c,then program command. c can be written as follows.

/* Program command.c %/
#include <stdio.h>

int main () {
int i1 =90;
printf ("main () program \n");
/% ... main program goes here x/

}

#pragma importf "modulel.c" /x search for modulel.c in current

39

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

directory first then directories specified in _fpath x/

#pragma import "module2.c" /x search for module2.c in current
directory first then directories specified in _path «/
#pragma importf <module3.c> /x search for module3.c in directories
specified in _fpath only »*/

Static variables in filesmodulel . c,module?2. c,and module3. c have file scope. Notice the difference
between import and importf in this example. File modulel. c is searched in the current working
directory first, then in the directories specified in _fpath. File module?2.c is searched in the current
working directory first, then in the directories specified in _path, not in _fpath. File module3. cis searched
only in the directories specified in fpath. Command file command . c shall have read/execute permission,
whereas files modulel.c, module2.c, module3. c shall have read permission.

Alternatively, one can add a Ch command called command . ch without touching files command. c,
modulel.c,module2.c,and module3. c of the original C code.

#!/bin/ch

/* command.ch «/

#pragma import "command.c"
#pragma importf "modulel.c"
#pragma import "module2.c"

#pragma importf <module3.c>

It is recommended that for a command with multiple files, create a directory to hold other files used
by the command. For example, for command xxx, create directory xxx_ch to hold files invoked by the
command xxx. Therefore, for command command, one can create a directory command_ch with its parent
directory being part of search path in system variable _path. The command can be written as follows:

/* Program command.c =/
#include <stdio.h>

int main () {
int 1 =90;
printf ("main () program \n");
/* ... main program goes here x/

}

#pragma import <command_ch/modulel.c> /* search for modulel.c in
directories specified in _path only =/

#pragma import <command_ch/module2.c>

#pragma import <command_ch/module3.c>

File command can then be used as an executable Ch command.

A static variable in a file included by pragma has file scope. This works fine in most cases. However,
sometime in a C program, a static variable is declared in a header file which is included by different modules.
Each module is compiled separately. This means a static variable needs to be accessed by all modules in the
corresponding Ch program. For such cases, directive include can be used. The previous sample program
can be written as follows.

/% Program command.c %/
#include <stdio.h>
int main () {

int i1 =90;

40

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

printf ("main () program \n");
/* ... main program goes here =/
}
#ifdef _CH_
#include "modulel.c" /% search for modulel.c in current directory
first then directories specified in _ipath */
#include "module2.c" /% search for module2.c in current directory
first then directories specified in _ipath */
#include <module3.c> /x search for module3.c in directories
specified in _ipath only »*/
#endif

Similarly, one can add a Ch command called command . ch without touching files command. ¢,modulel.c,
module?2.c,and module3. c of the original C code.

#!/bin/ch

/* command.ch =/
#include "modulel.c"
#include "module2.c"
#include <module3.c>

A program, consisting of multiple files, can also be organized using a dot command which runs in the
current shell. Unlike included header files, the directory specified in system variable _path is searched for
the program following the dot. Similar to including files using preprocessing directive include, a static
variable in a doc command is visible to all modules in the program. Using dot commands, the above sample
program command . c can be written as follows.

/* Program command.c =/
#include <stdio.h>
#ifdef _CH_
"modulel.c" /x search for modulel.c in current directory first
then directories specified in _ipath */
"module2.c" /% search for module2.c in current directory first
then directories specified in _ipath */
<module3.c> /x search for module3.c in directories
specified in _ipath only x/

#endif
int main () {
int i1 =90;
printf ("main () program \n");
/* ... main program goes here x/

}

If all these files are located in a directory, say, /my/package/dir,command command can be executed
at different directories by changing the line

#ifdef _CH_
in the above code to
#ifdef _CH_ && strcat (_ipath,"/my/package/dir;") \
&& strcat (_path, "/my/package/dir;")

41

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

Similarly, one can add a Ch command called command . ch without touching files command. ¢,modulel.c,
module?.c,and module3. c of the original C code.

#!/bin/ch

/* command.ch */
"modulel.c"
"module2.c"
<module3.c>

Chapter 22] describes the details on how to create library and software packages to run in Ch.

3.4.6 Debug Programs

To parse a Ch program without execution for checking the syntax error of the program, the shell command
chparse followed by the file name can be used. After parsing, the program can be executed by typing shell
command chrun. For example,

> chparse program.c
> chrun
>

If the program hello. c is as follows,

int main () {
printf ("hello, world\n";

}

the error of the program can be diagnosed by the command chparse as follows:

> chparse hello.c

ERROR: missing)

ERROR: Syntax error at line 2
>

where the missing parenthesis for the function printf() at line 2 is detected.

An entire program can be parsed first. Then it can be executed step by step interactively using the shell
command chdebug. In the example below, program. c is listed by command more first. Then, run by
command chdebug.

> more program.c

int main () {
int 1, *p;
i = 10;
p = &i;

}

> chdebug program.c
You are debugging file ’program.c’

Type (1) expression for evaluation
(2) "run’ to continue

42

3.4. PROGRAM EXECUTION CHAPTER 3. PROGRAM STRUCTURE

(3) hit return key to step to next line

1: int main () {
2 int 1, *p;
3: i = 10;
4: P = &i;

i

=> 10

i%1i

=> 100

&1

=> 1c21la0
5: }

IS

=> 1c21a0

*P

=> 10
1: int main () {

>

In the debug mode, the user has three options: evaluating an expression, executing the program non-stop,
or step-by-step execution of the program. In a step-by-step execution, the source code including the line
number will be displayed before it is executed. When the user types in an expression for evaluation, the
result of the expression will be displayed following the symbol =>. In this example, it shows that i +1i is
100 and the address of variable 1 is the same as the value for pointer p. Details about pointers are described
in Chapter [0

Using commands chparse-chrun and chdebug, the program runs in the current shell. A program can
be parsed to just check for syntax errors without being executed using option —n as shown below.

> ch —-n program.c
>

In this case, the program runs in a subshell.

The macro assert () defined in header file assert.h can also be used to debug a program. One can
setup a break point in a program by set adding the debugging function _stop ("Your debug message\n")
inside the program. The program will stop at this statement to wait for the user’s input at the execution phase.

The value of a variable or expression can be printed out by typing the name of variable or expression at the
point where the program stops. At run time, the implicit pointer ‘this‘ can also be used to access members
of a class in member functions of the class when the program is executed in debugging mode.

In Windows, because the stderr stream is handled differently, one should use command line option
-1 to debug a Ch program. For example, command

ch -r program.c > junkfile

will send error messages from stderr stream to file junkfile.

43

3.5. SCOPE RULES CHAPTER 3. PROGRAM STRUCTURE

3.5 Scope Rules

3.5.1 Scopes of Identifiers

An identifier can denote an object; a function; a tag or a member of a class, structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote different
entities at different points in the program. A member of an enumeration is called an enumeration constant.
The macro names in the source file are replaced by the preprocessing token sequences that constitute their
macro definitions during the passing phase.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier either
have different scopes, or are in different name spaces. There are five kinds of scopes: function, file, block,
and function prototype, program, system. A function prototype is a declaration of a function that declares
the types of its parameters.

A label name is the only kind of identifier that has function scope. It can be used in a goto statement
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance followed
by a: and a statement.

Every other identifier has scope determined by the placement of its declaration (in a declarator or type
specifier). If the declarator or type specifier that declares the identifier appears outside of any block, the iden-
tifier has program scope. If the identifier is declared outside of any block with storage-class qualifier static
as a static variable, the identifier has file scope. If the identifier is declared with __declspec (global),
the identifier has system scope in the current Ch shell. An identifier in system scope can be accessed by mul-
tiple programs. If the declarator or type specifier that declares the identifier appears inside a block or within
the list of parameter declarations in a function definition, the identifier has block scope, which terminates at
the end of the associated block. If the declarator or type specifier that declares the identifier appears within
the list of parameter declarations in a function prototype (not part of a function definition), the identifier has
function prototype scope, which terminates at the end of the function declarator. If an identifier designates
two different entities in the same name space, the scopes might overlap. If so, the scope of one entity (the
inner scope) will be a strict subset of the scope of the other entity (the outer scope). Within the inner scope,
the identifier designates the entity declared in the inner scope; the entity declared in the outer scope is hid-
den (and not visible) within the inner scope. Two identifiers have the same scope if and only if their scopes
terminate at the same point.

Unless explicitly stated otherwise, where this manuscript uses the term identifier to refer to some entity
(as opposed to the syntactic construct), it refers to the entity in the relevant name space whose declaration is
visible at the point the identifier occurs.

Class, structure, union, and enumeration tags have scope that begin just after the appearance of the tag
in a type specifier that declares the tag. Each enumeration constant has scope that begins just after the
appearance of its defining enumerator in an enumerator list. Any other identifier has a scope that begins just
after the completion of its declarator.

3.5.2 Linkages of Identifiers

An identifier declared in different scopes or in the same scope more than once can be made to refer to
the same object or function by a process called linkage. There are four kinds of linkage: global, external,
internal, and none.

In the set of source files that constitutes an entire program, each declaration of a particular identifier with
external linkage denotes the same object or function. Within a source file, each declaration of an identifier
with internal linkage denotes the same object or function. Each declaration of an identifier with no linkage

44

3.5. SCOPE RULES CHAPTER 3. PROGRAM STRUCTURE

denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains __declspec (global),
the identifier has global linkage.

If the declaration of a file scope identifier for an object or a function contains the storage-class specifier
static, the identifier has internal linkage.

For an identifier declared with the storage-class specifier extern in a scope in which a prior declaration
of that identifier is visible, if the prior declaration specifies internal or external linkage, the linkage of the
identifier at the later declaration is the same as the linkage specified at the prior declaration. If no prior
declaration is visible, or if the prior declaration specifies no linkage, then the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier for an
object has file scope and no storage-class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be a function parameter; a block
scope identifier for an object declared without the storage-class specifiers extern.

It is a syntax error, if the same identifier appears with both internal and external linkage.

3.5.3 Name Spaces of Identifiers

If more than one declaration of a particular identifier is visible at any point in a program, the syntactic
context disambiguates uses that refer to different entities. The separate name spaces categorized for various
identifiers are given as follows:

- macro names the macros defined by the preprocessing directive #define.

label names (disambiguated by the syntax of the label declaration and use);

the tags of classes, structures, unions, and enumerations (disambiguated by following any of the keywords
class, struct, union, or enum);

the members of classes, structures or unions; each class, structure or union has a separate name space for
its members (disambiguated by the type of the expression used to access the member via the . or —>
operator);

all other identifiers, called ordinary identifiers (declared in ordinary declarators or as enumeration con-
stants).

3.5.4 Storage Duration of Objects

The valid storage-class specifiers are given in Table 3.3

An object has a storage duration that determines its lifetime. There are three storage durations: static,
automatic, and allocated.

Variables qualified by __declspec (global) can cross different programs when they are executed
in the current shell using dot command. A variable qualified by __declspec (global) should be only
declared once and used by multiple programs in the current shell. Such a global variable is typically declared
in the system startup file chrc or the user’s startup file _.chrc in Windows or . chrc in Unix. Variables of
functions and class/struct/union cannot be declared as global variables.

An object whose identifier is declared with external or internal linkage, or with the storage-class specifier
static has static storage duration. For such an object, storage is reserved and its stored value is initialized
only once, prior to program startup. The object exists, has a constant address, and retains its last-stored
value throughout the execution of the entire program.

45

3.5. SCOPE RULES CHAPTER 3. PROGRAM STRUCTURE

Table 3.3: Storage-class Specifiers.

Specifier Function
auto local automatic variable
extern external variable

__declspec(global) system-wide global variable
__declspec(local) nested local function
register (ignored)

static static variable

An object whose identifier is declared with no linkage and without the storage-class specifier static has
automatic storage duration. For such an object that does not have a variable length array type, storage
is guaranteed to be reserved for a new instance of the object on each entry into the block with which it
is associated; the initial value of the object is zero. If an initialization is specified for the object, it is
performed each time the declaration is reached in the execution of the block; otherwise, the value becomes
indeterminate each time the declaration is reached. Storage for the object is no longer guaranteed to be
reserved when execution of the block ends in any way. (Entering an enclosed block or calling a function
suspends, but does not end, execution of the current block.)

For such an object that does have a variable length array type, storage is guaranteed to be reserved for a
new instance of the object each time the declaration is reached in the execution of the program. The initial
value of the object is zero. Storage for the object is no longer guaranteed to be reserved when the execution
of the program leaves the scope of the declaration.

If an object is referred to when storage is not reserved for it, the behavior is undefined. The value of a
pointer that referred to an object whose storage is no longer reserved is indeterminate. During the time that
its storage is reserved, an object has a constant address.

The storage can be allocated dynamically at run time by the functions calloc(), malloc(), and realloc();
and subsequently freed by the function free(). The storage can also be dynamically allocated and deallocated
by operators new and delete, respectively. Details about memory allocation and pointers will be described
in Chapter [0

46

Chapter 4

Portable Interactive Command Shell and
Shell Programming

This chapter describes how Ch can be used interactively in the command mode as a command shell. Like
other shells, Ch shell is a command interpreter that reads command lines typed by the user at a prompt
and figures out what to do. All operators and functions as well as most commands are available for both
interactive shell and shell programs in Ch. Detailed information about operators and functions can be found
in Chapters [7] and respectively. From a semantic point of view, Ch shell is similar to C shell. Ch is a
superset of C whereas the so-called C shell is quite different from C. Some selected syntax comparisons
between C shell and Ch are listed in Appendix

4.1 Shell Prompts

Each shell has its own shell prompt. By default, the prompt for a regular Ch shell is ‘cwd> * where cwd is
the current working directory. It tells the user that the regular Ch shell is ready to process the input from the
command line. By default, the prompt for a safe Ch shell is ‘safech> ’. For more information about safe
Ch, refer to Chapter 211 For a superuser in Unix or an administrator in Windows, shell prompts are ‘#’ and
‘safech#’ for regular and safe Ch shells, respectively.

Table 4.1l is the comparison of default shell prompts between Ch and other popular shells. The user
can change the default symbol for the Ch shell prompt, or add information such as hostname and current
working directory to the shell prompt by setting system variable _prompt. For example, in the interactive
command shell below

> _prompt = "$ "
Table 4.1: Comparison of shell prompts.
Shell General User Prompt Superuser Prompt
Ch shell in Windows > #
Ch shell in Unix > #
Safe Ch shell in Windows safech> safech#
Safe Ch shell in Unix safech> safech#
C shell % #
Bourne, Korn, and BASH shells prompt ~ $ #

47

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.2. INTERACTIVE EXECUTION OF COMMANDS

$

$ _prompt = "% "

% _prompt = stradd(_cwd,"> ")
/usr/ch>

we set the Ch shell prompt to symbols ‘$’ and ‘%’ first, then set it to the current working directory end-
ing with the symbol ‘>’ by calling function stradd(). In this example, the current working directory is
/uszr/ch. By setting the value of _prompt, the user can choose any character as the shell prompt. Typi-
cally, system variable _prompt is set in the startup file .chre in Unix or _chrc in Windows in the user’s home
directory.

4.2 Interactive Execution of Commands

In the command line mode of Ch shell, the user can type commands at a shell prompt. The commands
include compiled binary executable files, shell scripts, C and Ch programs, etc. For example,

> pwd

/home /myname

> mkdir subdirl

> cd subdirl

> pwd
/home/myname/subdirl

> which 1s

ls is aliased to 1ls -F
>

In the above example, program pwd displayed the current working directory /home /myname. A new di-
rectory subdirl is created by command mkdir. The current directory is changed by the built-in command
cd. The shell program which indicates that Is is an alias, which will be described in section

To run a command file in command mode, the file name shall be a valid identifier in Ch or starts with a
relative or absolute directory path such as *. /’, *. . /’, *7/’, and */’. For example, numerical values such
as 20 or 20.el are not valid identifiers. A command can be enclosed in a pair of double quotation marks.
The option for the command shall not be included inside the quotation marks. The quotation marks can be
used to avoid the conflict of a command and a variable identifier in a program. It can also be used in the
case that the command is located in a directory with white space. For example,

> int 1s = 10

> ls*2
20
> "ls" -1

(display files in the current directory in a single column)
> "C:/Program Files/Windows NT/Accessories/wordpad.exe"
(launch wordpad program)

The user can type two or more commands in the same command line by putting semicolons between
them. For example, the compound command

> cp filenamel filename2; vi filename?2
>

copies file filenamel to file filename2, and then calls the command vi to edit the latter.

48

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.2. INTERACTIVE EXECUTION OF COMMANDS

4.2.1 Current Shell

The principle and syntax of running a program in the current shell in Ch is the same as those in sh, bash,
and ksh shells. By default, a program in Ch shell is executed in a subshell. The built-in dot command

filename

executes program filename in the current shell, instead of a subshell. When a command is typed in the
prompt, either with or without ’.’, the search paths specified by the system variable _path are used to find
the directory containing the command. Assume program cmd has two statements of

int x = 3;

double y 4;

In the example below, this program is executed in a subshell first and then in the current shell.

> cmd // run cmd in a subshell
> x // print the value of variable x in current shell
ERROR: variable ’'x’ not defined
ERROR: command ’'x’ not found
> . cmd // run cmd in the current shell
> x
3
> X*y
12.0000
> showvar
X 3
y 4.0000

The first execution of program cmd (without symbol ‘.’) is in a subshell. So, when the program quits,
the variable x which hasn’t been defined yet in the current shell is not available. The second execution of
program cmd (with symbol ‘. ’) is in the current shell. When the program quits, the variable x has the value
of 3, assigned to x within the program cmd, in the current shell. Because variables in the current shell can
be used interactively at the prompt, sometime, one may place variables to be used interactively at the prompt
in a command and execute it in the current shell as a dot command. All variables and their values can be
displayed using the shell command showvar. The shell command stackvar is obsolete and replaced by the
command showvar.

Ch will search for a command such as cmd in the directories specified by the system variable _path. If
the program cmd is not located in one of directories specified by the system variable _path, an error message
will be displayed. If cmd has been used as a variable in the current shell, the command can be used with a
preceding absolute or relative path as shown below.

> /dirl/dir2/cmd // run cmd in the directory /dirl/dir2

> . /cmd // run cmd in the current working directory
> ../cmd // run cmd in the parent directory

> 7 /cmd // run cmd in the home directory

These commands execute the command file cmd located in the directory /dirl/dir2, current working
directory, parent directory and home directory, respectively.

Pathnames for a command can be separated using an ’/* in both Unix and Windows. However, the sep-
arator *\” can also be used in Windows. For example, the program notepad can be launched in Windows
in one of the following forms.

49

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.3. INTERACTIVE EXECUTION OF PROGRAMMING STATEMENTS

notepad
C:/Windows/notepad
/Windows/notepad
"/Windows/notepad"
C:\Windows\notepad
\Windows\notepad

vV V.V V V V

4.2.2 Background Job

In MS-DOS command shell in Windows, all Win32 programs run as background jobs. Ch is consistent in
handling commands in both Unix and Windows. A command can be started in the background using the &
metacharacter. so that it will not block the shell to accept new commands. For example, the command

> notepad &

will launch the program notepad in background.

4.3 Interactive Execution of Programming Statements

As it is mentioned before, besides executable binary files and shell scripts, the Ch shell can also exe-
cute C/Ch programs directly without compilation. Interactive execution of C programs without lengthy
compile/link/execute/debug cycles is especially appealing for rapid application development and deploy-
ment. For example, assume file hel1lo. c contains the following statements.

#include <stdio.h>

int main (void) {
printf ("Hello, world!\n");
return 0;

}
It can be executed in a Ch shell without compilation as follows.

> hello.c // execute hello.c program without compilation
Hello, world!
>

Source files as well as programming statements can be executed in Ch shell directly and interactively.
In the interactive command line mode, semicolons at the end of programming statements are not required.
For example,

> int i

> 1 = 10

10

> 1 x 2

20

> printf("i = %d", 1)

=10

printf ("i in hexadecimal number = %x", 1)
in hexadecimal number = a

VoR Ve

50

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.3. INTERACTIVE EXECUTION OF PROGRAMMING STATEMENTS

Ch also supports C extensions, such as computational arrays in Ch Professional and Student Editions, in
the command line mode as shown below.

array int afl2]1I[3] = {1, 2, 3, 4, 5, 6}

3
6
* transpose (a)

V oo & NV s~ B VYV
R P o N O
N O

where a is a 2X3 computational array which is treated as a single object. Generic function transpose()
returns the transpose of the argument of a one-dimension vector or a 2-dimension matrix. Computational ar-
rays are useful for numerical computing in engineering and science. More information about computational
arrays can be found in Chapter 16

To use macros and defined types by typedef in a header file at a shell prompt, the user can load the header
file by using commands chparse and chrun mentioned in section For example, in the commands
below

chparse /usr/local/ch/include/stdlib.h
chrun

size_t 1i

i = 90
0

vV O V V V V

the header file stdlib.h, where the type size_t is typedefed, is loaded before size_t is used as a type declarator
for variable i. In this case, the header file stdlib.h runs in the current shell.
If an invalid statement is typed at a shell prompt, Ch will give error messages for debugging purposes.

> blah

ERROR: variable ’"blah’ not defined
ERROR: command ’"blah’ not found

>

When a function is called in the command mode, the search paths specified by the system variable
fpath are used to find the directory containing the function definition. To call functions in a program
from the command prompt of a Ch shell, the program has to be loaded first. Once a program is loaded by
command chparse, the program can be executed by command chrun as described in section At the
same time, functions in the program can also be called at the prompt. On the other hand, a program can be
executed in the current shell first and then functions in the program can be used interactively. For example,
in the interactive execution of program currentshell. cpp in Program 4.1l below,

> . currentshell.cpp
func (5) = 10

15

> func (10)

20

51

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.3. INTERACTIVE EXECUTION OF PROGRAMMING STATEMENTS

#include <stdio.h>
#include <iostream.h>

int func(int i) {
return 2+*1i;

class tag {
private:
int m_1i;
public:
tag();
int memfunc (int) ;
bi
tag::tag() |
m_i=10;
}
int tag::memfunc(int i) {
cout << m_i+i << endl;
return m_i+i;

}

int main () {
class tag cl;

printf ("func(5) = %d\n", func(5));
cl.memfunc (5) ;

Program 4.1: a C++ program currentshell. cpp executed in the current shell.

52

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.4. BUILT-IN COMMANDS

Table 4.2: Built-in shell commands in Ch.

Command Description
X: change to the directory in drive X in Windows
cd change to the home directory
cd - change to the previous directory
cd —— change to the directory before the previous one
cd ——- change to the directory before the previous two
cd dir change to the directory dir
cd dir name change to the directory dir name with space
chdir change to the home directory
chdir - change to the previous directory
chdir —- change to the directory before the previous one
chdir ——— change to the directory before the previous two
chdir dir change to the directory dir
chdir dir name change to the directory dir name with space
. filename dot command. Read and execute command filename

in the current shell, instead of a subshell.
exec command execute command in place of the current shell.

> class tag c
> c.memfunc (10)
20

>

the dot command . currentshell.cpp loads and executes a C++ program currentshell.cpp in the
current shell with output of.

func (5) = 10
15

Command func (10) in the command prompt calls the function func () in the program loaded in the
current shell. Declaration statement class tag c instantiates an object c of class tag. When the
member function tt tag::memfunc() is invoked interactively by function call c.memfunc (10), the result
of value 20 will be displayed. Details about using class for object-based programming will be described
in Chapter Note that when a program running in the current shell crashes, the current shell will be
terminated. For the debugging purpose, it is recommended to run such a program in a new Ch shell so that
when the current shell is terminated, the Ch shell running in the background will be still available as shown
below.

> ch
> . currentshell.cpp

4.4 Built-in Commands
The built-in commands of Ch are listed in Table[4.2] The directory in which the user is working is called the

current working directory or cwd. To check the current working directory, type the command pwd at a shell
prompt.

53

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.4. BUILT-IN COMMANDS

There are three kinds of directory names or pathnames in Ch : simple, absolute and relative. The simple
pathnames are file or directory names which don’t include any information about the position within the file
system hierarchy. The simple pathnames are used to go to subdirectories of the current working directory.
Absolute pathnames indicate the absolute position of a directory within the file system hierarchy. They begin
with character ‘/” which represents the root directory. In Windows, they can also begin with a letter standing
for a drive such as X: /. For example, the pathname /usr/ch indicates the absolute position of directory ch
from the root directory. The relative pathnames trace the path from the working directory, instead of the root,
to the desired file or directory. For example, the pathname ../ch indicates the relative position of directory
from the current working directory. In relative pathnames, the symbols . and .. indicate the current working
directory and the parent directory, respectively.

In Ch shell, built-in commands ¢d and chdir can be used to change the user’s current working directory
to a desired directory. The command cd or chdir, without a directory name, change the current working
directory to the home directory indicated by the system variable _home. The command cd dir or chdir dir
switches the current working directory to the directory dir. The command e¢d - or chdir — switches the
current working directory to the previous directory. Similarly, ed —— or chdir —— switches to the directory
before the previous one; ¢d ——— or chdir ——- switches to the directory before the previous two. For
example,

> pwd

/home

> cd /usr/ch
> pwd
/usr/ch

> chdir -

> pwd

/home

> cd myname
> pwd

/home /myname
>cd ../../usr/ch
> pwd
/usr/ch

>

where /usr/chis an absolute pathname, myname is a simple pathname, and . . /. . /usr/chis arelative
pathname.
Examples about execution of programs in the current shell using dot commands are given in sections 4.2]

and 4.3

The built-in command exec executes other command in place of the current shell, which terminates.

4.4.1 Commands For Interactive Shell Only

All operators, functions and built-in commands are available for both interactive shell and shell programs
in Ch. But, not all commands that are valid in the command line mode can be used in shell programs. The
commands which are valid only when Ch is invoked as an interactive shell are called interactive commands.
They are not valid inside a Ch program. All interactive commands are shown in Table

In the interactive command line mode of the Ch shell, a variable, including a variable of function type, can
be removed by the remvar command. In the following example,

54

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.4. BUILT-IN COMMANDS

Table 4.3: Interactive commands valid only in the interactive shell.

Command Description
! repeat the previous executed command.
chdebug filename debug program filename.
chparse [-S] filename parse program filename only to check syntax. Option -S for safe shell.
chrun execute the parsed program.
exit exit Ch shell.
history show the command history.
remvar remove a variable.
remkey remove a keyword .
showvar display variables and their values in all stacks.
> int i // define variable i
> 1 = 90
90
> remvar i // remove variable i
> 1

ERROR: variable i’ not defined
ERROR: command ’'i’ not found
>

command int i declared variable i in Ch shell, and command remvar i removes variable i. The com-
mand remvar is an interactive command which is invalid inside Ch programs. If the user wants to remove a
variable, say var, inside a shell program, the preprocessing directive
fpragma remvar (var) should be used.

Similarly, a keyword can be removed by the remkey command as shown below.

> remkey (sin) // generic function sin is removed as a keyword
> float sin
> sin =10.0

Inside a program, the preprocessing directive #pragma remkey (key) should be used to remove the
generic function sin ().

The command showvar can be used to display all global variables and their values in the current shell.
The default format will be used to display the value for a variable. Tag names for sruct/class/enum types,
function prototypes without function definition, and typedefed variables are not displayed. Members of a
structure type and arrays are displayed without indentation. For example,

> int x = 3;
> double d = 10.1234
> double af[2][3] = {1,2,3,4,5,6};
> array double b[2][3] = {1,2,3,4,5,6};
> struct tag {int i, int J;} s = {10, 20};
> showvar
X 3
d 10.1234

a [C array]

55

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.5. REPEATING COMMANDS AT PROMPT

12 3
56
b [Ch array]
1 2 3
4 5 6
S
.1 =10
J = 20

The command showvar can also be used to display all variables and their values in a command executed in
the current shell as shown in section [4.2.11

More information about the event designator ! and command history can be found in section 4.5 below.
More information about commands chdebug, chparse and chrun can be found in section Generic
function alias() is typically used inside the system startup file chre and the user’s startup file .chre in Unix
or _chre in Windows. Commands alias and unalias, which will be described in section can be used in
the command mode.

4.5 Repeating Commands at Prompt

The features described in this section are valid only at the command line mode in Ch shell. The history and
quick substitutions for repeating commands at prompt will be described in this section.

The most convenient way to repeat commands at prompt is to use arrow keys. The previously typed
commands can be retrieved easily by the upper *1” and down ’|’ arrow keys on the keyboard for commands
typed before and after the current command, respectively. The retrieved command can be modified by first
moving the cursor to the location using the left ’<—’ or right *—’ arrow keys on the keyword. Then, use delete
or backspace key to delete characters or type any graphical characters to insert characters for command line
editing like in Emacs text editor.

4.5.1 History Substitution

History substitution allows the user to use words from previously typed commands at a shell prompt. This
simplifies spelling corrections and the repetition of complicated commands or arguments. Command lines
are saved in the history list, the size of which is controlled by the system variable _histsize. The history
can be displayed by shell command history. The most recent commands are retained. A history sub-
stitution starting with a ! sign may occur only at the beginning of the command line; history substitutions
cannot be nested. For example, commands

> histsize // print the current value of _histsize

20

> histsize = 4 // change the current value of _histsize to 4
4

> pwd

/usr/ch

> history // print the history list of commands

123 _histsize // print the current value of _histsize
124 _histsize = 4 // change the current value of _histsize to 4
125 pwd

126 history // print the history list of commands

>

56

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.5. REPEATING COMMANDS AT PROMPT

Table 4.4: Event designators.

Command Description

! Refer to the previous command. By itself, this substitution repeats the previous command.
11 the same as !.

'n Refer to command line 7.

I-n Refer to the current command line minus #.

Istr Refer to the most recent command starting with str.

print the current value of _histsize first, and then change this value to 4. After another command pwd, the
command history prints the most recent 4 commands including comments in the history list. The number
displayed at the front of each command is the command line number. History substitution allows users to
repeat previous command lines which are in the history list by using event designators.

An event designator is a reference to a command line entry in the history list. Different event designators
listed in Table [4.4] make it more convenient to repeat execution of a long command line in the history list.
The most commonly used event designator is !. The ! repeats the last command line entered by a user. For
example, if a user uses the command more to view a file, and misses the part of the file he wants, he can
repeat more just by typing !. The shell types out the command line repeated by ! first, and then executes
it, so that the user can make sure it is the right one. The ! is the basis for a number of more sophisticated
timesaving event designators which are listed in Table 4.4l Command ! n repeats the command with the
number 7 in the command history list. Command ! —n repeats the command with the number of m-n, where
m is assumed to be the number of the current command. It means the command ! -1 is equivalent to the
command !. Command ! str is also a commonly used command for command repetition. If a user wants
to edit the most current file again, he doesn’t need to remember the number of the previous vi command, all
he has to do is to type !vi.

The following example illustrates how these event designators can be used to repeat a command in the
history list.

> _histsize = 5

5

> pwd
/usr/local//ch

> |

pwd

/usr/local/ch

> strlen ("abc")

3

> history

136 _histsize = 5
137 pwd

138 pwd

139 strlen ("abc")
140 history

> 1137

pwd

/usr/local/ch

57

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.5. REPEATING COMMANDS AT PROMPT

> 'h
history
138 pwd

139 strlen ("abc")
140 history

141 pwd

142 history
> 1-4

strlen ("abc")
3

>

4.5.2 Quick Substitution

The quick substitution allows users to make a change on the previous command and at the same time execute
the changed command. It is useful to correct typos in commands or to repeat similar commands. Commands
“old" new and "old"new" can substitute string old in the previous command with string new. For example,

> mkkdir mydir
ERROR: variable 'mkkdir’ not defined
ERROR: command ’‘mkkdir’ not found

> "kk"k

> history

11 mkkdir mydir
12 mkdir mydir
13 history

>

To correct the typo mkkdir, use the command ~kk “k. In the following example, quick substitution com-
mands are used for a repetitive task of creating five directories for five different months.

mkdir Jan
“Jan"Feb

"Feb "March
"March"April
"April“May

> history

31 mkdir Jan
32 mkdir Feb
33 mkdir March
34 mkdir April
35 mkdir May
36 history

>

vV V. V V V

Quick substitution command “old and “old~ can be used to delete string old in the previous command.
For example,

> cp file filel.c
> "1

58

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.5. REPEATING COMMANDS AT PROMPT

Table 4.5: Quick substitution.

Command Description

“old" new substitute string old in the previous command with string new.
“old"new~ the same as “old " new.

“old delete string old in the previous command.

“old” the same as ~old.

> history

56 cp file filel.c
57 cp file file.c
58 history

>

4.5.3 File Completion

Ch shell is able to complete words when given a unique abbreviation. Type part of a word (for ex-
ample ‘Is /usr/local/ch/de’) and hit the tab key, The shell completes the file name ‘/usr/local/ch/de’ to
‘fusr/local/ch/demos/’, replacing the incomplete word with the complete word in the input buffer. Note
the terminal ‘/’; completion adds a °/* to the end of completed directories and a space to the end of other
completed words, to speed typing and provide a visual indicator of successful completion.

If no match is found (perhaps ‘/usr/local/ch/demos’ doesn’t exist), the terminal bell rings. If the word is
already complete (perhaps there is a ‘/usr/local/ch/de’ on your system, or perhaps you were thinking too far
ahead and typed the whole thing) a ‘/* or space is added to the end if it isn’t already there.

File completion works only at the end of the input buffer.

If there are multiple choices, the shell lists the possible completions using the command 1s -F and
reprints the prompt and unfinished command line, for example:

> 1ls /usr/local/ch/d["D]
dl/ demos/ docs/
> 1ls /usr/local/ch/d

If the choices are more than 100, it will ask the user to confirm whether all the choices shall be displayed:

> 1s fil[tab]
Display all 102 choices? (y or n)

Ch shell completes on the shortest possible unique match, even if more typing might result in a longer
match:

> 1s
fodder foo food foonly
> rm foltab]

just beeps, because ‘fo’ could expand to ‘fod’” or ‘foo’, but if we type another ‘0’,

> rm foo[tab]
foo food foonly
> rm foo

59

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.5. REPEATING COMMANDS AT PROMPT

the completion completes on ‘foo’, even though ‘food’ and ‘foonly’ also match.
If the first command is ’cd”, the completion shows only the choices of directory only:

> 1ls dir[tab]

dirl/ dir2/ dir3/ dird4@ dirfl dirf2 dirf3Q@
> cd dir[tab]

dirl/ dir2/ dir3/ dir4a

For a symbolic link to a file or directory, the symbol @’ is attached.
The shell treats ” \ ’ as a space and * \$’ as ’ $” in the file completion:

> 1s test\ t[tab]
ls "juck tmp"

The shell adds double quotes to enclosing the directory that contains space(s) in file completion as shown
above.
For built-in command ed, the backslash can be omitted for a directory contains spaces in file completion.

> cd aa bltab]
> cd "aa bb"/

A directory or file in Windows often contains a space. The shell can complete the file or directory in this
case.

> cd Progltab]
> cd "Program Files"/

454 Command Completion

If a tab key is hit before the end of the first token, Ch shell handles the token with command completion.
The shell searches files in the directories specified in the environment variable PATH which has the same
value as in the system variable _path. in both windows and Unix. Only executable files will be selected for
command completion in Unix. In Windows, only files with extensions .com, .exe, .bat, .cmd,
or . ch will be selected.

If there is only one matched command, the shell replaces the incomplete command with the complete
command in the input buffer. The shell adds a space to the end of other completed command to speed typing
and provide a visual indicator of successful completion. For example,

> lps[tab]
> lpstat

Similar to file completion, if there are multiple choices, the shell lists the possible completions using the
command 1s -F and reprints the prompt and unfinished command line. If the chioces are more than 100,
it will ask the user to confirm whether all the choices shall be displayed.

> lp[tab]
lp lpstat
> 1p

If no command match is found in the directories specified in the environment variable PATH, the shell
searches the current directory for possible matches of directory. If there is only one matched directory, the
shell replaces the incomplete command with the complete directory in the input buffer. The shell adds °/’

60

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.6. ALIASES

to the end of the completed directory to speed typing. If there are multiple choices of directory, the shell
lists the possible completions using the command 1s —F and reprints the prompt and unfinished command
line. If the chioces are more than 100, it will also ask the user to confirm whether all the choices shall be
displayed.

If no match is found at all, the terminal bell rings.

To search commands only in the current directory for command completion, the user shall type the
command starting with the current directory . /. For example,

> cd /bin

> ./log[tab]

logger login logname
> ./log

Type tab directly in command line, the shell will be able to show all the commands.

> [tab]
Display all 1296 choices? (y or n)

4.6 Aliases

In interactive command mode, the Ch shell maintains a list of aliases that one can create, display, and modify
using commands alias and unalias. The shell checks the first word in each command to see if it matches
the name of an existing alias. If it does, the command is reprocessed with the alias definition replacing its
name.

Aliases are typically created using the generic function alias() in the system startup file chre and the
startup file .chre in Unix or _chre in Windows in the user’s home directory. The generic function alias() is
overloaded with the following prototypes.

int alias(string_t name, string t alius);
string_t alias(string_t name);
int alias (void);

The different arguments with corresponding return values are listed in Table 4.6l Function call alias(name,
alius) will make symbol name an alias to command alius. If name is a valid identifier, the function
returns 0. If name is already an alias, the function returns 1. If the value of name is NULL, it returns -1.
If the second argument alius is NULL, the function will unalias symbol name from command alius.
Function call alias(name) will return the alias for the symbol name as a string. If the symbol name is not
an alias, the function returns NULL. Function call alias() will print out all the names as well as their aliases
in the standard output; and return the number of aliases. The return values of this generic function are shown
below in an interactive execution session. The function alias() can be called both in command mode and
shell programs. Follow the C convention, characters * \’ and ’ "’ can be passed in an alias using escape
character * \’ as “\\’ and " \"’, respectively. The commands below demonstrates various features of
function alias().

> alias("1ls", "ls -a")

0

> alias("1ls", "ls -agl")
1

>

alias("cp", "cp -1i")

61

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.6. ALIASES

Table 4.6: Function call alias().

Function Call Return Value
alias("namel™, "alius") 0
alias("namel", "alius") 1
alias("name2", " ") 0

0
1

alias("name2", NULL)
alias("name3", NULL)

alias(NULL, "alius") -1
alias(NULL, NULL) -1
alias("namel™) alius
alias("name3™) NULL
alias(NULL) NULL

Table 4.7: Formal arguments in alias().

Formal argument Description
_argv[0] The first input word (command).
_argv[n] The nth argument.

_argv[#] The entire command line.
_argv[$] The last argument.

—argv[*] All the arguments, or a null value

if there is just one word in the command.

0

> alias ()

cp cp -1
1s ls —-alg
2

> alias("1ls", NULL)
0

> alias ()

cp cp -1

1

> alias("cp")
cp —-i

>

The argument substitution is available in aliases. The formal arguments shown in Table 4.7] inside a
definition of an alias will be replaced with actual command line arguments when the alias is used. If no
argument substitution is called for, the arguments remain unchanged. For example,

> echo abc xyz
abc xyz
> alias ("myechol"”, "echo _argv[1l]")

62

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.6. ALIASES

Table 4.8: Commands alias and unalias.

Command Description
alias name alius make alias
alias name "string with space" make alias
alias name display alias for name
alias display all aliases
unalias name unalias name

> myechol abc xyz

abc

> alias ("myecho2", "echo _argv[$]")
> myechol abc xyz

Xyz

In the above example, only the first argument of command myechol abc xyz is used in the alias. The
last argument is used in alias myecho2. As another example, to search a file in the current directory and its
subdirectories and then print it out, the alias £ind below can be used to replace the system command find
as follows.

> alias("find", "find . —-name _argv[l] -print")
> find filename
(display files with name ’'filename’)

For the current process, commands alias and unalias shown in Table 4.8 can be more conveniently used
in an interactive command shell. These two commands are valid only in command mode. For example,

> alias 1s "ls —-agl"
> alias cp "cp —-i"

> alias

cp cp —-i
1ls ls -alg
> unalias 1s

> alias

cp cp -1

> alias cp

cp -1i

>

Aliases can be nested. That is, an alias definition can contain the name of another alias. This is useful in
pipelines such as

> alias("1ls", "1ls -agl")
> alias("1lm", "ls = | more")

When command 1m is invoked, actually the expanded command

> 1s —agl = | more

63

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.7. VARIABLE SUBSTITUTION

Table 4.9: Variable substitution.

Command Description

$var replaced by the value of variable var.
${var} replaced by the value of variable var.
$(var) replaced by the value of variable var.

is invoked instead. The output of 1s is piped through program more. As another example, the command
alias opentgz below can be used portably to extract a compressed archival file such as file.tar.gz or
file.tgz.

> alias ("opentgz", "gzip -cd _argv([l] | tar -xvf -")
> opentgz file.tar.gz
(display extracted files from file.tar.gz)

The command use a pipeline described in section
Nested aliases are expanded before any argument substitution is applied. For example,

> alias("tl", "t2 _argv[1l] A")
> alias("t2", "echo a b c")

> tl x vy z

abcxA

> alias("pl", "p2 a b c")

> alias("p2", "echo _argv[1l] A")
> pl x vy z

a A

4.7 Variable Substitution

A variable name can be replaced by its value through variable substitution. Three syntaxes of variable sub-
stitution $var, $(var), and ${var} are shown in Table[d.9] The variable name or symbol to be expanded may
be enclosed in parentheses or braces, which are optional but serve to protect the variable to be expanded from
characters immediately following it which could be interpreted as part of the name. Variable substitution
makes code more portable and flexible, because a variable can have different values for different situations.
For example, an installation program with variable substitutions can allow users to specify different target
directories instead of the default directory. The user may choose to install the software in a directory of his
choice.

Variable substitution takes place after the input command line is analyzed and aliases are resolved. It
is valid only for interactive command mode, command statements in programs, and command substitution
operations described in section

The variable in a variable substitution could be a predefined identifier described in section 2.3.1; a
user-defined variable of string, pointer to char, or integral data type; an environment variable described in
section .14} or undefined symbol. For a variable substitution, the Ch shell will first search the Ch name
space for the variable name according to its scope rule. If the variable is not defined, then it searches the
environment variables of the current process. If no variable with the specified name is found either in Ch
space or environment space, no substitution will take place and the variable is ignored.

64

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.7. VARIABLE SUBSTITUTION

%!

The variable substitution can be prevented by preceding the ‘$’ with a “\’ except within ‘ *’s for com-
mand substitution where it always occurs, and within *’ ’s where it never occurs. A ‘$’ is passed unchanged
if followed by a blank, tab, or end-of-line. For example, assume myname is the user’s account name, the
following commands

> _home // _home is a predefined identifier
/home /myname

> cd $_home

> pwd

/home /myname

> _fpathext // _fpathext is a predefined identifier
.chf

> // copy filel to filel.ch

> cp filel filel$_pathext

> cd SCHHOME // CHHOME is an environment variable
> pwd

/usr/ch

> echo $ CHHOME \$10.5 ${_home}/tmp

$ CHHOME $10.5 /home/myname/tmp

are examples of variable substitution using $var and ${var}. The variables _home and fpathext are pre-
defined identifiers in Ch. The variable _home contains the home directory of the current user. For different
users, values of _home are different. In a shell program, the command cd $_home is more flexible than
command cd /home/myname. Similarly, the environment variable CHHOME contains the home direc-
tory of Ch, which might be different in different machines. Obviously, a shell program using the command
cd S$SCHHOME are more portable than the program using command cd /usr/ch. To display ’$” immedi-
ately followed by a digit, it has to be preceded by an ’ \ ' .

Furthermore, suppose that the user is working with files in a directory with a very long name
/home/myname/projectl/subproject2/planl. This pathname can be abbreviated as a string
mydir. Then, when this directory is used in commands, S$mydir instead of
/home/myname/projectl/subproject2/planl can be used on the command line. For example,

> string_t mydir = "/home/myname/projectl/subproject2/planl"
> cd Smydir

> pwd

/home/myname/projectl/subproject2/planl

>

4.7.1 Expression Substitution

Expression substitution allows the evaluation of a Ch expression and the substitution of the result. The
format for expression substitution is:

$ (expression)
or
${expression}

The expression shall be an expression of string, pointer to char, or integral data type. It can be a constant,
variable, function call, mathematical expression, and other valid expression.

65

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.7. VARIABLE SUBSTITUTION

A single variable can be treated as an expression. While variable substitution can be used to obtain the
values of a single variable, expression substitution is typically reserved for more complicated expressions.
For an environment variable or undefined symbol, variable substitution should be used. In the example
below, the environment variables used in commands are obtained by an expression calling the function
getenv().

For example,

> getenv ("CHHOME") // CHHOME is an environment variable
/usr/local/ch

> cd $(getenv ("CHHOME"))

> pwd

/usr/local/ch

> ls S$CHHOME/include

(list of /usr/local/ch/include)
1ls ${CHHOME}/include

(list of /usr/local/ch/include)
> 1s $(getenv ("CHHOME")) /include
(list of /usr/local/ch/include)

AVAR]

AVAR]

1ls $(stradd(getenv ("CHHOME"),"/include"))
.. (list of /usr/local/ch/include)
>
where commands 1ls SCHHOME/include, 1ls ${CHHOME}/include,

1ls $(getenv ("CHHOME")) /include,and 1s $ (stradd(getenv ("CHHOME"),"/include"))

are equivalent to the command 1s /usr/local/ch/include. But, the commands including CHHOME
are more portable. Because the character ’/’ is not a valid character for an identifier, the braces for variable
substitution of variable CHHOME is optional.

4.7.2 Command Name Substitution

A command name substitution is useful for execution of a command. The command to be executed is
obtained dynamically at run time. The syntax for command name substitution is the same as those for
variable name substitution and expression substitution. In this case, the $ shall appears at the beginning of a
syntax statement. The data type of the variable or expression following the $ sign shall be string, pointer to
char, or pointer to unsigned char. For example,

string_t cmd = "/Ch/bin/echo.exe option";

Scmd more options

string_t cmd2 = "\"C:/Program Files/ch/bin/echo.exe\"";
Scmd2 option?2

char »cmd3 = "1s";

Scmd2 -agl

The string cmd contains both the command /Ch/bin/echo.exe and its option. To use a command
with white space, the command has to be placed inside a pair of double quotation marks as shown in the
string cmd2 above for the command C: /Program Files/ch/bin/echo.exe. A string cmd3 in the
form of a pointer to char contains the command 1s.

66

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.8. FILENAME SUBSTITUTION

4.8 Filename Substitution

Using certain special characters called wild card characters, users can abbreviate filenames and directory
names by filename substitution. Valid wild card characters in Ch are shown in Table Symbol ‘2’ is
the wild character representing a one-character value; * represents an arbitrary number of characters. For
example, to list all the files in the current working directory, type

> // list all files in current directory with =*
> 1s %

abcl.ch abc2.ch abc3.ch abcl2.c efcl.c
>

To list all the files with extension of . ch, type

> 1s x.ch
abcl.ch abc2.ch abc3.ch
>

To list files whose names contain the string c1, type

> 1s xcl=*
abcl.ch abcl2.c efcl.c

To list files whose names start with the string abc, end with the string . ch, and have only one character
between these two strings, type

> 1s abc?.ch
abcl.ch abc2.ch abc3.ch
>

The user can specify the home directory as the tilde character ~. For example, regardless of the current
working directory, the ~ abbreviation can be used to list the files in the home directory. Substituting ~ in
place of the home directory pathname requires less typing and does not change the current working directory.
For example, assume that the user’s account name is myname,

> // print the current user name
> echo $_user
myname
> // list files in home directory of current user
> 1s 7

(list files in home directory of myname)> pwd
>

The user can specify the current working directory name as . /. This substitution is useful in a variety of
situations. For instance, when the user wants to copy a file from a distant directory into the working directory,
the command cp followed by the pathname of the file and the current working directory abbreviation . / can
be used. For example, the following commands

> pwd

/home/myname/project?2

> cp /home/myname/projectl/subproject2/planl/«
>

67

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.8. FILENAME SUBSTITUTION

Table 4.10: Filename substitution.

wild card character Description
* Match any (zero or more) characters.
? Match any single character.
- The home directory, as indicated by the value of the
variable _home, or that of _user, as indicated by the password entry for user.
A current working directory.
A the parent directory of the current working directory.

will copy all files in the directory /home /myname/projectl/subproject2/planl into the current
working directory. Another use of the current working directory abbreviation . / is to make sure a program
in the current directory is running. A commonly used file name, such as test, could be used by more than
one program in different directories. If the current directory is not included in the search paths specified by
the variable _path, or it has a lower priority than other directory which has a file called test too, typing
the file name test will execute program test in another directory instead of the program in the current
directory. The command . /test . c will ensure that the execution of the program is in the current directory.
The command which —-a test canbe used to list all programs named test in order of search paths. In
the following example, the current directory is not included in the search paths.

> pwd

/home/myname/projectl/subproject2/planl

> which —-a test

/bin/test

/usr/bin/test

/usr/local/gnu/bin/test

/pkg/gnu/bin/test

> test // execute /bin/test

> ./test // execute /home/myname/projectl/subproject2/planl/test

The user can specify the parent directory of the current working directory as . .. The most common use
of the parent directory abbreviation is to switch the current working directory into the parent directory or its
subdirectories.

> // print current working directory

> pwd

/home/myname/projectl/subproject2/plan2

> // go to directory planl of the parent directory
> cd ../planl

> pwd

/home/myname/projectl/subproject2/planl

>

In the example, the command cd ../planl changes the current working directory to the subdirectory
planl of the parent directory /home/myname/projectl/subproject?2.

68

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.9. COMMAND SUBSTITUTION

4.9 Command Substitution

Command substitution pipes the output of one command into a variable inside a program or the command
shell. This is accomplished by enclosing the embedded command in a pair of accent grave marks *, which
are sometimes called back quotation marks. For example,

> string_t s = ‘date’

Wed Jul 25 10:11:18 PDT 2001
> s

Wed Jul 25 10:11:18 PDT 2001
> char xsl = ‘date’

> sl

Wed Jul 25 10:12:15 PDT 2001
> s1[0]

W

> free(sl) // the memory should be freed
>

Commands stringt s = ‘date‘and char sl = ‘date pipe the output of command date to
variables s and s1, respectively. Unlike aliases of commands, variables s and s1 are not equivalent to the
command date. They only store the output of the command date. It means that the contents of s and s1
won’t change as time changes, whereas the output from execution command date will change as the time
changes. Note that the memory allocated for variable s1 should be freed later. It is recommended to use
the type string_t instead of the type char = to implement command substitution. More information about
string_t can be found in section Another example for command substitution is that the Unix command

A

vi ‘grep -1 "strl str2" =«

can be used to edit all files that contain the string str/ str2 in the current directory using the vi text editor.

The variable substitution described in section can be used inside a command substitution. The
variable can be name in Ch space or environment space. A valid Ch expression can also be used for variable
substitution. For example,

> string_t sl = "/bin", s2;
> 52 = ‘ls $sl;

(list of /bin)
> echo ‘ls $sl1t;

(list of /bin)

%!

Note that variable substitution can be prevented by preceding the ‘$” with a *\’ except within ‘ *’s for com-
mand substitution where it always occurs, and within *’ ’s where it never occurs. A ‘$’ is passed unchanged
if followed by a blank, tab, or end-of-line. For example, if the variables £1 and £2 have values of filel
and file?2, respectively, the expression

‘echo $f1 \$f2 |sed "s/endofline$/converted/’}
is equivalent to

‘echo filel \file2 |sed ’'s/endofline$/converted/’"

69

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.10. INPUT/OUTPUT REDIRECTION

To make it easier for the user to refer to each item from the word list of a command substitution indi-
vidually, the output from a command embedded in a pair of accent grace marks * is postprocessed. The
consecutive blank space characters, characters for form feed, new line, carriage return, horizontal and verti-
cal tabs are replaced by single blank space characters. This is consistent with the C shell.

The output from a command embedded in a pair of double accent grave marks ** are intact. For
example, the extra blank from the output of the command date is retained by the command substitution
Y'date' .

> string_t s = ‘‘date™'

> s

Mon Aug 6 11:44:16 PDT 2001
> s = ‘date’

Mon Aug 6 11:44:24 PDT 2001
>

The two blank space characters after word Aug from output of the command * *‘date " are retained. They
are replaced by a single blank space in command ‘date .

4.10 Input/Output Redirection

In Ch, a command’s input and output may be redirected using a special notation interpreted by the shell
following the convention of Bourne shell. The redirection notations listed in Table 4.11] may appear in a
typed-in command in an interactive shell or command line in a Ch program.

Through output redirection, the command cmd > output followed by the quotation can be used to
create the file output in the command mode. By typing the ‘>’ symbol, we redirected the output from the
cmd command into the file output. The system took what the command cmd would have printed out to
the screen and put it into the file out put instead.

By using the symbol ‘>’, when the user redirects output into a file that already exists, the output redi-
rection will remove the current contents of that file and replace them with the output of the command. The
user can avoid overwriting the contents of a file by using another redirection symbol ‘>>’ which is called
the append redirection symbol. It adds the data to the end of a file, rather than replacing the file. If the user
appends output to a file which doesn’t exist, the symbol ‘>>’ acts like ‘>’, creating the file and redirecting
the output of a command into it.

A process associates a number with each opened file. This number is called file descriptor. When Ch is
launched in Unix, it is connected to three files, standard input which has file descriptor 0, standard output
which has file descriptor 1, standard error which has file descriptor 2. The standard error is not available
in Windows. The user can redirect any file descriptor from O through 9 by specifying the file descriptor
number before the symbols ‘>’, ‘<’, and ‘>>’. For instance, to redirect standard error, use 2>. The user
can redirect the output from standard output and standard error to the same file output by command
cmd > output 2> output. The user can also specify that the file descriptor n be redirected to the
same file as another file descriptor m by symbol ‘n>&m’. For instance, command cmd > output 2>&1
redirects the output of command e¢md to file cutput, and then redirects standard error there.

The following commands illustrate how input/output redirection in Ch shell works.

> cat datefile
old content

> date > datefile
> cat datefile

70

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.10. INPUT/OUTPUT REDIRECTION

Table 4.11: Input/Output redirection.

Notation

Description

cmd < word
cmd > word

cmd > word 2> &1

cmd 1 > word 2> &1

ch -r cmd > word

cmd >> word

cmd >> word 2>&1

cmd 1 >> word 2>6&1

cmd << word
cmd << word

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1).

If the file does not exist, it is created; otherwise, it is truncated to zero length.

Redirect the standard output and standard error (diagnostic output) to file word (for Unix).
Redirect the standard output and standard error (diagnostic output) to file word (for Windows).
Redirect the standard output and standard error (diagnostic output) to file word

(for both Unix and Windows).

If the file does not exist, it is created; otherwise, it is truncated to zero length.

Use file word as standard output. If the file exists, output is appended

to it (by first seeking to the EOF); otherwise, the file is created.

Redirect the standard output and standard error (diagnostic output) to file word.

If the file exists, output is appended to it (by first seeking to the EOF);

otherwise, the file is created (for Unix).

Redirect the standard output and standard error (diagnostic output) to file word.

If the file exists, output is appended to it (by first seeking to the EOF);

otherwise, the file is created (for Windows).

After parameter and command substitution is done on word, the shell input is read

After parameter and command substitution is done on word, the shell input is read

up to the first line that literally matches the resulting word, or to an EOF.

71

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.10. INPUT/OUTPUT REDIRECTION

Wed Jul 25 17:10:40 PDT 2001

>

> date >> datefile

> cat datefile

Wed Jul 25 17:10:40 PDT 2001

Wed Jul 25 17:11:45 PDT 2001

>

> cat > pl.c

int 1, J

(To complete the file and quit from the command cat,
use Ctrl-D in Unix or Ctrl-Z in Windows)

> pl.c > result_pl 2>&1

> cat result_pl

ERROR: missing ’;’

ERROR: syntax error before or at line 2 in file pl.c
==>:

BUG: <== 7?7?27

WARNING: cannot execute command ’'pl.c’

>

> cat > input_p?2

10

(To complete the file and quit from the command cat,
use Ctrl-D in Unix or Ctrl-Z in Windows)

> cat > p2.c

int ij;

scanf ("%d", 1i);

printf ("$d\n", 1);

(To complete the file and quit from the command cat,
use Ctrl-D in Unix or Ctrl-Z in Windows)

> p2.c < input_p2

10

>

In this example, output of command date is redirected to file datefile by symbol ‘>’ first. The content
in datefile is overwritten. Then the second output of command date is redirected to file datefile by
symbol ‘>>’. It is appended to the end of file datefile, rather than overwriting it. The error messages of
the execution of file p2 . c are redirected into the file result_pl by thecommand pl.c > result_pl 2>&1.
Using the symbol ‘<’, interactive execution of file p2 . c gets the input from file input _p2 instead of key-
board which is the default standard input device.

Note that the syntax

cmd >& word

for redirecting both standard output and standard error to file word works in C shell, but not in Ch and
Bourne shells. Use

ch cmd > word 2>¢&1

in Ch and Bourne shells in Unix.
There is a command option —r in Ch, which can be conveniently used to redirect the standard error
stderr to the standard output stdout. The command below

72

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.11. PIPELINE

ch -r cmd > word

will redirect both standard output and standard error to the file word. This syntax works in both Unix and
Windows.

In Unix, the function system() can be used to redirect the stdout of a command, say cmd, to file word1
and the stderr to file word2 as shown below.

system (" (cmd > wordl) 2> word2");

4.11 Pipeline

A pipeline is a sequence of one or more commands separated by the symbol | . The standard output of
each command except the last one is connected by a pipe to the standard input of the next command. Each
command runs as a separate process; the shell waits for the last command to terminate. The exit status of
a pipeline is the exit status of the last command in the pipeline. Users can regard it as running the first
command with its output redirected to a temporary file, then running the second command with its input
redirected from the temporary file, and so on.

The common use of a pipeline is preprocessing or postprocessing the output of a command by connecting
one or more filters together. A command that reads from the standard input and writes to the standard output
is called a filter. For example, the command grep which displays the lines in one or more files that contain
a specified string. If the user wants to look for the definition of typedefed type time_t in the header file
directory /usr/ch/include, the commands below with a pipeline can be used,

> pwd

/usr/ch/include

> grep time_t *.h | grep typedef
time.h:typedef int time_t;

>

The output of command grep time_t «.his piped to grep typedef. It means the pipeline grep
time_t x.h | grep typedef lists all lines which include both strings time_t and typedef in
header files in the directory /usr/ch/include. Itis more effective than only using grep time_t *.h
orgrep typedef =.h which may give the user many useless output. The command below only displays
the status of processes whose owner is myname and command is Vvi.

> ps —elf | grep myname | grep vi

1S myname 20851 20850 0 156 20 1940500 115 1086564 23:36:47
ttyp5 0:01 /bin/vi example.txt

>

The command ps -elf lists all processes status in detail. Its output is piped to command grep myname
as input. Then the command grep myname lists lines including string myname. These lines are piped to
command grep vi as input. The pipelined command lists all processes status lines which include both
strings myname and Vvi.

As another example, a compressed archival file file.tar.gz can be retrieved by the command below

gzip —-cd file.tar.gz |tar —-xvf -

The command gzip unzips the file file.tar.gz first. The uncompressed file is then piped as the stan-
dard ouput for command tar to extract files. To copy files in the directory /home/from to directory
/home/new/ from without changing the permission mode and access time, the following command can
be used.

73

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.12. RUNNING COMMANDS IN BACKGROUND

tar cf - /home/from | (cd /home/new; tar xf -)

Function popen() and pclose() can also be used to pipe output from one program to other one. For
example, the ed command in the following Bourne shell program

#!/bin/sh

ed testfile <<END

a

input from the console command line
abcd

123456

W

q
END

will edit the file test £ile using the subsequent lines, up to the first occurrence of delimiter line END, as
input. The user doesn’t have to use “END” as the delimiter, any word will do. The editor ed will append the
file with the three text lines shown below.

input from the console command line
abcd
123456

3

ed is a line-oriented text editor. a, ‘., w and q in the Bourne shell program are commands of ed. The
command a (“append”) tells ed to start collecting text; the ‘.’ is a command to signal the end of the text; the
command w (“write”) stores the information into file test £i 1e; the command q (“quit”) leaves the editor.

The result of the previous bourne shell program can be achieved using a Ch program by piping data to a
process as follows:

#!/bin/ch

#include <stdio.h>

FILE *fp;

string_t command_args="a\ninput from the console command line\
\nabcd\nl123456\n.\nw\ng";

fp = popen("ed testfile", "w");

fwrite (command_args, strlen (command_args), sizeof (char), fp);
pclose (fp);

where the command and input lines for editor ed in previous Bourne shell program are replaced by a variable
of type string_t, command_args. In the string of the variable command_args, these command and input
lines are put together and separated by new line characters ‘\n’. Functions popen() and pclose() are used to
initiate and close the piped I/O to the process for command ed test file,respectively. The first argument
of function popen() is a string containing the shell command line ed testfile;the second argument of
w is the I/O mode indicating the operation is writing data to the process through the pipe. Function fwrite()
sends the data to a stream pointed to by the stream fp for the process of shell command ed testfile.

4.12 Running Commands in Background

By default, Ch shell in command mode waits for a command to finish execution before the next prompt
is displayed. The command for which Ch shell waits is called a foreground command. A background

74

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.13. RUN-TIME EXPRESSION EVALUATION

command is a process that is started asynchronously within a Ch shell. Before the background command
is completed, the Ch shell will display the next prompt and readily accept the input from the command
line. In program mode, the control flow of the program will go to the next statement immediately before
the background command finishes execution. A command or pipeline ending with an & will be treated as a
background command. If the output of a background command is not redirected, it will be displayed at the
terminal.

A background command is useful for handling commands that take a long time to execute. It is also
useful to start a command with event-driven graphical user interface. For example, command notepad in
Windows can be started as a background command as shown below.

> notepad &

4.13 Run-Time Expression Evaluation

The generic function streval() can be used to evaluate an expression expressed in string at run time. The
expression may invoke functions located in function files specified by the function file path _fpath. This
function is polymorphic and can only be used as an rvalue. For example,

int i =1

float £ = 10.1

string_t s

char a[l10], x*p

i = streval ("i*2") /x 1 becomes 2 x/

vV NV V V V V

s = "fxi"

f*i

> f = streval(s) /* £ becomes 20.20 %/
20.20

> strcpy(a, s)

f*i

> strcat (a, "+5")

fxi+5

> f = streval (a) /* £ becomes 45.40 */
45.40

> p = a

fxi+5

> f = streval (p) /* £ becomes 95.80 */
95.80

> streval ("23unknown")

Invalid argument for streval ()

The generic function strparse() returns 0, if the expression can be converted to a numerical value at
runtime. Otherwise, it returns non-zero as illustrated below.

int i =90, status;

status = strparse("ix2");
if (!'status) {
i = streval ("ix2");

printf("i = %d\n", 1i);

75

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.14. HANDLING ENVIRONMENT VARIABLES

In some applications, the string value for an argument of streval() is passed through the command
interface. For example, program command may obtain strings x and 10 , or x+sin (90) *9 and 10. The
parentheses may need to be escaped as shown below.

command x 10
command x+sin\ (90\) %9 10

4.14 Handling Environment Variables

The environment variables in Ch are similar to the environment variables in other Unix shells and MS-DOS
shell. There are four environment variable handling functions in Ch. Function putenv() can add an environ-
ment variable to the system. This function is commonly used in the system startup file CHHOME/config/chrc
and individual user’s startup file .chre in Unix and _chre in Windows in the user’s home directory. Given an
environment variable, function getenv() can get its corresponding value. Function remenv() can remove
an environment variable. Function isenv() can test if a symbol is an environment variable. The interactive
command execution below demonstrates their application.

> putenv ("ENVVAR=value")
0
> getenv ("ENVVAR")
value
isenv ("ENVVAR")

>
1
> remenv ("ENVVAR")
> isenv ("ENVVAR")
0
>

In this example, the value value has been set to the environment variable ENVVAR by using command
putenv ("ENVVAR=value"). Note that in C there shouldn’t be blanks space adjacent to the equal sign
‘=", After that, the command getenv ("ENVVAR") obtains value, the value of the environment variable
ENVVAR. Because ENVVAR is an environment variable, the function call isenv ("ENVVAR") returns 1.
After invoking function remenv() to remove ENVVAR from environment variables, the the function call
isenv ("ENVVAR") returns 0.

As an example of application, the environment variable DISPLAY can be set in the remote machine to
the name of a local machine 1ocal.domain.com so that the remote machine remote.domain.com
can send graphic output to the machine 1ocal.domain. comthrough the network via X-window. On the
local machine 1ocal .domain . com,the command

> xhost server.domain.com

server.domain.com being added to access control list
>

should be used to add the remote machine into the access control list. On the remote machine
remote.domain.com,the command

> putenv ("DISPLAY=local.domain.com:0.0")
>

76

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.14. HANDLING ENVIRONMENT VARIABLES

sets the environment variable DISPLAY to make the server send graphic output to 1local.domain.com.
Programs described in section can be used to print out all environment variables and their corre-
sponding values. In Unix, a system command env can also be used to display all environment variables.
Environment variables are passed to all commands and programs running from within the current shell.
A Ch subshell inherits a copy of the environment from its parent shell. On the other hand, changes to the
values of environment variables in a subshell will not affect its parent shell. For example,

> putenv ("ENVVAR=value")

0

> getenv ("ENVVAR")
value

> cat > changeenv.ch

#!/bin/ch
printf ("$s\n", getenv ("ENVVAR"));
putenv ("ENVVAR=value2");
printf ("$s\n", getenv ("ENVVAR"));
(To complete the file and quit from the command cat,
use Ctrl-D in Unix or Ctrl-7Z in Windows)
> changeenv.ch
value
value?2
> getenv ("ENVVAR")
value
>

In this example, program changeenv . chruns in a subshell which has a copy of all environment variables
including ENVVAR from its parent shell. After changing the value of the copy of ENVVAR in the subshell
to value2, the value of ENVVAR in the parent shell is still value. As it is described in section [4.4]
a program can be executed in the current shell using dot command. In the example below, command .
changeenv. ch, changes the environment variable ENVVAR in the current shell.

> getenv ("ENVVAR")
value

> . changeenv.ch
value

value?2

> getenv ("ENVVAR")
value?2

>

The values of environment variables at the command line in the interactive Ch shell, and command
statements in a program can be obtained by variable substitution described in section The value of
environment variable ENVVAR can be obtained by either SENVVAR or $ (getenv (ENVVAR)) as shown
below.

> getenv ("ENVVAR")

value

> echo S$SENVVAR

value

> echo $(getenv ("ENVVAR"))

77

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.15. GENERAL-PURPOSE CH PROGRAMS

Table 4.12: General-Purpose Ch Programs.

Command Description
ch Ch shell
dirs List directories in the dir stack, C shell compatible
help Getting started in Ch
popd Pop the first directory from the dir stack, and switch to that directory, C shell compatible
popd +n Pop the nth directory from the dir stack, and switch to that directory, C shell compatible
pushd Switch to the second directory in the stack, C shell compatible
pushd dirname Push directory dirname onto the dir stack, and switch to that directory, C shell compatible
pushd +n Switch to the nth directory in the stack, C shell compatible
chs Safe Ch shell
which [-a] Similar to which in C shell. Used to show the location of a token
value
>

As illustrated in Appendix [D] an environment variable can be setup in C shell using its shell command
setenv. In sh, bash, ksh shells, it can be setup by the shell command export. As an example, the

command

putenv ("DISPLAY=1local.domain.com:0.0")

in Ch shall be handled in C shell as

setenv DISPLAY local.domain.com:0.0

In sh, bash, and ksh shells, it can be setup as

DISPLAY=local.domain.com:0.0
export DISPLAY

4.15 General-Purpose Ch Programs

The commands listed in Table are general-purpose Ch programs. Command ch or chs is used to start
a new regular Ch or safe Ch, respectively. Command which is used to tell where a specified executable
program is found. Commands dirs, pushd and popd, borrowed from C shell, can maintain a directory stack
which allows the users to conveniently switch among several working directories. The user can use these
in place of cd for changing directories. Command pushd is used to travel between two directories on the
top of the stack. Command pushd di rname pushes the di rname into the stack, and switches the current
working directory there. Command pushd +n changes the current working directory to the nth directory
on the stack. Command popd removes the top directory from the stack. Command popd+n removes the
nth directory from the stack. Command help can help new users of Ch get started with some illustrative

examples.

The following commands illustrate how these general-purpose programs can be used in Ch shell.

78

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.15. GENERAL-PURPOSE CH PROGRAMS

> which ch
/usr/ch/bin/ch

> which ch 1s
/usr/ch/bin/ch

ls is aliased to 1ls -F

> which -a 1s stdio TERM
ls is aliased to 1ls -F
/bin/1ls

/usr/bin/1ls

/usr/ucb/1ls
/usr/ch/include/stdio.h
dtterm

> pwd

/usr/ch

> pushd /usr/ch

0 /usr/ch

> pwd

/usr/ch

> pushd /home/myname

0 /home/myname

1 /usr/ch

> pwd

/home /myname

> pushd

0 /usr/ch

1 /home/myname

> pwd

/usr/ch

> pushd

0 /home/myname

1 /usr/ch

> pwd

/home /myname

> dirs

0 /home/myname
1 /usr/ch
> popd

0 /usr/ch
> dirs

0 /usr/ch
>

In this example, the which command first tells where the executable program of the ch command is found.
It can handle multiple commands as shown with commands ch and Is. In this case, Is is an alias. If the option
—a is used, all aliases, executable programs in the paths specified by predefined identifier _path, function
files in the paths pointed by _fpath, environment variable, and header files in the paths pointed by _ipath
are displayed. Without option —a, only the first available command, function file, and header file, or the
value of an environment variable are displayed. With option —v, if commands cannot be found, all paths

79

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.16. SHELL PROGRAMMING

Table 4.13: The first line of shell programs for different shells.

Shell The first line
Ch shell #!/bin/ch
C shell #!/bin/csh

Bourne shell #!/bin/sh
Korn shell #!/bin/ksh
BASH #!/bin/bash

in _path will be displayed. In the above example, besides an alias for Is, all possible executable commands
in the paths are listed. Symbol stdio is a header file stdio.h with file extension .h. The value for
environment variable TERM is dt t erm. After pushing two working directories into the stack, the command
pushd is used to switch between these two directories.

Commands listed in Table are accessible by regular Ch shell only, not by safe Ch shell. However,
Ch shell can also be invoked by safe Ch shell

4.16 Shell Programming

4.16.1 Use Shell Commands in Programs

Unlike C shell, the syntax and control flow of Ch are C compatible. C programs can readily run in a Ch
shell. However, if the execution speed of a program is not a major concern, it is often more convenient to
use shell commands in a Ch program. Based on the existing commands, sometimes, a task which needs
thousands of lines of C code can be accomplished with only a few lines of Ch code. Appendix [Glin gives a
list of commands commonly used for shell programming portable across different platforms in Ch.

A Ch shell script typically does not contain function main () or WinMain () in Windows. In Ch shell,
a file with the name extension specified in the system variable _pathext will be treated as a Ch script file,
regardless of its content. Otherwise, Ch will analyze the content. Typically, the shell for which a script file
is written is indicated by the first line of the file. They are shown in Table . 13]for popular Unix shells. If the
first line of a program contains the statement # ! /bin/ch, it will be treated as a Ch shell script. Ch scripts
can be executed even in other shells such as C shell or Bourne shell. If the file extension of a shell script is
included in the system variable _pathext, the script will be treated as a Ch shell script even if the first line
indicates that it is not a Ch program. In this case, the program may not run successfully as a Ch program.

If the file extension of a program is not contained in the system variable _pathext, and the program does
not start with the statement # ! /bin/ch or other tokens described in section Ch will invoke other shell
to execute it.

A command invoked inside a Ch program is called a command statement. The constraints for a command
statement, say cmd, are as follows.

e It shall be a valid identifier or an identifier with file extension, such as cmd. ext.

o It shall not be a declared variable within the scope, except that it is preceded with an absolute or
relative path as shown below for command cmd.

/path/cmd
. /cmd

80

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.16. SHELL PROGRAMMING

../cmd
~/cmd

o If the command name is also a declared variable within the scope, the command can be enclosed
inside a pair of double quotation marks. The option for the command shall not be included inside the
quotation marks. It can also be used in the case that the command is located in a directory with white
space. For example,

int 1s = 10;

"lg" -1

"/ch/bin/echo" option S$PATH

"C:/Program Files/Windows NT/Accessories/wordpad.exe"

e A command can be obtained dynamically at run time by command name substitution. The data type
of the variable or expression following the $ sign for command name substitution. shall be string,
pointer to char, or pointer to unsigned char. For example,

string_t s = "cmd";
$s option

In the case, the symbol cmd can also be used as a variable name independent of the command name.

e It shall be enclosed with a pair of double quotation marks following a dot .’ such as
n Cmd n

In this case, the command cmd is executed in the current shell as if it is included by the preprocessing
directive include, except that the system variable _path, instead of _ipath, is searched for the
program. It is similar to

#pragma import "cmd"

In Windows, if a Ch shell script, say cmd. ch, is used in other programs, such as in a Makefile, it may
need to be invoked by Ch as follows.

ch cmd.ch
or
ch cmd

These two formats of command execution start Ch shells explicitly to execute the script file cmd. ch.

The variable substitution described in section [4.7] can be applied to variables used in command state-
ments. The ending semicolon for other programming statements is not required for command statements.
For example, assume the shell script cofilel . ch contains the following statements

#!/bin/ch
cp /dir/source/%.ch /dir/dest/

There is no ending semicolon for the command statement starting with Unix command cp, which copies
files specified by the first argument to the directory specified by the second argument. Execution of the
above shell script

81

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.16. SHELL PROGRAMMING

#!/bin/ch

#include <stdio.h>

#include <unistd.h>

string_t file, files = ‘ls ./Y;

string_ t newfile="newfile";

string_t allfiles= stradd(_home, "/allfiles");
int 1i;

if (access(newfile, F_OK) == 0) // clear up first
remove (newfile) ;
foreach (file; files) {
if (access(file, R_OK) == 0) {
i++;
echo $1 S$file >> S$newfile
echo $1 $file >> S$Sallfiles

Program 4.2: Handle I/O use shell scripts.

> cpfilel.ch
>

copies all files with extensions . ch from directory /dir/source to directory /dir/dest.

The foreach loop described in section [8.4.4] is very useful for shell programming. For example, the
program below will print names of all files in the current directory. File names in the current directory are
obtained by command 1s and sorted by a foreach-loop.

#!/bin/ch

string_t file, files =

foreach (file; files) {
printf ("file = %$s\n", file);

‘1s ./

}

Although the output from a program can be handled by a family of I/O functions fopen(), fclose(),
fprintf(), etc. described in Chapter it is often time more convenient to use shell commands to send
output from a program to files. For example, in Program[4.2] file names with read permission in the current
directory are saved in file newfile. If the file newfile already exists, it will be deleted first by the
function remove(). Whether £ i 1e exists or not is tested by the function call of access (file, F_OK) .

The function access(), which is defined in the header file unistd.h, checks the accessibility of the file
named by the pathname pointed to by the first argument. The real user ID in place of the effective user ID
and the real group ID in place of the effective group ID are used to allows a setuid process to verify that
the user running it would have had permission to access this file. The value of the second argument, which
is of type int, is either the bitwise inclusive OR of the access permissions to be checked (R_.OK, W_OK,
and X_OK) or the existence test (F_OK). These symbolic constants are described in Table [4.14] If the
requested access is permitted, zero shall be returned. Otherwise, —1 shall be returned and errno shall be
set to indicate the error.

In Program4.2] whether £ 1 1e is readable or not is checked by function call of access (file, R_OK) .
File names are also appended in file a11files located in the user’s home directory by command echo with

82

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.16. SHELL PROGRAMMING

Table 4.14: Symbolic Constants for the function access().

Constant Description

R_OK Test for read permission.

W_OK | Test for write permission.

X_OK Test for execute or search permission.
F_OK Test for existence of file.

#!/bin/ch
string_t resultl;
char result2[507];

grep "test" myfile.txt;
if (_status == 0) {
printf ("’test’ is found in myfile.txt\n");
}
else {
printf ("Cannot find ’'test’ in myfile.txt\n");
}
resultl=‘wc -1 /etc/passwd};
echo S$resultl;
strcpy (result2, ‘wc -1 /etc/passwd});
printf ("$s\n", result?);

Program 4.3: Combination of shell commands with C code.

output redirection. A file name is preceded with a sequential number. For example, if the current directory
contains files filel, file2, file3. the output from executing Program [4.2]

1 filel
2 file2
3 file3

will be redirected to file newfile in the current directory and at the same time appended infileallfiles
in the user’s home directory.

For shell programming, section uses function stat() and directory handling functions to obtain
detailed information such as the size, access time, user id, etc. of files in a directory and its subdirectories
recursively.

Executable programs can be used directly from a Ch script. Shell commands such as sed, awk, wc, grep,
etc. can be combined with C code to run in Ch as shown in Program [4.3] The output for tnuml and tnum2
in Program is the same.

4.16.2 Passing Values to Shell Commands

This section describes how values from command line arguments can be passed to Ch shell programs. In
a Ch shell program, two predefined identifiers _argc and _argv are used to handle arguments from the
command line. They are defined internally with types of int and char ** as follows,

83

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.16. SHELL PROGRAMMING

int _argc;
charx _argv|[];

Identifier _arge contains the number of the arguments on the command line which includes the command
name itself. Identifier _argv maintains the argument list on the command line. The shell stores the command
name in _argv[0], the first argument in _argv[1], and so on. For example, assume file argtest .ch has
the following statements.

#!/bin/ch

echo $_argc

echo $(_argv[0])

echo $(_argvi[l])

printf ("$s\n", _argv[2]);
printf ("$s\n", _argv[3]);

The execution of argtest . ch is shown below.

> argtest.ch —-option arg?2
3

argtest.ch

—option

arg2

(null)

>

In this example, the value of _argc is 3, which includes file name argtest . c and two arguments argl and
arg?2. The filename is stored in the variable _argv[0]; the first argument argl is in _argv[1]; the second
argument arg?2 in _argv[2]. Comparison of C shell and Ch for accessing arguments in the command line
are listed in Appendix

Program [4.4]is an example for handling command-line arguments with _arge and _argv. It can be used
to implement the which command. Here, the variables a_option and v_option indicate that the valid
options —a and —v are on or not. Their values are false by default. If there is no command-line argument,
the program will print out the error message, because the command which at least has one argument, i.e. the
name to be searched for. The while-loop in this program handles all arguments which begin with the minus
sign —, and the for-loop analyzes these arguments character by character. The statement

c = _argv[i] [§++];

makes variable c equal the jth character in the argument _argv [1]. If the characters ‘a’ and ‘v’ are found
in these arguments, the variables a_option and v_opt ion are set to true, respectively. If other characters
are found, the error messages will be printed out. At the end of Program options and the remaining
command-line arguments are printed out. Assume that the file name of Program4.4lis commandline. ch,
the results from executing Program [4.4] with different options are shown below.

> commandline.ch —-a -v argl
option —-a is on

option -v is on

argl

> commandline.ch —-av argl
option —-a is on

option -v is on

84

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.16. SHELL PROGRAMMING

#include <stdio.h>
#include <stdbool.h>

int main () |
int 1 = 0; // for index of arguments
int j = 0; // for index of characters in arguments
char c;
int a_option = false; // default, no -a option
int v_option = false; // default, no -v option
if (_argc == 1){ // no argument
fprintf (stderr, "Usage: which [-av] names \n");
exit (1);

_argc—-—; i++; 3 = 0;
while(_argc > 0 && _argv[i] [j++] == "-") {
// for every argument beginning with -
// empty space is not valid option
for(c = _argv[i] [j++]; c&&c!=' ’; c = _argv[i]l[j++]) { // for -av
switch (c)
{
case "a’:
a_option = true; // get all possible matches
break;
case 'v’:
v_option = true; // print message
break;
default:
fprintf (stderr, "Warning: invalid option %c\n", c);
fprintf (stderr, "Usage: which [-av] names \n");
break;

}

_argc-—; i++; j = 0;

if (a_option)
printf ("option -a is on\n");
if (v_option)
printf ("option -v is on\n");
while(_argc > 0) { // print out the remaining arguments
printf ("$s\n", _argv[i]);
_argc-—; i++;
}

return 0;

Program 4.4: Handle command-line arguments with _arge and _argyv.

85

CHAPTER 4. PORTABLE INTERACTIVE COMMAND SHELL AND SHELL PROGRAMMING
4.16. SHELL PROGRAMMING

argl

> commandline.ch -v argl arg?2
option -v is on

argl

argz

The similar program which handles command-line arguments with pointers to pointers is discussed in sec-
tion [10.10)
Assume program cpfile?2.ch contains the following statements.

#!/bin/ch
cp /dir/source/$(_argv[1l]) /dir/dest/

Program cpfile2.ch can be used to copy files located at directory /dir/source to directory
/dir/dest conveniently. For example, the commands below

> cpfile2 filel
> cpfile2 file2
>

will copy files filel and £file2 from /dir/sourcetodirectory /dir/dest

86

Chapter 5

Preprocessing Directives

At its current implementation, Ch is interpretive. It has no separate translation stage such as preprocessing.
But, the syntaxes of preprocessing directives in C are supported in Ch. For the sake of convenience, we also
call them preprocessing directives in Ch. A preprocessing directive consists of a sequence of preprocessing
tokens that begins with a # preprocessing token. The preprocessing directives are listed in Table The

details about these directives will be described in this chapter.

Table 5.1: Preprocessing directives.

Directive Description

#define Define a preprocessor macro.

#elif Alternatively include some text based on the value of another expression,
if the previous #1f, #ifdef, #ifndef,or #elif test failed.

#else Alternatively include some text, if the previous
#if, #ifdef, #ifndef,or #elif test failed.

#endif Terminate conditional text.

#error Produce a compile-time error with a designated message.

#if Conditionally include text, based on the value of an expression.

#ifdef Conditionally include text, based on whether a macro name is defined

#ifndef Conditionally include text, based on if a name is not defined macro

#include Insert text from another source file.

#line Give a line number for message.

#pragma Ch specific features, not in C standard.

#undef Remove a preprocessor macro definition.

Replace a maco parameter with a string constant containing the parameter’s value

Create a single token out of two adjacent tokens.

Null directive.

defined Preprocessing operator that yields 1 if a name is defined as

a preprocessing macro and 0 otherwise; used in #1f and #elif.

5.1 Conditional Inclusion

Preprocessing directives of the forms

if

exprl

elif expr2

87

5.2. SOURCE FILE INCLUSION CHAPTER 5. PREPROCESSING DIRECTIVES

check whether the controlling expression evaluates to nonzero. The expression that controls conditional
inclusion shall be an integer expression except that it shall not contain declared identifiers. It may contain
preprocessing operation

defined (identifier)

which evaluates to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if
it has been the subject of a #define preprocessing directive without an intervening #undef directive with
the same subject identifier), O if it is not. Ch has extensions to C in preprocessing directives. All operators
and generic functions such as strcat (), and strcmp (), access () can be used in arguments of
preprocessing directives #1if and #e11if in Ch. For example,

#i1if defined (_HPUX)
printf ("I am using HP-UX\n");
#elif !strcmp (‘uname‘, "Linux")
printf ("I am using Linux\n");
#endif

Preprocessing directives of the forms

ifdef identifier
ifndef identifier

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined (identifier) and #if !defined (identifier), respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), then the group that it
controls is skipped: directives are processed only through the name that determines the directive in order to
keep track of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as
are the other preprocessing tokens in the group. Only the first group whose control condition evaluates to
true (nonzero) is processed. If none of the conditions evaluates to true, and there is a #else directive, then the
group controlled by the #else is processed; if lacking a #else directive, then all the groups until the #endif
are skipped.

5.2 Source File Inclusion

A #include directive identifies a header or source file that can be processed by the Ch interpreter. A prepro-
cessing directive of the form

#include <h-char-sequence>

searches for a header identified uniquely by the specified sequence between the < and > delimiters, and
causes the replacement of that directive by the entire contents of the header. The header is searched accord-
ing to the paths specified in predefined identifier _ipath of string type. Each path is delimited by a semicolon.
By default, the variable _ipath contains string "CHHOME /include; CHHOME/toolkit/include; "
where CHHOME is the home directory of the Ch software. The variable _ipath for the search path is
typically setup in a startup file .chre in Unix and _chre in Windows in the user’s home directory.

A preprocessing directive of the form

#include "g-char-sequence"

88

5.3. MACRO REPLACEMENT CHAPTER 5. PREPROCESSING DIRECTIVES

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the " delimiters. The named source file is searched for in the current directory first, then
in the directory specified in the system variable _ipath.

A preprocessing directive of the form

#include pp-tokens

that does not match one of the two previous forms is permitted. The preprocessing tokens after include
in the directive are processed just as in normal text. Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens. The directive resulting after all replacements shall
match one of the two previous forms. A #include preprocessing directive may appear in a source file that
has been read because of a #include directive in another file. There is no limit to the nesting level of the
#include directives.

The most common uses of #include preprocessing directives are given as follows:

#include <stdio.h>
#include "myprog.h"

The following code fragment illustrates macro-replaced #include directives:

#1f VERSION ==
#define INCFILE <version3.h>

#elif VERSION == 2

#define INCFILE <version2.h>
#else

#define INCFILE <versionl.h>
#endif

#include INCFILE

5.3 Macro Replacement

A preprocessing directive of the form
#define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name to be replaced by the
replacement list of preprocessing tokens that constitute the remainder of the directive. The new-line is a
character that terminates the #define preprocessing directive.

The identifier immediately following the #define is called the macro name. The macro name is followed
by a sequence of tokens called replacement list. Two replacement lists are identical if and only if the
preprocessing tokens in both have the same number, ordering, spelling, and white-space separation, where
all white-space separations are considered identical.

The simple form of macro is particularly useful for introducing named constants into a program, so
that some numbers such as the length of a table may be written in exactly one place and then referred to
elsewhere by name. This makes it easier to change the number later. For example, given the following
macro

#define BLOCK_SIZE 0x100

we can write

89

5.3. MACRO REPLACEMENT CHAPTER 5. PREPROCESSING DIRECTIVES

int size = BLOCK_SIZE;
instead of

int size = 0x100;

A preprocessing directive of the form
#define identifier(identifier-list-opt) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the #define preprocessing directive. Each subsequent instance of
the function-like macro name followed by an open parenthesis ’(’ as the next preprocessing token introduces
the sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invoca-
tion of the macro). The replaced sequence of preprocessing tokens is terminated by the matching closing
parenthesis ’)’ preprocessing token, skipping intervening matched pairs of left and right parenthesis prepro-
cessing tokens. Within the sequence of preprocessing tokens making up an invocation of a function-like
macro, new-line is considered a normal white-space character.
For example, if a macro mul with two arguments is defined by

#define mul (x,y) ((xX)=*(y))
then the source program line

result = mul (5, a+b);
is replaced with

result = ((5)* (atb));

Note that the parentheses are important in the macro definition. If the macromul () was defined without
parentheses as

#define mul (x,y) x*y

the statement

result mul (5, a+b);
would become
result = 5*xa+tb;

A variable argument list macro uses the ellipsis notation in the arguments. An identifier ._VA_ARGS__
that occurs in the replacement list is treated as if it were a parameter, and the variable arguments form the
preprocessing tokens used to replace it. For example, the code fragment

#define debug(...) printf (_ VA_ARGS_)

#define debug2 (fp, ...) fprintf (fp, __VA_ARGS_)
debug ("x = %d\n", x);

debug?2 (stderr, "x = %d\n", x);

results in
printf ("x = %d\n", x);

fprintf (stderr, "x = %d\n", x);

90

5.4. CONVERTING TOKENS TO STRINGS CHAPTER 5. PREPROCESSING DIRECTIVES

5.4 Converting Tokens to Strings

The # token appearing within a macro definition is recognized as a unary stringization operator. If, in the
replacement list, a parameter is immediately preceded by a # preprocessing token, both are replaced by
a single character string literal preprocessing token that contains the spelling of the preprocessing token
sequence for the corresponding argument. For example,

> #define TEST (a) #a

> printf ("%$s", TEST (abcd))
abcd

>

The macro parameter abcd has been converted to the string constant “abcd”.

Each occurrence of white space between the argument’s preprocessing tokens becomes a single space
character in the character string literal. White space before the first preprocessing token and after the last
preprocessing token composing the argument is deleted. Otherwise, the original spelling of each prepro-
cessing token in the argument is retained in the character string literal. The spelling of string literals and
character constants: a \ character is inserted before each " and \ character of a character constant or string
literal (including the delimiting " characters), is specially handled. For example,

> #define TEST (a) #a

> printf ("1%s2",TEST(a b))
la b2
> printf ("1%s2\n", TEST(a\\b))
la\b2

> printf ("1%s2\n", TEST(" a \\ b "))
1" a \\ b "2
>

Here the argument is turned into the string constant “a ©b”. The white spaces before a and after b are
deleted, and the sequence of white spaces between a and b is replaced by a single character.

5.5 Token Merging in Macro Expansions

Merging of tokens to form new tokens in Ch is controlled by the presence of the merging operator ## in
macro definitions. For both object-like and function-like macro invocations, before the replacement list is re-
examined for more macro names to replace, each instance of a ## preprocessing token in the replacement list
(not from an argument) is deleted and the preceding preprocessing token is concatenated with the following
preprocessing token. The new token might be the name of a function, variable or type, or a keyword; it might
even be the name of another macro, in which case it will be expanded. The common use of concatenation
is concatenating two names into a longer name. It is also possible to concatenate two numbers, or a number
and a name, such as ‘1.5’ and ‘e3’, into a number. In addition, multi-character operators such as ‘+=" can
be formed by concatenation. For example,

> #define CONC2(a, b) a ## b

> #define CONC3(a, b, c) a ## b ## c
> CONC2 (1, 2)

12

> CONC3 (3, +, 4)

91

5.6. LINE CONTROL CHAPTER 5. PREPROCESSING DIRECTIVES

The macro CONC2 (1, 2) concatenates two numbers, 1 and 2, into 12, and CONC2 (3, +, 4) concate-
nates these three arguments into 3+4, which generates 7 in Ch command line.

Ch converts comments to white spaces before macros are even considered. Any “/x comment sequence
sequence will be interpreted as a number of blank spaces. The user can use comments next to a ”##” in
a macro definition, or in actual arguments that will be concatenated because the comments will be initially
converted to blank spaces that will later be discarded by the contatenation operation. For example,

> #define CONC2(a, b) a ## b

> CONC2 (1, /+this 1s a comment x/2)
12

>

The comment in the second argument is discarded in concatenation.
A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either
form of macro definition.

5.6 Line Control

The #line directive can be used to alter the line numbers assigned to the source code. This directive gives a
new line number to the following line, which is then incremented to derive the line number for subsequent
lines. The directive can also specify a new file specification for the program source file. This is useful for
referring to original source files that are preprocessed into Ch code by other programs.

A preprocessing directive of the form

#line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source
line that has a line number as specified by the digit sequence (interpreted as a decimal integer). The digit
sequence shall not specify zero, nor a number greater than 2147483647. The line number is stored in the
predefined macro __LINE__ internally.

A preprocessing directive of the form

#line digit-sequence "s-char-sequence-opt" new-line

sets the presumed line number similarly and changes the presumed name of the source file to be the contents
of the character string literal. The name of the source file is stored in the predefined macro __FILE__
internally.

For example, the following program with file name pre_line. c.

int main () {
printf ("before line directive, line number is %d \n", _ LINE_);
printf ("the FILE predefined macro = %$s\n", _ FILE_);
#line 200 "newname"
printf ("after line directive, line number is %d \n", _ LINE_);
printf ("the FILE predefined macro = %$s\n", _ FILE_);
return 0;

92

*/”

5.7. ERROR DIRECTIVE CHAPTER 5. PREPROCESSING DIRECTIVES

will print out

before line directive, line number is 2

the FILE predefined macro = pre_line.c
after line directive, line number is 200
the FILE predefined macro = newname

5.7 Error Directive

A preprocessing directive of the form
#error pp-tokens-opt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens and the interpretation to cease.
For example, when the program pre_err. c below is executed in Ch,

int main () {

ferror from preprocessing error directive
printf ("after error directive\n");
return 0;

}
it will print out

ERROR: #error: from preprocessing error directive
ERROR: syntax error before or at line 2 in file pre_err.c
==>: f#error from preprocessing error directive
BUG: #error from preprocessing error directive <== 2?7
WARNING: cannot execute command ’'pre_err.c’

5.8 NULL Directive

A preprocessing directive of the form
#new-1line

has no effect on the program. The line is ignored.

5.9 Pragma Directive
A preprocessing directive of the form
pragma pp-tokens-opt new-line

is called a pragma directive. The C standard defines #pragma as a means to implement platform depen-
dent functionality. According to the C standard, if the preprocessing token STDC does not immediately
follow pragma in the directive prior to any macro replacement (#pragma STDC), implementation-defined
features can be added. Ch defines several #progma statements to implement special functionality. The

93

5.9. PRAGMA DIRECTIVE

CHAPTER 5. PREPROCESSING DIRECTIVES

Table 5.2: Valid pragmas.

Pragma name

Value of argument

exec expr

remvar (arg)
remkey (arg)

import
import
importf
importf

pack ()

pack (po
pack (pu
pack (n)
package

package

package
package
package
package
package
package
package
package
_fpath
_fpath
_ipath
_ipath
_lpath

"filename"
<filename>
"filename"

<filename>

P)

sh, n)

<pname>

"/u/dir/pname"

<path>
"/u/dir/path"
<path>

_fpath
_fpath
_ipath
_ipath "/u/dir/path"
_lpath <path>
_lpath "/u/dir/path"
_path <path>
_path "/u/dir/path"
<path>

"/u/dir/path"

<path>

"/u/dir/path"
"/u/dir/path"

_path "/u/dir/path"

Execute an expression when it is parsed.

Remove a global or top level variable arg.

Remove a kwyword arg.

Include the file filename. It searches for the file in the current directory
first. Then, the directories specified by _path.

Include the file filename. It searches for the file in only directories
specified by _path.

Include the file filename. It searches for the file in the current directory
first. Then, the directories specified by _fpath.

Include the file filename. It searches for the file in only directories
specified by _fpath.

Automatic alignment of structure fields.

Automatic alignment of structure fields.

Turn n byte packing of structures on.

Turn n byte packing of structures on.

Add $ (_ppath) /pname/binto _path, $ (_ppath) /pname/1ib
to fpath, $ (_ppath) /pname/include to _ipath,

$ (_ppath) /pname/dl to lpath.

Add /u/dir/pname/binto _path, /u/dir/pname/lib
to fpath, /u/dir/pname/include to _ipath,
/u/dir/pname/dl to lpath.

Add $ (_ppath) /path to fpath.

Add /u/dir/path to fpath.

Add $ (_ppath) /path to _ipath.

Add /u/dir/path to _ipath.

Add $ (_ppath) /path to lpath.

Add /u/dir/path to lpath.

Add $ (_ppath) /path to _path.

Add /u/dir/path to _path.

Add CHHOME /toolkit/1lib/pathto fpath.

Add /u/dir/path to fpath.

Add CHHOME /toolkit/include/pathto _ipath.

Add /u/dir/path to _ipath.

Add /u/dir/path to lpath.

Add /u/dir/path to _path.

94

5.9. PRAGMA DIRECTIVE CHAPTER 5. PREPROCESSING DIRECTIVES

preprocessing token names for the pragma directive defined in Ch, conforming to the C standard, are listed
in Table[5.21

In the example below, variables varl and var2 are first declared as int. Later, they are removed and
re-declared as float in different scopes.

int varl;
int var2;

#pragma remvar (varl)
float varl;
int main () {
fpragma remvar (var?2)
float var2;

}
In the example below, keyword int is removed from the system and later used as a variable identifier.

#pragma remkey (int)
float int;
int = 10;

The expression expr in the directive #pragma exec expr is evaluated when a program is parsed.
It may contain generic functions, but not functions located in function files. For example, assume the home
directory obtained by the generic function getenv () is /home /myname, the directive below

#pragma exec _fpath=stradd(_fpath, getenv ("HOME"), "/chfunc;");

adds the directory /home /myname/chfunc in the system variable fpath for function files at both pars-
ing and runtime. As another example, the CPU time in the unit of seconds for parsing a header file and code
in a block can be obtained calling the generic function clock() at the parsing time as follows.

#include <time.h>

#pragma exec clock();

#include <headerfiles.h>

/* other code «*/

#pragma exec printf ("CPU: %f\n", (double)clock()/CLOCKS_PER_SEC);

The pack in the directive specifies packing alignment for structure, union, and class members. Either
one of the following statements

#pragma pack ()
#pragma pack (pop)

sets the alignment automatically. Either one of the following statements

#pragma pack (push, n)
#pragma pack (n)

specifies the value, in bytes, to be used for packing. Valid values are 1, 2, 4, 8, and 16. The alignment
of a member will be on a boundary that is either a multiple of n or a multiple of the size of the member,
whichever is smaller.

95

5.10. PREDEFINED MACROS CHAPTER 5. PREPROCESSING DIRECTIVES

Table 5.3: Macros defined in both C and Ch.

Macro name Description

__LINE__ The line number of the current source program line which is expressed as a decimal
integral constant,

_FILE__ The name of the current source file which is expressed as a string constant.

_DATE__ The calendar date of the translation which is expressed as a string constant form
"Mmm dd yyyy".Mmm is as produced by asctime().

_TIME__ The current time which is expressed as a string constant of the form "hh:mm:ss", as
returned by asctime().

__STDC__ The decimal constant 1.

__STDC_VERSION__ The decimal constant 199901L.

Table 5.4: Macros defined in Ch.

Macro name Description
CH The decimal constant 1.
CHDLL. The decimal constant 1 if dynamic link libraries are supported. Otherwise, not defined.

GLOBALDEF The decimal constant 1 when defined macros are in program scope. Undefine it when
defined macros in a program, dot files, and function files are unrelated to each other.
By default, it is defined as 1.

M64._ The decimal constant 1, defined only for 64-bit machines.

SCH The decimal constant 1, when Ch is invoked as safe shell. Otherwise, it is not defined.
I The mathematical constant for the imaginary number of <.

M_PI The mathematical constant for the value of 7 (3.1415926...).

M_E The mathematical constant for the value of e (2.71828...).

FILE The file type for FILE, the same as FILE in the header file math.h.

5.10 Predefined Macros

The macro names predefined in both C and Ch are listed in Table[5.3] the macro names predefined only in Ch
are listed in Table[5.4] and the platform-independent macro are listed in Table[3.3l The platform-independent
macros _HPUX_, _LINUX_, _LINUXPPC_, _SOLARIS_, _WIN32_, _DARWIN_ , _FREEBSD,
QONX,_ATIX_ are defined primarily for use in start-up and header files. The user shall avoid using them
in portable Ch application programs.

96

5.10. PREDEFINED MACROS CHAPTER 5. PREPROCESSING DIRECTIVES

Table 5.5: Platform-dependent macros defined in Ch.

Macro name Description
__ppc_- The decimal constant 1, when PowerPC in Mac OS X in Darwin is used.
Otherwise, it is not defined.
__1386__ The decimal constant 1 for Intel x86 32 bit machine. Otherwise, it is not defined.
__xX86_x64__ The decimal constant 1 for Intel x86 64 bit machine. Otherwise, it is not defined.
_BIG_ENDIAN__ The decimal constant 1, when the big endian machine in Mac OS X in Darwin

or Sparc in Solaris is used. Otherwise, it is not defined.
LITTLEENDIAN The decimal constant 1, when the little endian machine in QNX
is used. Otherwise, it is not defined.

ATX_ The decimal constant 1, when AIX is used. Otherwise, it is not defined.
DARWIN The decimal constant 1, when Mac OS X in Darwin is used.
Otherwise, it is not defined.
FREEBSD The decimal constant 1, when FreeBSD OS is used. Otherwise, it is not defined.
HPUX The decimal constant 1, when HP-UX OS is used. Otherwise, it is not defined.
LINUX The decimal constant 1, when Linux OS is used. Otherwise, it is not defined.
LINUXPPC The decimal constant 1, when Linux OS for PowerPC is used. Otherwise, it is not defined.
ONX The decimal constant 1, when QNX OS is used. Otherwise, it is not defined.
SOLARIS The decimal constant 1, when Solaris OS is used. Otherwise, it is not defined.
WIN32 The decimal constant 1, when Windows OS is used. Otherwise, it is not defined.
X86 The decimal constant 1, when Intel x86 processor is used in Windows and Mac OS X x86. Otherw

For some programs in Solaris, the macro ___STDC___may need to be redefined with value O by

#define _ STDC___ 0

97

Chapter 6

Types and Declarations

Ch is a loosely typed language with a rich set of data types. Unlike languages such as Pascal which pro-
hibits automatic type conversion, one data type in Ch can be automatically converted to another data type
if it makes sense in context. The meaning of a value stored in an object or returned by a function is deter-
mined by the type of the expression used to access it. An identifier declared to be an object is the simplest
expression; the type is specified in the declaration of the identifier. Types are partitioned into object types
that describe objects, function types that describe functions, and incomplete types that describe objects but
lack the information needed to determine their sizes. The format of a value stored in computer memory
depends on the machine architecture in use. How identifiers of different types are declared, and their values
internally represented in a computer system for manipulation inside Ch, will be illustrated in this chapter.
The discussion is based on the architecture of the RISC processor for SUN Sparc workstations.

6.1 Data Types

6.1.1 Integral Data Types

Integer is a basic data type for any computer language. An integer in Ch can be represented in one of below
data types

char

signed char
unsigned char
short

signed short
unsigned short
int

signed int
unsigned int
long

long int

signed long
signed long int
unsigned long
unsigned long int
long long

long long int

98

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

signed long long
signed long long int
unsigned long long
unsigned long long int

Numerical manipulations of char and int data in Ch follow the rules defined in C.

Char Data Representation

The char data are used to store characters such as letters and punctuation. An array of char can be used to
store a string. A character is actually stored as an integer according to a certain numerical code such as the
ASCII code. Under this code, certain integers represent certain characters. The standard ASCII code ranges
from O to 127, which need only 7 bits to represent. In Ch, the char variable is a signed integer ranging from
CHAR_MIN to CHAR_MAX. The macros CHAR_MIN and CHAR_MAX, defined in the C standard header
limits.h, are system constants in Ch. Typically, a char constant or variable occupies 1-byte of unit memory.
Bit 8 is a sign bit. The maximum positive integer for a signed 1-byte representation is 127 or 01111111
in the binary form. A negative number is stored as the binary complement form. To generate the two’s
complement of a number, all the binary bits (8 bits for a char) are inverted and the result is incremented by
one. For example, the decimal value 2 is represented in binary with 8 bit char integer as 00000010. The
decimal value of —2 is represented by the binary value of 11111110 in a 1-byte two’s complement form as
follows.

(—=2)1p = complement(00000010)2 + (1)2
— (11111101)5 + (1)s
— (11111110),

where the subscripts 2 and 10 indicate the base of the associated number. The minimum integer values for a
signed char is —128 or 10000000 in the binary form. The range of integers for a char is thus —128 to +127.

Unsigned Char Data Representation

In Ch, the unsigned char variable is equivalent to an unsigned int ranging from 0 to UCHAR_MAX. The
macro UCHAR_MAX defined in the C standard header limits.h, is a system constant in Ch. Typically, an un-
signed char variable occupies 1-byte unit memory without the sign bit, so that the parameter UCHAR_MAX
is 255 or 11111111 in the binary form.

Short Data Representation

The short variable ranges from SHRT_MIN to SHRT_MAX. The macros SHRT_MIN and SHRT_MAX
defined in the C standard header limits.h, are system constants in Ch. A short data uses 2 bytes (16 bits)
for storage with 1 bit for the sign in Ch. Negative numbers are stored in 2-byte two’s complement form.
Therefore, the parameters SHRT_MIN and SHRT_MAX are —32768(2%°) and 3276721 - 1), respectively.

Unsigned Short Data Representation

The unsigned short variable ranges from 0 to USHRT_-MAX. The macro USHRT_MAX defined in the C
standard header limits.h, is a system constant in Ch. An unsigned short variable occupies 2-byte unit
memory without the sign bit in Ch, so that the parameter USHRT_MAX is 65535(2'6-1).

99

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

Int Data Representation

An int data is a signed integer in Ch. An int number is a whole number that can be negative, positive, or
zero. The int ranges from INT_MIN to INT_-MAX. The macros INT_MIN and INT_-MAX, defined in the
C standard header limits.h, are precalculated system constants in Ch. Unlike some C implementations, in
which an int data may occupy only 2 bytes, an int data uses 4 bytes (32 bits) for storage with 1 bit for the
sign in Ch. Negative numbers are stored in 4-byte two’s complement form. The values of INT_MIN and
INT_MAX then become —2147483648 (23!) and 2147483647, respectively. For example, the following
statements are valid in Ch.

> char c[2][3], =*cptr;

> int i, xiptr;

> c[0][1] = "a’"; // c[0][1] becomes ’"a’

a

> 1 = c[0] [11; // 1 becomes 97, ASCII number for ’a’
97

> c[1]1[2] = i+1 // c[11[2] becomes ‘b’, ASCII number for ‘b’ is 98
b

> 1 4= c[1]1[2]; // 1 becomes 195 = 97 + 98

195

> iptr = &i; // iptr points to address of i
4005ec50

> xiptr /= 2; // i becomes 97 = 195/2

97

>

Note that arrays in Ch can be declared and accessed by c[1] [j]. White spaces and tab characters, such
as the ones in the statement 1 = c[0] [117, will be ignored in the Ch program, except when they are
characters within a string such as "ab cd".

Unsigned Int Data Representation

The unsigned int variable ranges from 0 to UINT_MAX. The macro UINT_MAX defined in the C standard
header limits.h, is a system constant in Ch. An unsigned int variable occupies 4-byte unit memory without
the sign bit in Ch, so that the parameter UINT_MAX is 4294967295 (232 - 1).

Long Data Representation

In Ch, data of long and long int have the same representation as that in C. For example, in 32-bit machine,
long is typically the same as int. For 64-bit machines, long is the same as long long in Linux 64-bit and the
same as int in Windows 64-bit.

Long Long Data Representation

In Ch, data of long long and unsigned long long integral types contain 64 bits. They have the similar
representation as the data types of int and unsigned int. For example,

> long long 1
> 1 = 10LL
> printf ("1l = $11d", 1);

100

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

1 =10

> sizeof (1)

8

> scanf ("$11d", &1);

11

> printf ("1l = $11d4d", 1);
1 =11

>

> unsigned long long ul
> ul = 10ULL

> printf ("ul = %$11u", ul);
ul = 10

>

6.1.2 Floating-Point Types

The integer data type serves well for some software development projects, especially for system program-
ming. However, for scientific computing, floating-point numbers are used extensively. Floating-point num-
bers correspond to real numbers that include the numbers between integers. These numbers are defined in
Ch as float or double, which are equivalent to real and double precision in Fortran, respectively. Floating-
point numbers are analogous to the representations of numbers in scientific notion. Floating-point arithmetic
is complicated, compared with the integer arithmetic.

The most common implementation of floating-point arithmetic is based upon the IEEE 754 standard. In
this standard, a float or double is represented in the form of

(_1)sign2e:cponent—biasl.f (6.1)

where 1.f is the significand. The 1 is implicit and f represents the fractional bits of the normalised number.
This normalized floating-point number contains a “hidden” bit ‘1°. Therefore, this representation has one
more bit of precision than would otherwise be the case.

Float Data Representation
The float data type uses 32 bits for its storage. The result of a float data is formulated as
(_ 1)sign2exp(ment—1271'f (62)

Bit 31 is a sign bit; it is 1 for negative numbers. Bits 23 to 30 are the exponent bits. The exponent is offset by
127 to allow a range of numbers spanning 1. Cases when all the exponent bits are 0’s and all the exponent bits
are 1’s are reserved for the metanumbers Inf, —Inf, NaN shown in Table[6.1] Bits O to 22 define the fractional
component of the significand. The leading integer of the normalised significand is always 1 so doesn’t
need to be stored. In binary fractions, the most significant bit represents 0.5, the next bits representing
0.25, 0.125, etc. Table shows the hexadecimal representation of some float numbers. For example,
according to Equation (6.2)), float numbers 1.0 and —2.0 can be obtained by (—1)°2!27-1271.0 = 1.0 and
(—1)12128=1271 0 = 2.0, respectively. Remember that the fraction of the normalized significand is stored
in a binary fraction. The float number 3.0 can be calculated by (—1)°2!2-127(1.1); = 2 (1.1); =
2% (1.5)19 = (3.0)10 where subscripts indicate the base of the floating-point number. Note that the IEEE
754 standard distinguishes +0.0 from —0.0 for floating-point numbers.

The macro FLT_MAX, defined as the maximum representable finite floating-point number in the float
data type in the C standard header float.h, is a precalculated system constant in Ch. If a number is greater

101

6.1. DATA TYPES

CHAPTER 6. TYPES AND DECLARATIONS

Table 6.1: Hexadecimal representations of selected real numbers

value float double

0.0 | 00000000 | OO0O0000000000000

—0.0 | 80000000 | 8000000000000000

1.0 | 3F800000 | 3FF0000000000000

—1.0 | BFS00000 | BFF0O000000000000

2.0 | 40000000 | 4000000000000000

—2.0 | cO000000 | CO0O0000000000000

3.0 | 40400000 | 4080000000000000

—3.0 | C0400000 | CO80000000000000

Inf | 7800000 | 7FF0000000000000

—Inf | FF800000 | FFF0000000000000

NaN | 7FFFFFFF | 7FFFFFFFFEFFFFFFE
FLT_MAX | 7F7FFFFF

DBL_MAX TFEFFFFFFFFFEFFEFFE
FLT_MIN | O07FFFFF

DBL_MIN OOOFFFFFFFFFEFFFF
FLT_MINIMUM | 00000001

DBL_MINIMUM 0000000000000001

than FLT_MAX, it is called an overflow. Any number greater than FLT_MAX has all 8 exponent bits set to
1’s. This shall be represented by the metanumber Inf, which corresponds to the mathematical infinity symbol
oo. This is the result of many operations such as division of a finite number by zero although an inexact
exception may be raised in an IEEE machine. Any number less than —FLT_MAX shall be represented by
the metanumber —Inf which corresponds to the mathematical negative infinity symbol —oo.

The value of the parameter FLT_MIN is defined in the C standard library header float.h as a minimum
normalized positive floating-point float number. If a number is less than FLT_MIN, it is called an underflow.
The IEEE 754 standard provides a gradual underflow. When a number is too small for a normalized rep-
resentation, leading zeros are placed in the significand to produce a denormalized representation. A denor-
malized number is a nonzero number that is not normalized and whose exponent is the minimum exponent
for the storage type. The maximum representable positive denormalized float is defined as FLT_ MINIMUM
in Ch as shown in Table There is only one unit in the last place for FLT_MINIMUM so that it is com-
monly referred to as ulp. Almost all floating-point implementations substitute the value zero for a value
that is smaller than FLT_MINIMUM for IEEE machines, and FLT_MIN for non-IEEE machines. However,
in the arithmetic operations and mathematical functions defined in Ch, there is a qualitative difference be-
tween FLT_MINIMUM which is smaller than FLT_MIN and zero. In this documentation, by the value of 0.0
means that it is a zero, not a small number. The Ch expressions of 0., 0.00, and .0 are the same as 0.0. In the
same token, the following Ch floating-point constant expressions —0.0, —0., —0.00, and —.0 are equivalent.
Mathematically, divisions of zero by zero of 0.0/0.0 and infinity by infinity of co /oo are indeterminate. The
results of these operations are represented by the symbol of NaN, which stands for Not-a-Number. It should
be mentioned that the IEEE 754 standard distinguishes guiet NaN from signaling NaN. The signaling NaN
should generate a signal or raise an exception. In Ch, all NaNs are treated as quiet NaNs. Furthermore, the
IEEE 754 standard does not interpret the sign of NaN. No —NaN will be produced as a result of arithmetic
and functions in Ch although it can be created by manipulating the bit pattern of the memory location of
a float variable. The expression —NaN is interpreted as NaN in Ch. The metanumbers are treated just as

102

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

regular floating-point numbers. The internal hexadecimal representations of the metanumbers for the float
type are also given in Table

Double Data Representation

For a large range of representable floating-point numbers, a double data can be used in Ch. The double data
type uses 64 bits as its storage. The result of the double data is formulated as

(_1)sign26xponent—10231'f (6.3)

Bit 63 is a sign bit; it is 1 if the number is negative. Eleven-bit exponent of bits 52 to 62 are biased by
1023; values of all zeros and all ones are reserved for metanumbers. Bits O to 51 are fractional components
of normalized significand. Like float, the integral value 1 of the normalized significand is hidden. The
hexadecimal representation of some typical double numbers are also given in Table Note that the
width and bias value of the exponent of double is different from those of float. Therefore, a float cannot
be converted into a double just by padding zeros in its fraction. On the other hand, when a double data is
cast into a float, the result cannot be obtained just by ignoring the values in bits O to 31. Note that there
is no external distinction between float Inf and double Inf, although their internal representations differ.
This is also true for metanumbers —Inf and NaN. Similar to float, parameters DBL_MAX, DBL_MIN,
and DBL_MINIMUM are system constants in Ch. The internal memory representations of these special
finite double floating-point numbers are also given in Table Note that due to the finite precision of the
floating-point number representation, the exact values of irrational numbers such as 7 are not representable
in a computer system whether they are represented in float or double.

6.1.3 Aggregate Floating-Point Types

The complex number, an extension of real number, has wide applications in science and engineering. The
variables of complex type can be declared by two type specifiers, complex and double complex.
After the declaration, the complex number can be created in Ch by the complex constructor complex(x, y),
where x is its real part and y is its imaginary part. For example,

> complex z1; // a double complex variable
> double complex z; // a double complex variable
> float complex z2; // a float complex variable
> z1 = complex(1l, 2); // z1 becomes 1 + i2

complex (1.00,2.00)
>

One can declare not only a simple complex variable, but also a pointer to complex, array of complex,
and array of pointer to complex, etc. Declarations of these complex variables are similar to the declarations
of other data types. For example,

> complex xzptrl;

> complex z2[2], z3[2]1[3]1; // declared as pointer to complex variable
> complex xzptr[2][4]; // array of pointer to complex

> zptrl = &z1; // zptrl point to the address of zl
4005e748

> *zptrl = complex (2, 3); // zl1 becomes 2 + i3
complex (2.00,3.00)
> z1

103

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

complex (2.00,3.00)
>

Chapter [13| describes details of complex numbers, including input/output operations, data conversion
rules, functions, etc.

6.1.4 Pointer Data Types

Pointer is defined as a variable which contains the address of another variable or dynamically allocated
memory. Ch uses pointers explicitly for arrays, structures, functions, classes and simple data types. With
operator ’*’ in front of the variable names, the variables of pointer type can be declared similar to variables
of other data types. The unary operator ’&’ gives the “address of a variable”. For example, the code below

int i, *pl, *xp2;
pl = &i;
p2 = &pl;

declares two pointers pl and p2. pl stores the address of the integer i, and p2 stores the address of
pl. More information about pointers can be found in Chapter Ol In addition to pointer to simple data
types, pointer to arrays and functions are also available in Ch. More information about pointer to arrays and
functions can be found in Chapter 14l and section respectively.

6.1.5 Array Types

The number of dimensions in an array is called the rank of the array. The number of elements in a dimension
is called the extent of the array in that dimension. The shape of an array is a vector where each element of
the vector is the extent in the corresponding dimension.

Computational array in Ch is a first-class object. The type qualifier array for computational arrays,
available in Ch Professional and Student Editions, is defined as a macro in the header file array.h. The
declaration of an array is shown below.

#include <array.h>

int al[3]1[4]; // array of integer
int %a2[311[471; // array of pointer
array int a3[3]1[4]; // computational array

where al is declared as an array of integer, a2 is an array of pointer to integer, and a3 is a computational
array. Type qualifier array in the declaration will make a3 a computational array, which can be treated as
a first-class object for linear algebra and matrix computation. Arrays of variable length including deferred-
shape arrays, assumed-shape arrays, pointer to assumed-shape arrays, and arrays of reference are supported.
The following example will clarify the concepts of these various array definitions.

void funct (int al[:][:], (*b)[:1, c[], d[&], n, m){
/+ a: assumed-shape array =/
/* b: pointer to array of assumed-shape =/
/* c: incomplete array completed by function call =/
/* d: array of reference =/
/* n, m: integers =/

int e[4]1[5]; // fixed-length array

int f£[n] [m]; // deferred-shape array

104

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

int (*g)[:]1; // pointer to array of assumed-shape

extern int h[]; // incomplete array completed by external linkage
int 1] = {1,2}; // incomplete array completed by initialization
fr1112] = al2](3];

}

int A[3][4], B[5][6], C[3], D[4];
funct (A, B, C, D, 10, 20);

funct (B, A, C, D, 85, 85);

The argument a is declared as an assumed-shape array to which the arrays with different extents can be
passed, the argument b is declared as a pointer to array of assumed-shape, c is declared as an incomplete
array which will be completed by the function call, d is an array of reference which can handle arrays of
different data types.
In the for-loop below, when the array a with different sizes is redeclared, its memory will be reallocated

by function realloc() internally.

int ij;

for (1 = 0; 1<10; i++) {

int afli]l;

}

The range of subscripts for an index of an array can be adjusted. For example,

int a[l1:10], b[-5:5], c[0:10]([1:10], dA[10][1:10];

int e[n:m], f£f[nl:ml][1:m2];

extern int af[l:], b[-5:], c[0:][1:10];

int funct (int afll:], int b[1:10], int c[1:][3], int d[1:10]1[0:2071);
al[l0] = a[ll+2; /* OK =/

al[0] = 90; /* Error: index out of range =*/

where the subscript of a ranges from 1 to 10; b from -5 to 5; the first dimension of ¢ ranges from O to 10,
the second from 1 to 10; the first dimension of d from 0 to 9 and the second from 1 to 10.
Arrays of different shape and data type can be passed to arrays of reference. For example,

float al[3]1[4];

double b[5][6];

void func (double al[&][&]);
func (a);

func (b) ;

where the argument a of the function func is declared as an array of reference, so that arrays with different
extents and data types can be passed to it.
Members of struct/union can be pointers to assumed-shape arrays. For example,

int af[4]1[5], b[7][8];
struct tag_t {

int n;

int (*A)[:];
}osi
s.A = a; /* s.A[i][3j] == alill[j] =/
s.A =Db; /x s.A[1]1[]J] == b[1i1[]] =/

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

where the member A of struct s is declared as a pointer to assumed-shape arrays to which the arrays with
different extents can be assigned.

More information about the relation between pointer and array can be found in Chapter [14] and infor-
mation about computational arrays can be found in section and Chapter 16

6.1.6 Structure Types

The structure types in Ch are similar to those in C++. They are collections of members that can have different
types. For example,

struct tag_t {
data_typel fieldl;
data_type2 field2;

} namel;

tag_t name2, xname3;

struct tag_t name4;

name3 = &name?2;

where the struct with the tag name of tag_t has two members, fieldl and field2. Three objects of
struct tag_t, namel, name?2 and name4, are declared by three different ways. name1 is declared directly
after the definition of the struct, name?2 is declared only by the tag name, while the name4 is declared with
the optional keyword struct. The variable name 3 is declared as a pointer to struct, and is assigned the
address of name?2.

There are two namespaces for struct in C, one for struct tags and one for member variables. But there
are one and a half namespaces for struct in C++, one for struct tags and an half for member variables. Struct
in Ch are handled the same as those in C++, and tag is implicitly treated as a typedefed name in Ch. Struct
tags and struct variables in Ch share the same namespace. Once a tag name is used as a variable explicitly,
this implication will be disabled. For example,

struct tagl_t{
struct tag2_t {

i

i

tagl_t s; /* OK x/

int tagl_t; /* OK, tag name is used x/
struct tagl_t s2; /* OK %/

tagl_t s3; /* Not valid in Ch and C++ x/

Like C++, members of a structure in Ch can be functions. More information about structures can be found
in Chapter[18]

6.1.7 Class Types

Classes in Ch or C++ are a natural evolution of the structure. Like C++, both class and struct in Ch can have
members of functions. By default, members of a class are private whereas members of a struct are public.
The following is an example of the definition of class.

106

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

class Student {
int id;
char xname;
public:
void setName (char =n);

volid Student::setName (char xn) {

}

The class Student has three members, two private members id and name, and a public member function
setName (). Assume id holds the ID number of a student, name is the name of the student and the
function setName () is used to set a student name. After defining a class, it can be used in a program
shown below.

int main () {
class Student s1;
sl.setName ("Bob") ;

}

where s1 is called an object or an instance of class Student. More information about class types can be
found in Chapter

6.1.8 Bit Field

Like C, Ch offers the bit-field which has the capability of defining and accessing within a word directly. In
the following code fragment,

struct tag{
data_typel a:4;
data_type2 b:4;
} namel {1,1};
struct tag name2 = {1,1};
name2.a = 2;

two members of tag, a and b, only take 8 bits of memory, 4 bits for each. More information about bit field
can be found in Chapter 18]

6.1.9 Union Types

A union type describes an overlapping non-empty set of member objects. a union can only hold one of its
members at a time. The members are conceptually overlaid in the same memory. Each member of a union is
located at the beginning of the union. For example, the code below shows how a union type can be defined.

union tag{
data_typel fieldsl;
data_type2 fields2;
} namel;
tag name2, xname3;

107

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

union tag name4;
name3 = &name?2;

The members fieldsl and fields2 share the same memory. Only one member can be used at a time.
Like C++, tag is put into typedefed namespace by default. More information about union types can be found
in Chapter[18]

6.1.10 Enum Types

An enumerated type is a set of integer values represented by enumeration constants. For example, the code
below

enum tag_t{bad, good=1l, ugly} x;
enum tag_t vy;
X = good;

y = %

defines a new enumerated type indicated by the tag name tag_t. The variables of tag_t, such as x and y,
can be assigned three enumeration constants bad, good and ugly. More information about enum types
can be found in Chapter [T8]

6.1.11 Void Type

The void type is used mainly for pointers to void, void argument lists and void return values of functions.
A pointer can be pointed to the type of void. Any pointer of other types may be assigned to and from
pointers to void, and may be compared with them. Furthermore, the pointer to any object can be converted
to type of void without loss of information. But, in order to access the object pointed to by the original
pointer properly, the converted pointer has to be converted back to the original pointer type.
The keyword void, which appears in front of the function name when it is defined, indicates that the
function has no return value. For example, the function funct1 () defined below has no return value.

void functl (int 1) {int 1i; ...; }; /* no return value */

The keyword void which appears in the argument list of a function indicates that the function has no
argument. For example, the function funct2 () defined below has no argument.

int funct2(void) {int 1i; ...; return i;} /* no argument =/

6.1.12 Reference Type

In Ch, a reference declared with symbol ‘&’ is an alternative name for an object just as in C++. They have
the same syntax. For example, the declarations shown below

int i
int & = 1
i =15

vV 00V 01V V V

108

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

indicate that variable 7 is a reference of i. They share the same memory space inside the system and,
therefore, can be used interchangeably. Any change to the value of i will affect the value of j. Not only
reference for simple data types, including char, short, int, float, double, as well as data types qualified
by signed, unsigned, long, and complex can be declared in Ch, but also reference for pointer type can be
declared.

Although arguments are passed by the way of call-by-value to functions in Ch by default, they can be
passed by call-by-reference by using the symbol ‘&’. For example, in the prototype of function swap shown
below

void swap(int &n, int &m); /x the same as in C++ x/

arguments n and m are declared as references to int. This means that any change to n and m inside the called
function swap () will affect their original values in the calling function. More information about reference
types can be found in Chapter [11

6.1.13 String Type

String is a first class object in Ch with type specifier string_t. An argument of pointer to char in a
function can be replaced by an argument of string. String or array of chars, instead of pointer to char, should
be used for safe network computing. The memory allocation and deallocation variables of string type are
handled by Ch automatically.

string_t sl, s2, s, al3];

sl = "Hello, ";

s2 = "world!";

s = s82;

int i = strlen(sl);

strcat (sl,s2); /* sl becomes "Hello, world!" =/

strcpy(al[0],sl); /* a[0] becomes "Hello, world!" =/
String of reference is supported in Ch as shown in the program below.

string_t stringcat(string_ t &sl, s2)
{

string_t s;

s = strcat(sl, s2);
/* s = stradd(sl, s2); */
sl = s;

return sl;

}

string_t sl = "stringl", s2 = "string2";

stringcat (sl, s2);

printf ("%$s\n", sl); // print out stringl and string?2

Function stringcat () adds string s2 to the end of string s1. It is equivalent to the standard function
strcat() in C.
Pointer to string can also be declared as shown in the code below.

string t stringcat2(string_t =xsl, s2) {
*sl = strcat (xsl, s2);
return =*sl;

109

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

}

string t sl = "stringl", s2 = "string2";
stringcat2(&sl, s2);

printf ("$s\n", sl); // print out stringl and string?2

Function stringcat2 () is similar to function stringcat ().
The string type can be used to obtain a string with space through the input function scanf() as shown
below.

> string_t str;

> scanf ("%s", &str);
abcd 1234

> str

abcd 1234

The relational operators ==, !=, <, and > can be used for comparison of two strings with one of
two operands is the built-in string type string_t, the other operand can be string_t, string literal “someting”,
pointer to char, pointer to unsigned char. If the contents of the two strings are the same, the operation ==
gives 1 and the operation ! = gives 0. Otherwise, the operation == gives 0 and the operation != gives 1.

The results of > and < are similar to 1 and —1 from the function stremp(). The operations > and <
compares two strings byte-by-byte, according to the ordering of your machine’s character set. The operation
s1>s2 gives 1 if the string sl is greater than the string s2 between the values of the first pair of bytes that
differ in the strings being compared. Otherwise, it gives 0. The operation s1<s2 gives 1 if the string s1 is
less than the string s2 between the values of the first pair of bytes that differ in the strings being compared.
Otherwise, it gives 0.

The operator '+’ is overloaded for adding two strings of operands as a single string. Two operants need
to be type string_t or string literal. For example,

> string_t s

> s = "abc" + "123"
> s

"abcl23"

> s = s + "ABC"

> s

"abcl23ABC"

An expression can be cast into a string by string_t(expression). For example,

> double d = 12.34

> string_t s

> s = "abc" + string_t (d+2);
> s

abcl4 .34

6.1.14 Function Types

Regular functions in Ch follow the C standard. In the spirit of C, the function definition with nested functions
in Ch takes the following forms

return_type function_name (argument declaration)

110

6.1. DATA TYPES CHAPTER 6. TYPES AND DECLARATIONS

statements
function_definitions

or

return_type function_name (argument declaration)

{
function definitions
statements

}

where statements can be any valid Ch statements and local functions can be defined inside other local
functions. There is no restriction on the number of function nesting in Ch. For example,

int funcl () {

int func2 () {
int func3() { ...}
}
/*x .. %/
func2 () ;

}

The definition of a local function can be placed anywhere inside a function. If a local function is invoked
prior to its definition, a local function prototype shall be used as shown in Program [6.11

void functl ()
{
_ _declspec(local) float funct2(); // local function prototype
funct2 () ;
float funct2 () // definition of the local function,
{

return 9;

Program 6.1: Declaration _.declspec (local) qualifies funct2 () as alocal function.

In Program[6.1], because the function funct2 () is used before it is defined, a function prototype is needed.
Since it is a local function, the type qualifier __declspec (local) is used to distinguish a local function
from the top level regular C functions.

In a function definition, parameters in the argument list can be ignored if they are not used inside func-
tions. For example,

int func(int i, int /% not_used x/, int /* no_used */) {
return i*i;

}
func (10, 20, 30);

111

6.2. TYPE QUALIFIERS CHAPTER 6. TYPES AND DECLARATIONS

Table 6.2: Type qualifiers.

Qualifier Function
array computational array

const (ignored for now, will be fixed later)
inline (ignored)

operator (reserved for possible operator overloading)

restrict restricted function, ignored if appears inside argument lists
virtual (ignored for now, reserved for virtual function in C++)
volatile (ignored)

6.2 Type Qualifiers

Type qualifiers in Ch are listed in Table The type qualifiers array and restrict are used for
computational arrays and restricted functions, respectively.

6.2.1 Computational Arrays

An array qualified by type qualifier array is called a computational array, available in Ch Professional
and Student Editions. This type qualifier is defined as a macro in the header file array.h. A computational
array is treated as a first-class object. For example,

array float a[10][10], b[10][10];
a += b+inverse (a)xtranspose(a);

fora = a + b+ a~! * a”. Computational arrays can be arguments of a function. A regular complete
C array can be passed to an argument of a computational array, and vise versa. More information about
computational arrays can be found in Chapter [16

6.2.2 Restricted Function

In Ch, if type qualifier restrict appears in a function definition or before the declaration for the return
type, the function is treated as a restricted function. For the sake of security, restricted functions cannot be
called by Safe Ch programs. For example, the wuser can declare a restricted function
restricted_function () as follows to prevent it from execution in Safe Ch.

restrict int restricted_function(int 1);

Some functions, such as fopen(), in the C Standard library are defined as restricted functions in Ch. If the
type qualifier restrict appears in the argument lists of functions, it is ignored. More information about
Safe Ch can be found in Chapter 211

6.3 Constants

In this section, we will describe the external representations of data types discussed in the previous sec-
tion. Besides declared variables and system defined parameters, different data types in Ch can have their
corresponding constants at the programmer’s disposal. The constants in Ch include four different kinds:
characters, strings, integers, and floating-point numbers.

112

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

6.3.1 Character Constants

A character constant, stored as an integer, can be written as one character within a pair of single quotes like
" x' . A character constant can be assigned to the variable of type char. For example,

> char ¢ = ’"x’
> C
X
>

Character constants containing more than a single character or escape character are called multibyte
characters. Ch also allows the wide character constant which is preceded by the letter L. The apostrophe,
backslash, and some characters that might not be easily readable in the source program, such as newline
characters shall be included in character constants by using escape characters described later. More infor-
mation about characters can be found in Chapter [171

Wide Characters and Multibyte Characters

Ch can handle extended character sets which include locale-specific characters. These characters are always
too large to be represented within a single object of type char whose size is a byte. To accommodate these
characters, Ch supports both wide characters and multibyte characters. The “wide character” is an internal
representation scheme which makes an extended character code fit in an object of the integral type wchar _t,
which is defined in the header file stddef.h. Strings of extended characters can be represented as objects of
type wchar_t [] or pointers of type wchar_t *. For example, the code below declares a wide character wc in
Ch.

wchar_t wec = L’'a’;

The L before the character a indicates that character a is a wide character. On the other hand, “multibyte
character”, which contains more than a single character or escape, is the external representation scheme
supported by Ch. A multibyte character is a sequence of normal characters which correspond to a wide
character. The maximum number of bytes used in representing a multibyte character in the current locale
is indicated by macro MB_CUR_MAX defined in header file stddef.h. A wide character string can be
represented externally by a multibyte character string. Multibyte characters may appear in comments, string,
and character constants.

A multibyte character set may have a state-dependent encoding, wherein each sequence of multibyte
characters begins in an initial shift state and enters other locale-specific shift states when specific multibyte
characters are encountered in the sequence. While in the initial shift state, all single-byte characters retain
their usual interpretation and do not alter the shift state. The interpretation for subsequent bytes in the
sequence is a function of the current shift state.

Ch also supports the facilities defined in C to implement conversion between multibyte character and
wide character. For example, the function mbtowc() declared in the file stdlib.h converts a multibyte char-
acter to a wide character, and the function wetomb() does it contrarily.

Escape Characters

Some special characters, and particular behaviors of the output device are impossible to be typed in a source
program directly. Ch supports escape characters, which are escape codes beginning with the back slash
character ‘\’, to represent these characters and behaviors. Escape codes could be character escape code
which are characters listed in Table [6.3] and numeric escape code which are up to three octal digits or any
number of hexadecimal digits.

113

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

Typically the character escape code \ a produces a beep from the speaker as the alert. The active position
is the location on a display device where the next character output by the function fpute() or fputwe() would
appear. The intent of writing a printing character (as defined by the isprint() or iswprint() function) to a
display device is to display a graphic representation of that character at the active position and then advance
the active position to the next position on the current line. The code \lb moves the active position to the
previous position on the current line. The code \ £ represents a form feed which moves the active position to
the initial position at the start of the next logical page. The code \n is the most commonly used escape code
which moves the active position to the initial position of the next line, whereas \ r moves the active position
to the initial position of the current line. The codes \t and \ v move the active position to the next horizontal
tabulation position and the next vertical tabulation position, respectively. The code \ \ represents a backslash
which is not the preceding character of an escape code. The single quote appearing in a character constant
might be mistaken as the ending apostrophe of the character constant. If this is the case, the code \’ can be
used to represent a single quote in a character constant. Similarly, the code \ " can represent a double quote
in a string constant, which is described in section The code \ ? can be used to produce a question
mark in the circumstances in which it might be mistaken as part of a trigraph described in section 2.1.1l The
codes shown below shows how the character escapes can be used.

> printf ("abcdefd");

abcdefd

> printf ("abcd\befd"); // backspace
abcefd

> printf ("abcd\tefd"); // horizontal tab
abcd efd

> printf ("abcd\"efd"); // double quote
abcd"efd

> printf ("%c", "\"’"); // single quote

4

> printf("?22!") // trigraph

|

> printf ("?\?!") // question mark
272!

>

The numeric escape codes come in two varieties, octal escape codes and hexadecimal escape codes. An
octal escape code consists of up to 3 octal digits following the backslash character \. For example, under
the ASCII encodings, the character * a’ may be written as * \141"; the null character, used to terminate
strings, can be written as * \0’ . A hexadecimal escape code consists of any number of hexadecimal digits
following characters ' \x’ . For example, the character ’ a’ can be written in hexadecimal escape code as
"\x61".

Each of these escape sequences produces a unique value which can be stored in a single char object.
An octal escape code terminates when the first character that is not an octal digit is encountered or when
three octal digits have been used. Therefore, the string "\1111" represents two characters, \111’ and
717, and the string "\ 182" represents three characters, “\1’,’ 8’ and ’ 2’ . Since a hexadecimal escape
sequences can be of any length and terminated only by a non-hexadecimal character, to stop a hexadecimal
escape in a string, break the string into pieces. For example, the codes * \x61’ and ” a’ are two characters;
however, the hexadecimal escape code ’ \x61a’ contains only one character, rather than two characters of
"a’.

114

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

Table 6.3: Character escape code.

Escape Code

Translation

\a
\b

\f
\n

\r
\t

(alert) Produces an audible or visible alert. The active position shall not be changed.
(backspace) Moves the active position to the previous position on the current line. If the
active position is at the initial position of a line, the behavior is unspecified.

(form feed) Moves the active position to the initial position at the start of the next logical
page.

(new line) Moves the active position to the initial position of the next line.

(carriage return) Moves the active position to the initial position of the current line.
(horizontal tab) Moves the active position to the next horizontal tabulation position on
the current line. If the active position is at or past the last defined horizontal tabulation
position, the behavior is unspecified.

(vertical tab) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical

tabulation position the behavior is unspecified.

(backslash) Produces a backslash character \, the active position is moved to the next.
(single quote) Produces a single quote character , the active position is moved to the
next.

(double quote) Produces a double quote character ", the active position is moved to the
next.

(question mark) Produces a question mark character 2, the active position is moved to
the next.

115

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

6.3.2 String Literals

A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes, as
in "xyz". The same considerations apply to each element of the sequence in a character string literal or a
wide string literal as if it were in an integer character constant or a wide character constant, except that the
single-quote ’ is representable either by itself or by the escape sequence \’, but the double-quote * shall be
represented by the escape sequence \”.

The multibyte character sequences specified by any sequence of adjacent character and wide string literal
tokens are concatenated into a single multibyte character sequence. If any of the tokens are wide string literal
tokens, the resulting multibyte character sequence is treated as a wide string literal; otherwise, it is treated
as a character string literal.

A byte, or code of value zero, is appended to each multibyte character sequence that results from a
string literal or literals. The multibyte character sequence is then used to initialize an array of static storage
duration and length just sufficient to contain the sequence. For character string literals, the array elements
have type char, and are initialized with the individual bytes of the multibyte character sequence. These
arrays of static storage duration are distinct. For example, the pair of adjacent character string literals

" A " " 3 "

produces a single character string literal containing the two characters whose values are ' A’ and ’ 3"
More information about strings can be found in Chapter[17]

Wide Strings

A wide string literal is a sequence of zero or more multibyte characters enclosed in double-quotes and
prefixed by the letter L, such as L"xyz".

For wide string literals, the array elements have type wchar_t, and are initialized with the sequence
of wide characters. A wide character string can be represented externally by a multibyte character string.
Multibyte characters may appear in comments, string and character constants. Like in strings of normal
characters, the single null character, ‘\0’, acts as a terminator in strings of multibyte characters. A byte
with all bits zero shall be interpreted as a null character, it does not occur in the second or subsequent bytes
of a multibyte character. The function mbstowes() converts a multibyte string to a wide-character string, and
the function westombs() does it contrarily. More information about wide strings can be found in Chapter 171

6.3.3 Integer Constants

A decimal integer constant like 12345 is an int. An integer can also be specified in binary, octal or hex-
adecimal instead of decimal. A leading O (zero) on an integer constant indicates an octal integer whereas
a leading Ox or 0X means hexadecimal. Ch and C99 also support binary constants with leading Ob or 0B.
For example, decimal 30 can be written as 036 in octal, 0X1e or Ox1E in hexadecimal, and Ob11110 or
0B11110 in binary. Note that expressions like 029 and 0b211 are illegal, which can be detected by Ch.

The value of 0 in Ch means that it is an integer zero. Unlike real numbers, there is no 0_ in int. Therefore,
the integer value of —0 equals 0 in Ch. The domain [-FLT_-MAX, FLT_MAX] of real numbers is larger
than the domain [-INT_MIN, INT_-MAX] of integer numbers. When a real number smaller than INT_MIN,
including —Inf, is converted to an integer, the result is INT_MIN. For a real number larger than INT_MAX,
including Inf, the converted integral value is INT_MAX. When NaN is assigned to an integral variable, the
system will print a warning message, and the resultant integral value becomes INT_MAX whose memory
map is the same as that of NaN.

116

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

In addition to decimal, octal, hexadecimal integral constants, binary integral constants and binary format
specifier for I/O are supported. A binary constant is started with the prefix Ob or 0B. The format specifier is
%b. For example,

/* Bit-map using binary constants =*/

#include<stdio.h>

int H[] = {
0b0000000000000000000000000000000Q,
0b00000000000000000000000000000000,
0b00011111100000000000011111100000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000O111111111111111111110000000,
0b00000111111111111111111110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00000110000000000000000110000000,
0b00011111100000000000011111100000,
0b0000000000000000000000000000000Q,
0b00000000000000000000000000000000

}

int main () {

int i, size;
int I=0b00000110000000000000000110000000;

size = sizeof (H) /sizeof (int);

for (1=0; i<size; i++) {
printf ("H[%2d] = 0X%8x\n", i, H[i]);
}
/+* H becomes II */
H[10] = I;
H[11] = I;
for (1i=0; 1<22; i++) {
printf ("%$32b\n", H[i]);
}

return 0;

117

6.3. CONSTANTS CHAPTER 6. TYPES AND DECLARATIONS

6.3.4 Floating-Point Constants
Constants of Real Numbers

In K&R C, all floats in expressions are converted into doubles before evaluation. As a result, any operations
involving floating-point operands, even with two float operands, will produce a double result. This is not
applicable to many scientific computations in which speed and memory of a program are critical. Because
of the indiscriminate conversion rules in the early design of C, every floating point constant like 3.5 and
3e7 is taken as double. This default double mode for floating-point constants has been carried over to the C
standard and supported in Ch. All floating-point constants such as 2.4, 2e 4+ 3, —2.F — 3, and +2.1e3 are
double constants by default. However, C has provided a mechanism to specify a float constant. The suffix F
or f indicates a float constant, D or d for double. For example, constants 3.4e3F,3FE — 3 f, and 3e + 3F are
floats whereas constants 3.4e3D,3E — 3d, and 3e 4+ 3D are doubles. However, the constant metanumbers
+Inf, and NaN are always taken as floats unless they are values of double variables. These features are
supported in Ch as well. According to this design, the range of representable floating-point numbers can be
expanded automatically. For example, the values of FLT_MAX and DBL_MAX for SUN SPARCStations
are 3.4e38 and 1.8e308, respectively. The following Ch program

printf ("pow (10.0F, 39) < Inf is %d \n", pow(10.0F, 39) < Inf);
printf ("pow (10.0, 39) < Inf is %d \n", pow(10.0, 39) < Inf);

will print out

pow(10.0F, 39) < Infis O

pow(10.0, 39) < Infis 1

In the first statement of the program, the value of 103° calculated by pow(10.0F, 39) has overflowed as Inf
because it is larger than FLT_'MAX. The value of 103° calculated by pow(10.0, 39) in double data is still
within the representable range of —-DBL_MAX < pow(10.0,39) < DBL_MAX. In the second case, the
metanumber Inf is expanded as a double infinity larger than DBL_MAX.

Hexadecimal Floating-Point Constants

The hexadecimal floating-point constants in C99 are supported in Ch. For example,

> 0X2P3
16.0000

> 0x1.1p0
1.0625

> 0Ox1.1plF
2.12

Constants of Complex Numbers

A complex constant can be formed by the complex number constructor complex(x, vy), where x and y are
real and imaginary parts of the complex number, respectively. If both arguments of function complex() are
float or integer type, the resulting complex number is of float complex. If one or two of arguments is double
type, the resulting complex number is a double complex. For example

complex z = complex(l, 3); // complex (1, 3) 1is float complex
double complex z = complex (1.0, 3);// complex (1.0, 3) is
// double a complex

118

6.4. INITIALIZATION CHAPTER 6. TYPES AND DECLARATIONS

In addition, complex metanumbers ComplexInf and ComplexNaN corresponding to the complex
infinity and the complex Not-a-Number are available in Ch.

Constants of Pointers

The constants 0 and NULL can be assigned to a pointer. In Ch, the constant NULL is a built-in dual purpose
symbol which can be assigned to variables of both integer and pointer types. It is used in place of zero. For
example, the code below

> int i, *p
> p = &1
4005e758

> p = NULL
00000000

>

assign the address of the integer i to the pointer p first, and then assign the constant NULL to it.

6.4 Initialization

The declaration of a variable may be accompanied by an initializer that specifies the value of the variable
should have at the beginning of its lifetime. All rules for initialization in C can be applied to Ch, except that
arrays of more than three dimensions cannot be initialized in Ch.

If an object that has either automatic or static storage duration, which is not initialized explicitly, then:

e if it has pointer type, it is initialized to a null pointer;

e if it has arithmetic type, it is initialized to (positive or unsigned) zero;

e if it is an aggregate, every member is initialized (recursively) according to these rules;

e if it is a union, the first named member is initialized (recursively) according to these rules.

The difference between Ch and C is that if an object that has automatic storage duration not initialized
explicitly, its value is indeterminate in C, whereas Ch will apply the above initialization rules. The initializer
for a scalar shall be a single expression, optionally enclosed in braces. The initial value of the object is that
of the expression (after conversion); the same type constraints and conversions as for simple assignment
apply, taking the type of the scalar to be the unqualified version of its declared type. For example,

> int 1 = 3.0/2
> 1

1

>

The variable i is initialized by the result of the expression 3. 0/2 whose type has been converted from float
to int.

An array of character type may be initialized by a character string literal, optionally enclosed in braces.
Successive characters of the character string literal (including the terminating null character if there is room
or if the array is of unknown size) initialize the elements of the array. Similarly, an array with element
type compatible with wchar_t may be initialized by a wide string literal, optionally enclosed in braces. For
example, the array st r1 with size of 80 bytes is initialized by a string literal "this is a string"

119

6.4. INITIALIZATION CHAPTER 6. TYPES AND DECLARATIONS

> char strl[80] = "this is a string"
> strl

this is a string

>

If an array of unknown size is initialized, its size is determined by the largest indexed element with an
explicit initializer. At the end of its initializer list, the array no longer has incomplete type. For example,

> char str2[] = "this is a string"
> str2

this is a string

>

The size of the array of char as the same as the length of string “this is a string” plus 1, which is
for the terminating null.

The initializer for an object that has aggregate or union type shall be a brace-enclosed list of initializers
for the elements or named members. For example, The variable s 1, which is an object of struct, is initialized
by the brace-enclosed list {1 , 2}. The member s1.ais setto 1, and s2.b to 2.

> struct {int a, b;} sl = {1, 2};
> sl

a =1

.b =2

>

The initialization shall occur in initializer list order, each initializer provided for a particular subobject
overriding any previously listed initializer for the same subobject; all subobjects that are not initialized
explicitly shall be initialized implicitly.

If the aggregate or union contains elements or members that are aggregates or unions, these rules apply
recursively to the subaggregates or contained unions. If the initializer of a subaggregate or contained union
begins with a left brace, the initializers enclosed by that brace and its matching right brace initialize the
elements or members of the subaggregate or the contained union. Otherwise, only enough initializers from
the list are taken to account for the elements or members of the subaggregate or the first member of the
contained union; any remaining initializers are left to initialize the next element or member of the aggregate
of which the current subaggregate or contained union is a part. For example, the declaration

int yI[31[3] = {

(311
{1, 3
{ 2 4 4 4 6 } 14
{ 3, 5

}i
is a definition with a fully bracketed initialization. 1, 3, and 5 initialize the first row of vy, i.e. the array object
vy [0]. Likewise the next two lines initialize y [1] and y [2]. In the declaration below

int y[3]1[3] = {
1, 3, 5, 2, 4, 6, 3, 5, 17
bi
The initializer for y [0] does not begin with a left brace, so three items from the list are used. Likewise the

next three are take successively for y[1] and y [2]. It has the same effect as the previous fully bracketed
initialization. In the following commands

120

6.4. INITIALIZATION CHAPTER 6. TYPES AND DECLARATIONS

> struct {int a[3], b;} s2[] = {{1}, 2}
> s2[0]

.a=100

.b =0

> s2[1]

.a=2200

b =20

>

the declaration is a definition with an inconsistently bracketed initialization. It defines an array with two
element structures, s2[0] .a[0]island s[1].a[0] is 2; all the other elements are zero.

If there are fewer initializers in a brace-enclosed list than there are elements or members of an aggregate,
or fewer characters in a string literal used to initialize an array of known size than there are elements in the
array, the remainder of the aggregate shall be initialized implicitly the same as objects that have static storage
duration.

> struct {int a, b;} s3 = {1}
> s3

.a =1

.b =0

>

The first member is initialized as 1, and the others are initialized implicitly as O.

In Ch, non-constant expressions, generic functions, and functions defined in function files can be used
as initializers for objects of both static and dynamic duration, with one exception. A function defined in a
function file cannot be used as an initializer for static variables the function or block scope as illustrated in
code below. Function hypot () defined in function file hypot . chf cannot be used for initialization of
identifier d1 which is a static variable in the function scope.

#include <math.h>
int main () {

static double d = hypot(3,4); // Error: hypot is not generic function

121

Chapter 7

Operators and Expressions

The operators used in Ch are summarized in Table[Z.Il An operator has higher precedence than operators at
the lower level. Operators at the same level have the same precedence. Operators with the same precedence
will associate the operands according to their associativities. Unary operators, ternary conditional operator
and comma operator are right associative; all others are left associative.

Table 7.1: Precedence and associativity of operators

Operations Associativity

O1] left to right
function_name() right to left
.= left to right
ST 44+ —— 4+ - & (type) right to left
*x/ % .x ./ left to right
+ - left to right
<< >> left to right
<<=>>= left to right
=== left to right
& left to right
- left to right
| left to right
left to right
o left to right
|| left to right
?: right to left
=+=-—=4=/=%=§&= |=<<=>>=| rightto left
left to right

The operation precedence for different operators in Ch is in full compliance with the C standard. The
exclusive-or operator ~ ~, command substitution operator *, array multiplication operator ’ . ’, and array di-
vision operator . /’ are introduced in Ch. Following the C standard, the algorithms and resultant data types
of operations for floating-point numbers will depend on the data types of operands in Ch. The conversion
rules for char, int, float, and double in Ch follow the type conversion rules defined in the C standard. A data

122

CHAPTER 7. OPERATORS AND EXPRESSIONS

Table 7.2: Negation results

Negation —
operand | —Inf —x1 —0.0 0.0 x2 Inf NaN
result Inf x1 0.0 —-00 —x2 —Inf NaN

Table 7.3: Addition results

Addition +

left operand right operand
—Inf —x1 —=0.0 0.0 x2 Inf NaN
Inf NaN Inf Inf Inf Inf Inf NaN
y2 —Inf y2—x1 y2 y2 y2+x2 Inf NaN
0.0 —Inf —x1 0.0 0.0 x2 Inf NaN
—0.0 —Inf —x1 —=0.0 0.0 x2 Inf NaN
-yl —Inf —yl—x1 -yl -yl —yl4x2 Inf NaN
—Inf —Inf —Inf —Inf —Inf —Inf NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

type that occupies less memory can be converted to a data type that occupies more memory space without
loss of any information. For example, a char integer can be cast into int or float without problem. However,
a reverse conversion may result in loss of information. The order of real numbers in Ch ranges from char,
int, float, to double. The char data type is the lowest and double the highest. Like C, the algorithms and
resultant data types of the operations depend on the data types of operands in Ch. For binary operations,
such as addition, subtraction, multiplication, and division, the resultant data type will take the higher order
data type of two operands. For example, the addition of two float numbers will result in a float number
whereas the addition of a float number and a double number will become a double number.

The operation rules for regular real numbers and metanumbers in Ch are presented in Tables to
In Tables[Z.2]to X, x1, and x2 are regular positive normalized floating-point numbers in float or double;
metanumbers 0.0, —0.0, Inf, —Inf, and NaN are constants or the values of float or double variables. By
default, the constant metanumbers are float constants.

Table 7.4: Subtraction results.

Subtraction —
left operand right operand

—Inf —x1 —=0.0 0.0 x2 Inf NaN

Inf Inf Inf Inf Inf Inf NaN NaN

y2 Inf y2+x1 y2 y2 y2—x2 —Inf NaN

0.0 Inf x1 0.0 0.0 —x2 —Inf NaN
—0.0 Inf x1 0.0 —-0.0 —x2 —Inf NaN
-yl Inf —yl+x1 -yl -yl —yl—x2 —Inf NaN
—Inf NaN —Inf —Inf —Inf —Inf —Inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN

123

CHAPTER 7. OPERATORS AND EXPRESSIONS

Table 7.5: Multiplication results

Multiplication
left operand right operand

—Inf —x1 —-0.0 0.0 x2 Inf NaN

Inf —Inf —Inf NaN NaN Inf Inf NaN

y2 —Inf —y2«x1 —0.0 0.0 y2%x2 Inf NaN

0.0 NaN —-0.0 -0.0 0.0 0.0 NaN NaN
—-0.0 NaN 0.0 0.0 -0.0 —0.0 NaN NaN
-yl Inf y1sx1 0.0 —0.0 —ylxx2 —Inf NaN
—Inf Inf Inf NaN NaN —Inf —Inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Table 7.6: Division results

Division /

left operand right operand
—Inf —x1 —=0.0 0.0 x2 Inf NaN
Inf NaN —Inf NaN NaN Inf NaN NaN
y2 —0.0 —y2/x1 —Inf Inf y2/x2 0.0 NaN
0.0 —-0.0 —0.0 NaN NaN 0.0 0.0 NaN
—0.0 0.0 0.0 NaN NaN —0.0 —0.0 NaN
-yl 0.0 yl/x1 Inf —Inf —yl/x2 —-0.0 NaN
—Inf NaN Inf Inf —Inf —Inf NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

124

7.1. ARITHMETIC OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

7.1 Arithmetic Operators

For the negation operation shown in Table the data type of the result is the same as the data type of the
operand, and a real number will change its sign by the negation operation. There is no —NaN in Ch. The
leading plus sign ‘+’°, a unary plus operator, in an expression such as +57864 — x will be ignored. It should
be pointed out that the negation of a positive integer zero is still a positive zero. Based on two’s complement
representation of negative integer numbers discussed before, we cannot represent Inf and NaN in the int data
type.

According to the IEEE 754 standard, some operations depend on the rounding mode. For example, in
case of rounding toward zero, overflow will deliver FLT_MAX rather than Inf with the appropriate sign. This
rounding mode is necessary for Fortran implementation and for machines that lack infinity. If the rounding
mode is rounded toward —oo, both —0.0 4 0.0 and 0.0 — 0.0 deliver —0.0 rather than 0.0. For scientific
programming, consistency and determinacy are essential. Ch is currently implemented using the default
rounding mode of round to nearest so that overflow will result in Inf, and both —0.0 + 0.0 and 0.0 — 0.0
deliver 0.0 as shown in Tables[Z.3]and Note that the modulus operator % in Ch is C compatible.

For addition, subtraction, multiplication, and division operations shown in Tables to the resul-
tant data type will be double if any one of two operands is double; otherwise, the result is a float. The
mathematically indeterminate expressions such as co — oo, 00 * 0.0, 00 /00, and 0.0/0.0 will result in NaNs.
The values of £0.0 play important roles in the multiplication and division operations. For example, a finite
positive value of x2 divided by 0.0 results in a positive infinity 400 whereas division by —0.0 will create a
negative infinity —oo. If any one of the operands of binary arithmetic operations is NaN, the result is NaN.

Element-wise multiplication and division of two computational arrays can be performed using array
multiplication operator ’ . =’ and array division operator ’. /’, respectively. Details about array multiplica-
tion operator *. »’ and array division operator *. /’ for operands of computational array are described in
Chapter

7.2 Relational Operators

For relational operations given in Tables the result is always an integer with a logical value of 1
or 0 corresponding to TRUE or FALSE, which are predefined system constants. According to the IEEE
754 standard, there is a distinction between +0.0 and —0.0 for floating-point numbers. In Ch, the value
of 0.0 means that the value approaches zero from positive numbers along the real line and it is a zero;
the value of —0.0 means that the value approaches zero from negative numbers along the real line and it is
infinitely smaller than 0.0 in many cases. Signed zeros 4-0.0 and —0.0 in a Ch program behave like correctly
signed infinitesimal quantities 04 and O_, respectively. Although there is a distinction between —0.0 and
0.0 for floating-point numbers in many operations, according to the IEEE 754 standard, the comparison shall
ignore the sign of zeros so that —0.0 equals 0.0 in relational operations. Functions such as signbit (x)
and copysign (x,y) can be used to handle signs of expressions. The value of —0.0 could be regarded
different from 0.0 for comparison operations in Ch. For the convenience of porting C code to Ch, zero is
unsigned in comparison operations. The equality for metanumbers has different implications in Ch. Two
identical metanumbers are considered to be equal to each other. As a result, comparing two Infs or two
NaNs will get logical TRUE. This is just for the convenience of programming because, mathematically,
the infinity of co and not-a-number of NaN are undefined values that cannot be compared with each other.
Metanumbers of Inf, —Inf, and NaN in Ch are treated as regular floating-point numbers consistently in
arithmetic, relational, and logical operations.

The relational operators ==, !=, <, and > for comparison of two strings with one of two operands
is the built-in string type string_t are described in section

125

7.2. RELATIONAL OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

Table 7.7: Less than comparison results

Less than comparison <
left operand right operand
—Inf —x1 —-0.0 0.0 X2 Inf NaN
Inf 0 0 0 0 0 0 0
y2 0 0 0 0 y2<x2 1 0
0.0 0 0 0 0 1 1 0
—-0.0 0 0 0 0 1 1 0
-yl 0 —yl < —xl1 1 1 1 1 0
—Inf 0 1 1 1 1 1 0
NaN 0 0 0 0 0 0 0

Table 7.8: Less than or equal comparison results

Less or equal comparison <=
left operand right operand
—Inf —x1 —-0.0 0.0 x2 Inf NaN
Inf 0 0 0 0 0 1 0
y2 0 0 0 0 y2<=x2 1 0
0.0 0 0 1 1 1 1 0
—-0.0 0 0 1 1 1 1 0
-yl 0 -yl <= —xl1 1 1 1 1 0
—Inf 1 1 1 1 1 1 0
NaN 0 0 0 0 0 0 0
Table 7.9: Equal comparison results
Equal comparison ==
left operand right operand

—Inf —x1 —-0.0 0.0 x2 Inf NaN

Inf 0 0 0 0 0 1 0

y2 0 0 0 0 y2=x2 0 0

0.0 0 0 1 1 0 0 0

—-0.0 0 0 1 1 0 0 0

-yl 0 -yl =—x1 0 0 0 0 0

—Inf 1 0 0 0 0 0 0

NaN 0 0 0 0 0 0 0

126

7.2. RELATIONAL OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

Table 7.10: Greater than or equal comparison results

Greater or equal comparison >=
left operand right operand
—Inf —x1 —-0.0 0.0 x2 Inf NaN
Inf 1 1 1 1 1 1 0
y2 1 1 1 I y2>=x2 0 0
0.0 1 1 1 1 0 0 0
—-0.0 1 1 1 1 0 0 0
-yl 1 -yl >= —x1 0 0 0 0 0
—Inf 1 0 0 0 0 0 0
NaN 0 0 0 0 0 0 0

Table 7.11: Greater than comparison results

Greater than comparison >
left operand right operand
—Inf —x1 —-0.0 0.0 X2 Inf NaN

Inf 1 1 1 1 1 0 0
y2 1 1 1 I y2>x2 O 0
0.0 1 1 0 0 0 0 0
—-0.0 1 1 0 0 0 0 0
-yl 1 -yl > —xl1 0 0 0 0 0
—Inf 0 0 0 0 0 0 0
NaN 0 0 0 0 0 0 0

Table 7.12: Not equal comparison results

Not equal comparison !=
left operand right operand
—Inf —x1 —-0.0 0.0 x2 Inf NaN
Inf 1 1 1 1 1 0 1
y2 1 1 1 I y2!l=x2 1 1
0.0 1 1 0 0 1 1 1
-0.0 1 1 0 0 1 1 1
-yl 1 —yl 1= —x1 1 1 1 1 1
—Inf 0 1 1 1 1 1 1
NaN 1 1 1 1 1 1 1

127

7.3. LOGICAL OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

7.3 Logical Operators

In Ch, there are four logical operators !, &&, ||, and =" corresponding to logical operations not,
and, inclusive or, and exclusive or, respectively. The operations of !, ||, && in Ch
comply with the C standard. The operator ~ ~ is introduced in Ch due to the consideration of programming
convenience so that logical and bitwise exclusive-or operators are orthogonal. Note that, like C, Ch will
evaluate the right operand of both the && and | | operations will be evaluated only if the left operand
evaluates to TRUE and FALSE, respectively. This “short circuit” behavior for the ~~ operator does not
exist because, for either TRUE or FALSE of the first operand, an exclusive-or operation can return TRUE,
depending on the second operand. The precedence of operator ~ ~ is higher than operator | |, but lower than
&&. This operation precedence is similar to that for bitwise operators &, |, and ~, which will be discussed
in the next section. Because there are only two values of either TRUE or FALSE for logical operations, the
values of +0.0 are treated as logical FALSE while the metanumbers —Inf, Inf, and NaN are considered as
logical TRUE. For example, evaluations of !(—0.0) and !NaN will get the values of 1 and 0, respectively.

7.4 Bitwise Operators

In Ch, there are six bitwise operators &, |, ~, <<, >>, and ~, corresponding to bitwise and,
inclusive or, exclusive or, left shift, right shift, and one’s complement,
respectively. These operators in Ch are in full compliance with the C standard. They can only be applied
to integral data that are char and int at its current implementation of Ch. The returned data type depends on
the data types of operands. The result of the unary operator ~ keeps the data type of its operand. Results of
binary operators &, |, and ~ will have the higher data type of two operands. The binary operators << and
>> return the data type of the left operand.

However, some undefined behaviors in C are defined in Ch. For operators << and >>, the right operand
can be any data type so long as it can be converted into int internally whereas the right operand must be a
positive integral value in C. In Ch, if the right operand is a negative integral value that may be converted
from a floating-point data, the shifting direction will be reversed. For example, the expression of 7 << —2.0
is equivalent to 7 >> 2.0 in Ch. Therefore, only one of these two shift operators is needed in Ch. The use
of operator << is recommended for Ch programming. A program with dual shift directions for one operator
can be cleaner as compared with unidirectional shifts of two operators.

7.5 Assignment Operators

Besides the regular assignment statement, there are nine assignment operators of +=, -=, *=, =, &=,
|=, "=, <<=, and >>=. These assignment operators are C compatible. An lvalue is any object that
occurs on the left hand side of an assignment statement. The lvalue refers to a memory such as a vari-
able or pointer, not a function or constant. The Ch expression of 1value op= rvalue is defined
as lvalue = lvalue op rvalue where lvalue is any valid lvalue including complex numbers
and it is only evaluated once. For example, i += 3 is equivalent to 1 = i+3, and real (c) == 2
is the same as real (c) = real (c) 2. But, statement *ptr++ += 2 is different from statement

*ptr++ = *ptr++ +2 because lvalue +ptr++ contains an increment operation. The operation rules

for operators of +, -, x, /, &, |, ~, <<,and >> have been discussed in the previous sections.

128

7.6. CONDITIONAL OPERATOR CHAPTER 7. OPERATORS AND EXPRESSIONS

7.6 Conditional Operator

The conditional operator *? :’ introduces a conditional expression in Ch. The following conditional expres-
sion

r = opl ? op2 : op3;

is equivalent to

if (opl !'= 0)
r = op2;
else
r = op3;
In a conditional expression, the first and second operands are separated by a question mark ’?’ and the
second and third operands separated by a colon *:’. The execution of a conditional expression proceeds as
follows:

1. The first operand is evaluated.

2. The second operand is evaluated only if the first does not evaluate to 0. The third operand is evaluated
only if the first evaluates to 0.

3. The result is the value of the second or third operand, whichever is evaluated.

The first operand of a conditional expression shall have scalar type. For the second and third operands, one
of the following shall hold.

1. Both operands have arithmetic type. The result type is determined by the usual arithmetic conversions.

2. Both operands have compatible class, structure or union types. The result is the class, structure or
union type.

3. Both operands have void type. The result has void type.
4. Both operands are pointers to compatible types. The result is a pointer to the composite type.

5. One operand is a pointer and the other is NULL. The result has the type of the operand which is not
NULL.

6. One operand is a pointer to an object or incomplete type and the other is a pointer to void. The result
is a pointer to void.

7. Both operands are computational arrays of the same shape. The result is a computational array with
the higher order data type of the two operands.

Conditional expressions are right-associative. For example,
opl ? op2 : op3 ? op4d : opd ? op6b: op7
is handled as
opl ? op2 : (op3 ? op4d : (op5 ? opb: op7))

The following commands are examples of conditional expressions with operands of computational array
type.

129

7.6. CONDITIONAL OPERATOR CHAPTER 7. OPERATORS AND EXPRESSIONS

5721 2

0?21 :0%?23: 4 // right-association
0?2 1.0 : 2 // data type conversion
.0000

1 ? (array float [2][3])1 : (array int [2][3])2
.00 1.00 1.00
.00 1.00 1.00
0 ? (array float [2][3])1 : (array int [2][3])2
.00 2.00 2.00
.00 2.00 2.00

NNV PR VNV DS YV YV

In Program [Z1] the function func () is called in the main function where the argument passed is the
result of a conditional expression. Pointers p1 and p2 are used as operands in conditional expression

pl = (pl)? pl : p2;
Then structs s1 and s2 are used as operands in conditional expression
i = (1 ? sl : s2).1ii;

The output of Program [7.1]is displayed in Program

struct tag {
int ii;
int *pp;
} sl, s2, *psl, xps2;

int func(int 1) {
printf("i = %d\n", 1);
return 0;

}

int main() {
int 1 = 1;
int xpl = NULL, *p2 = &i;
func(i? 5 : 8); // passed as argument of function
pl = (pl)? pl : p2; // oparands is pointers

printf ("pl = %p\n", pl);

psl = &sl;

ps2 = &s2;

sl.ii = 10;

s2.pp = &sl.ii;

i = (1 2 sl : s2).ii; // operands of structure
pl = (0 ? psl : ps2)->pp;

printf("i = %d\n", 1i);

printf ("sxpl = $d\n", =*pl);

Program 7.1: Example of conditional expression with operands of different data type.

130

7.7. CAST OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

i=25

pl = 40063528
i =10

*pl = 10

Program 7.2: Output of Program [7.1]

7.7 Cast Operators

7.7.1 Cast Operators

In Ch, the explicit type conversion is not necessary in many cases when C needs it. For example,
aptr[3] = malloc(90) is valid in Ch. However, sometimes it is necessary to convert a value of
one type explicitly to a value of another type. This can be achieved by the traditional C cast operation
(type) expr where expr is a Ch expression and t ype is a data type of a single object such as char, int,
float, double or any pointer declaration identifiers such as char x, double x, complex =,etc. For
example, (int)9.3, (float)ptr, (double)9, (float«)si, and (complexx)iptr are valid Ch expressions.

The sizeof() function can also use a type identifier. For example,
ptr = malloc (5+sizeof (intx)+sizeof ((int)2.3) + sizeof ((int)float (90)+7))
is a valid Ch statement.

One important feature of C is its capability for hardware interface by accessing a specific memory
location in a computer. This is achieved by pointing a pointer to a specific memory location or register. This
hardware interface capability is retained in Ch. For example, the following statements will assign the integer
value at the memory location (68FFE);¢ to variable i and set the byte at the memory address (FF000)6 to
(01101001)2;

char xcptr;
int i, *iptr, 7Jj;
iptr = (int =) 0X68FFE; // point to the memory location at 0X68FFE

i = xiptr; // 1 equals the value at 0X68FFE;
cptr = (char)0XFF000; // point to the memory location at O0XFF000
*cptr = 0B01101001; // 0B01101001 is assigned to OXFF000

cptr = (float x)cptr + 1;// cptr points to O0XFF004, not OXFFO0OL.
// note: (float =*)cptr++ is (float) (cptr++)
j = int (cptr); // j becomes OXFF004

Note that an integral value cannot be assigned to a pointer variable without an explicit type cast, and vice
versa. The lower segment of the memory in a computer is usually reserved for the operating system and
system programs. An application program will be terminated with exception handling if these protected
segments of memory are messed up by pointers.

7.7.2 Functional Type Cast Operators

There is an additional functional type casting operation in Ch in the form of t ype (expr) for data types of
single object or type (exprl, expr2, ...) fordatatypes of aggregate such as complex. In this func-
tional type casting operation, t ype shall not be a pointer data type. For example, int(9.3), complex(float(3),
2), and complex(double(3), 2) are valid Ch expressions. Operation float() is the same as real() if they are

131

7.8. COMMA OPERATOR CHAPTER 7. OPERATORS AND EXPRESSIONS

used as operands. However, function real() can be used as an lvalue whereas float() cannot. More infor-
mation about function real() can be found in section Examples of functional type cast operations are
shown below.

char char (double)

char char (complex)

char char (pointer_type)

complex complex (float, float)

double complex complex (double, float)
double complex complex (float, double)
double complex complex (double, double)
double double (double)

double double (complex)

double double (pointer_type)

float float (double)

float float (complex)

float float (pointer_type)

int int (double)

int int (complex)

int int (pointer_type)

long long (double)

long long (complex)

long long (pointer_type)

short short (double)

short short (complex)

short short (pointer_type)

signed signed (double)

signed signed (complex)

signed signed (pointer_type)

unsigned unsigned (double)

unsigned unsigned (complex)

unsigned unsigned (pointer_type)

7.8 Comma Operator

The comma operator ’, ’ introduces comma expression in Ch. The comma expression consists of two ex-
pressions separated by a comma. For example,

a =1, ++a;
The comma operator is syntactically left-associative. The following expression
a=1, ++a, a + 10;
is equivalent to
((a =1), ++a), a + 10;

The left operand of a comma operator is evaluated as a void expression first. Then the right operand is
evaluated; the result has its type and value. For example,

132

7.9. UNARY OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

>a =1, ++a, a + 10
12

The comma operator cannot appear in contexts where a comma is used as a separate item such as the
argument list of a function. In these cases, it can be used within parenthesis. For example,

int func(int il, int 1i2);
int t;

func((t = 1, t + 2), 2);

7.9 Unary Operators

7.9.1 Address and Indirection Operators

The unary operator & gives the address of an object. The operator &, which is C compatible, can only be
applied to a valid lvalue.

When a unary indirection operator * is applied to a pointer, it accesses the object to which the pointer
points. A pointer and an integer can be added or subtracted. For example, for variables ptr, ptrl,
and ptr2 of pointer type and n of integral value, the expression ptr+n gives the address of the nth
object beyond the one ptr currently points to. The memory locations of pointers ptr+n and ptr are
n*xsizeof (xptr) bytes apart, that is, n is scaled to nxsizeof (xptr) bytes according to declaration
of pointer variable pt r. Pointer subtraction for pointers with the same data type is permitted. If ptrl >
ptr2, ptrl — ptr2 gives the number of objects between ptr2 and ptrl. An array of pointers can
also be declared. When a pointer is declared, it is initialized to zero. The symbolic constant NULL, instead
of zero, can be used in the program. If ptr is NULL, the operand ~ptr in an expression is evaluated as
zero. When «pt r, with pt r equal to NULL, is used as an Ivalue, a memory of sizeof(*ptr) will be allocated
automatically for pointer pt r. In both cases, the system will print out warning messages. The automatic
memory allocation for a pointer that does not point to a valid location can avoid a system crash.

Two pointers and constant NULL can be used in the relational operations <, <=, ==, >=, >, and
!'=. In assignment and relational operations, pointers with different data types can work together without
explicit type conversions. For example, the following is a valid Ch program.

int xiptr;
float xfptr;
iptr = (int x)malloc (90);
fptr = malloc(80); // fptr = (float x)malloc(80)
if (iptr != NULL && iptr != fptr)
free (iptr);
iptr = fptr;

In Ch, not only are all the variables initialized to zero when they are declared, but also the memory allocated
by either function malloc(), calloc() or realloc() , is initialized to zero. This can avoid some unexpected
errors. In C, the content for the memory allocated by functions malloc() and realloc() will be random values.
Furthermore, the casting operation for three memory allocation functions malloc(), calloc(), and realloc()
can be omitted in Ch. If no memory is available, these functions will return NULL and the system will print
out error messages. The function free(ptr) will deallocate the memory allocated by these three functions and
set pointer pt r to NULL. In C, pt r is not set to NULL when the memory it points to is deallocated. This
dangling memory makes the debugging of the C program very difficult because the problem will not surface

133

7.9. UNARY OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

until this deallocated memory is claimed again by other parts of the program. Other related functions such
as memcpy() in Ch for memory manipulations are C compatible.

As described before, there are several system defined parameters such as NaN, Inf, FLT_MAX, INT_MIN,
FLT_EPSILON, etc.. These parameters cannot be used as lvalues so that an accidental change of values of
these parameters can be avoided. However, if really necessary, the values of these parameters can be modi-
fied by accessing their memory locations through pointers. For example, a numerical algorithm may depend
on the parameters FLT_EPSILON and Inf. One can change the values of FLT_EPSILON to 10~* and Inf to
FLT_MAX by the following Ch code

float xfptr;
fptr = & FLT_EPSILON; xfptr = le-4;
fptr = &Inf; xfptr = FLT_MAX;

which may, in effect, change the underlying numerical algorithm.

7.9.2 Increment and Decrement Operators

C is well-known for the succinctness of its syntax. The increment operator ++ and decrement operator ——
are unique to C. These two operators in Ch are compatible with C. The increment operator ++ adds 1 to
its operand whereas the decrement operator —— subtracts 1. If ++ or —— is used as a prefix operator, the
expression increments or decrements the operand before its value is used, respectively. If it is used as a
postfix operator, the operation will be performed after its value has been used.

A single + is treated as an addition or unary plus operator depending on the context. Likewise, a single
— can be a subtraction or unary negation operator. For example, the following is valid Ch code.

i=+(-9); // unary plus and negation operators

i++; // 1 = 1i+1

j o= ++i——; // 1= i+1; j i; 1= 1i-1;

j = ++1i; // 1= 1i+1; J = 1i;

j o= i-—; // 3 =1; 1 = 1i-1;

1 = (xptr++)++; // ptr = ptr + 1; 1 = xptr; *ptr = xptr + 1;

By definition, ++1valuemeans lvalue = lvalue + 1 andexpressionlvalue + 1,and lvalue--
is equivalent to expression 1value — 1 and 1value = lvalue - 1. The ++ and —- operators can

be applied to any valid lvalues, not just integral variables, so long as the lvalue can add or subtract an integer
value of 1 according to internal data conversion rules. The following is the valid Ch code.

int i, al[4], xaptr[5];

complex z, *zptr; // declare complex variable and complex pointer
z = z++; // z =z + 1; z 1s a complex variable

zptr = (complex x)malloc (sizeof (complex)*90);

aptr[3] = malloc(90); // aptr[3] = (int x)malloc(90);

/+ imag(z)=complex (0.0, 4.0); zptr=zptr+l; *aptr[3]=1; i=i-1 «/

imag(z) = ++real (+++* (zptr+++2« (int)real (++xaptr[3+i——1)));

real (z) ++; // real(z) = real(z) + 1;

——imag (*xzptr) ; // imag(xzptr) = imag(*zptr) - 1;

al[-—-1] = a[2]++; // i =1 - 1; alil = al[2]; al[2] = al[2] + 1;

Details about complex numbers and functions real() and imag() in Ch are described in section Note
that the memory allocated by function malloc() is initialized to zero.

134

7.10. MEMBER OPERATORS CHAPTER 7. OPERATORS AND EXPRESSIONS

7.9.3 Command Substitution Operator

Command substitution operator * returns the output from a command as a string. For example,

string.t s;

s = "1s°;

When two command substitution operators are used together, character of formfeed, newline, carriage
return, horizontal tab, and vertical tab from the output of the command is replaced by a blank space character.
For example,

string.t s;

s = “ls 7;

7.10 Member Operators

Operators . and —> are called member operators. A member of class, structure, or union is referred to by
these two member operators. The first operand of the . operator shall have a class, structure or union type,
and the second operand shall name a member of that type.

The first operand of the —> operator shall have type “pointer to class”, “pointer to structure”, or “pointer to
union”, and the second operand shall name a member of the type pointed to.

For example,

struct tag {
int ij;
double d;

} s, *pi

S = &p;

s.i = 10;

p—>1i += s.i;

135

Chapter 8

Statements and Control Flow

A statement specifies an action to be performed. Except as indicated, statements are executed in sequence.
A full expression is an expression that is not part of another expression or declarator. Each of the following
is a full expression: an initializer; the expression in an expression statement; the controlling expression
of a selection statement (if or switch); the controlling expression of a while or do statement; each of the
(optional) expressions of a for statement; the (optional) expression in a return statement. The end of a full
expression is a sequence point.

8.1 Simple and Compound Statements

A compound statement is a block enclosed with a pair of braces. A block allows a set of declarations and
statements to be grouped into one syntactic unit. The initializers of objects that have automatic storage
duration, and the variable length array declarators of ordinary identifiers with block scope, are evaluated
and the values are stored in the objects (including storing an indeterminate value in objects without an
initializer) each time the declaration is reached in the order of execution, as if it were a statement, and
within each declaration in the order that declarators appear. For example.

int i; // simple statement

{ // compound statement
int 1i;
i =90;

8.2 Expression and Null Statements

An expression statement contains an expression only. The expression is evaluated as a void expression for
its side effects. A null statement consisting of just a semicolon performs no operation.

If a function call is evaluated as an expression statement for its side effects only, the discarding of its
value may be made explicit by converting the expression to a void expression by means of a cast as shown
below:

int p(int);
/* .. x/
(void)p (0);

136

8.3. SELECTION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

A null statement can be used to supply an empty loop body to the iteration statement as shown in the
program fragment below:

char =*s;
/* .. x/
while (xs++ != "\0")

A null statement may also be used to carry a label just before the closing } of a compound statement.

while (loopl) {
/*x ... %/
do {
/*x oo *x/
if (want_out)
goto end_loopl;
/*x oo *x/
} while (loop2);
/*x ... %/
end_loopl: ;

8.3 Selection Statements

A selection statement selects among a set of statements depending on the value of a controlling expression.
A selection statement is a block whose scope is a strict subset of the scope of its enclosing block. Each
associated substatement is also a block whose scope is a strict subset of the scope of the selection statement.

8.3.1 If Statements

The syntax of an if-statement is as follows:

if (expression)
statement

The controlling expression of an if statement shall have scalar type. The statement is executed if the expres-
sion compares unequal to 0.

Ch supports the header file stdbool.h added in C99. the Boolean type bool is defined. Macros true and
false are defined to handle Boolean numbers. The macro true is defined as 1, and macro false is defined
as 0. The code fragment below illustrates how bool type can be used in conditional expressions.

#include <stdbool.h>

bool 1 = true;
/*x ... %/
if (1) |

i = false;

137

8.3. SELECTION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.3.2 If-Else Statements
The syntax of an if-else statement is as follows:

if (expression)
statementl

else
statement?2

The controlling expression of an if statement shall have scalar type. The first substatement is executed if the
expression compares unequal to 0. The second substatement is executed if the expression compares equal
to 0. If the first substatement is reached via a label, then the second substatement is not executed.

8.3.3 Else-If Statements

The syntax of the else-if statement is as follows:

if (expressionl)
statementl

else if (expression?)
statement?2

else if (expression3)
statement3

else
statement4

Semantically, the syntax of else-if statement is an extention of the previous if-else statement. An else is
associated with the lexically nearest preceding if that is allowed by the syntax. The above statement can be
rearranged as

if (expressionl)

statementl
else
if (expression2?)
statement?2
else
if (expression3)
statement3
else
statement4

8.3.4 Switch Statements
The syntax of a switch statement is as follows:

switch (expression) {
case const-exprl:
statementl
break;
case const-expr2:
statement?

138

8.3. SELECTION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

break;
default:

Statement

break;

}

The controlling expression of a switch statement shall have integer or string type. The expression of
each case label shall be an integer constant expression or string and no two of the case constant expressions
in the same switch statement shall have the same value after conversion. There may be at most one default
label in a switch statement. A switch statement causes control to jump to, into, or past the statement that is
the switch body, depending on the value of a controlling expression, and on the presence of a default label
and the values of any case labels on or in the switch body. A case or default label is accessible only within
the closest enclosing switch statement. The number of case values in a switch statement is not limited.

The integer promotions are performed on the controlling expression. The constant expression in each
case label is converted to the promoted type of the controlling expression. If a converted value matches that
of the promoted controlling expression, control jumps to the statement following the matched case label.
Otherwise, if there is a default label, control jumps to the labeled statement. If no converted case constant
expression matches and there is no default label, no part of the switch body is executed.

In the code fragment below,

switch (expr) {
int i = 10;
f(i);
case 0:
i = 20;
/* falls through into default code x/
default:
printf ("$d\n", 1i);
}

the object whose identifier i exists with automatic storage duration within the block, but is never initial-
ized. Thus, if the controlling expression has a nonzero value, the call to the printf function will access an
indeterminate value. Similarly, the call to the function f cannot be reached.

The controlling expression of a switch statement can be string, instead of integer, as shown in the exam-
ple below. Accordingly, all case constant expressions for such a switch statement shall also be string.

string_t str;
str = ‘hostname‘; // get host name from command ’hostname’
char *s="host2";
switch (str) { // or switch (s)
case "hostl":
printf ("s = hostl\n");
break;
case "host2":
printf ("s = host2\n");
break;
default:
break;

139

8.4. ITERATION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.4 Iteration Statements

An iteration statement causes a statement called the loop body to be executed repeatedly until the controlling
expression compares equal to 0. The loop body of an iteration statement is a block.

8.4.1 While Loop
The syntax of a while statement is as follows:

while (expression)
statement

The evaluation of the controlling expression takes place before each execution of the loop body.
The loop body is executed repeatedly until the controlling expression compares equal to O.
For example, the following code fragment

int i =0;

while (i<5) {
printf("sd ", 1);
i++;

}

will output

01 2 3 4

8.4.2 Do-While Loop

The syntax of a do—while statement is as follows:

do
statement
while (expression);

The evaluation of the controlling expression takes place after each execution of the loop body. The loop
body is executed repeatedly until the controlling expression compares equal to 0.
For example, the following code fragment

int i =0;

do {
printf ("i = %d\n", 1);
i++;

} while (1<5);
will output
01234
The following code fragment

int 1 = 10;
do {

printf ("i = %d\n", i++);
} while (i<5);

140

8.4. ITERATION STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

will output
10

As shown in this example, the loop body is executed before the controlling expression is evaluated. The
following code fragment with a while-loop will have no output, because the controlling expression of the
while statement is evaluated first with a value of 0.
int i1 =10;
while (1i<5)
printf ("$d ", i++);

8.4.3 For Loop

The syntax of a for statement is as follows:

for (expressionl; expression2; expression3)
statement

The expression expressionl is evaluated as a void expression before the first evaluation of the controlling
expression. The expression expression2 is the controlling expression that is evaluated before each execution
of the loop body. The expression expression3 is evaluated as a void expression after each execution of the
loop body. Both expressionl and expression3 can be omitted. An omitted expression2 is replaced by a
nonzero constant.

The for-loop is semantically equivalent to the following while-loop

expressionl;
while (expression2) {
statement
expression3;
}
For example, the following code fragment
int 1i;
for (i=0; i<5; 1i++)
printf ("%d \n", 1i);
will produce the same output of
012 3 4
as in a while-loop of
int i =0;
while (i<5) {
printf("sd ", 1);
i++;
}
More complicated expressions can be used in a for-loop statement as shown below.
int i, 3=10;
for (1i=0, j=10; 1<10&&3>0; i++, J——) {
printf ("i=%d\n", 1i);
printf ("j=%d\n", 7J);

141

8.5. JUMP STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.4.4 Foreach Loop

The syntax of a foreach statement is as follows:

foreach (token; exprl; expr2; expr3)
statement

foreach (token; exprl; expr2)
statement

foreach (token; exprl)
statement

The foreach loop is used to handle iterations based on the condition of string type or pointer to char. The
expressions exprl, expr2, and expr3 shall have string type or pointer to char. The identifier foken also shall
have string type or pointer to char. In each iteration, the variable token takes a token from the original
expression exprl separated by the delimiter expr3. The loop body is executed repeatedly until token
is a NULL pointer or the same as expr2. This is achieved by comparing the controlling expression
(token==NULL || expr2!=NULL && !strcmp (token,expr2)) to0. The omitted expr2 and
expr3 are replaced by NULL and ™ ;”, respectively.
As an example, the following code

char xtoken, *str="ab:12 cd ef", xcond="cd", *delimit=" :";
foreach (token; str; cond; delimit)
printf ("token= %s\n", token);
printf ("after foreach token = %$s\n", token);
printf ("after foreach cond = %s\n", cond);
printf ("after foreach delimi= %$s\n", delimit);

gives the output of

token= ab
token= 12
after foreach token = cd
after foreach cond = cd

after foreach delimi=

In this example, the delimiters for token are characters of blank space and colon as shown in the value for
the variable delimit in the program. The code below will create three directories dirl, dir2, and dir3 in
the current directory.

string_t token, str="dirl dir2 dir3";
foreach (token; str) {
mkdir S$token

8.5 Jump Statements

A jump statement causes an unconditional jump to another place. To jump from one function to other
function, functions setjmp() and longjmp() in header file set jmp . h should be used.

142

8.5. JUMP STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.5.1 Break Statements

The break statement provides an early exit from for, while, do-while, foreach loops and

switch. A break causes the innermost enclosing loop or switch to be exited immediately. A break
statement shall appear only in a switch body or loop body. For example, the following code fragment

int 1i;
for (i=0; 1<5; 1i++) {
if(i == 3) {
break;
}

printf ("%d \n", 1i);
}

will produce the output of

01 2

8.5.2 Continue Statements

The continue statement causes the next iteration of the enclosing for, while, do-while, foreach

loop to begin. A continue statement shall appear only in or as a loop body. In each of the statements

while (/* ... */) { do {
/x oo x/ /x oo %/
continue; continue;
/*x ... %/ /*x ... %/
contin: ; contin: ;
} } while (/* ... */);
for(/~ ... *x/) { foreach (/x ... */)
/*x ... %/ /*x ... %/
continue; continue;
/x oo x/ /x oo %/
contin: ; contin: ;

} }
unless the continue statement shown is in an enclosed iteration statement in which case it is interpreted

within that statement, it is equivalent to goto contin;.
For example, the following code fragment

int 1ij;
for (i=0; 1i<5; 1i++) {
if(i == 3) {
continue;
}

printf ("sd \n", i);
}

will produce the output of

0124

143

8.5. JUMP STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

8.5.3 Return Statements

A return statement terminates execution of the current function and returns control to its caller. A function
may have any number of return statements. If a return statement with an expression is executed, the value
of the expression is returned to the caller as the value of the function call expression. If the expression
has a type different from the return type of the function in which it appears, the value is converted as if by
assignment to an object having the return type of the function. A return statement with an expression shall
not appear in a function whose return type is void. A return statement without an expression shall only
appear in a function whose return type is void.

8.5.4 Goto Statements

A goto statement causes an unconditional jump to the statement prefixed by the named label in the enclosing
function. A goto statement can transfer control either forward or backward within a function. For example,

for (/* ... */)
for(/+ ... */) {
/x ... %/

if (emergency)
goto hospital;
}
/x ... %/
hospital:
emergenceaction();

void funtl (int 3j)
{
int funt2 (int 3j)
{
if(3>10)
goto labell;
j = 10;
}
funct2 (3)
labell: exit (1);
}

In a nested function, the flow of control can jump from an inner function to the enclosing outer function,
where the label is defined. But, it cannot jump from an enclosing outer function to an inner function. For
example,

int task () {

int taskl () {
/*x ... %/
if (student)

goto school;

/*x ... %/

}

int task2() {

144

8.6. LABELED STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

/*x ... %/
if (tolean)
goto school;

/x ... %/
}
school:
study () ;

void funtl (int 3j)
{

if (§>10)
goto labell; // Error: going INTO scope of inner function
j = 10;

int funt2 (int 3j)
{
labell:
/* .. x/
}
funct2 (3)

}

A goto statement shall not jump from outside the scope of an identifier having a variably modified type
to inside the scope of that identifier. A jump within the scope, however, is permitted.

goto lab3; // Error: going INTO scope of VLA
{

double aln];

aljl = 4.4;
lab3:
aljl = 3.3;
goto lab4; // OK, going WITHIN scope of VLA
aljl = 5.5;
lab4:
aljl = 6.6;
}
goto lab4; // Error: going INTO scope of VLA

8.6 Labeled Statements

The syntax for labeled statements is as follows:

labeled-statement:
identifier : statement
case constant-integral expr : statement
case string-expr: statement
default : statement

145

8.6. LABELED STATEMENTS CHAPTER 8. STATEMENTS AND CONTROL FLOW

A case or default label shall appear only in a switch statement. Label names shall be unique within a
function. Any statement may be preceded by a prefix that declares an identifier as a label name. Labels in
themselves do not alter the flow of control. Label names have function scope.

146

Chapter 9

Pointers

Pointer is defined as a variable which contains the address of another variable or dynamically allocated
memory. If we have a pointer variable of type pointer to int, it might point to an int variable, or to
an element of an array of int type. Pointer is essential for programming in C and Ch. It is also useful for
interfacing with hardware.

Pointers in Ch are C compatible. Ch uses pointers explicitly for arrays, structures, functions, classes and
simple data types. There are two basic operators for pointer. They are the indirection operator ‘x’ and the
address operator ‘&’. They are used in the following context.

1. To declare a pointer, add the operator ‘x’ in front of its name.

2. To obtain the address of a variable, add the operator ‘&’ in front of its name.

3. To obtain the value of a variable, add the operator ‘=’ in front of a pointer’s name.

Variables of pointer type can be declared similar to variables of other data types. For example,

int *p, 1i;

declares p as a pointer to int and i as an int. The expression xp is the type int. We can have a pointer to any
variable type. Note that a pointer must be associated to a particular type. There is one exception: a “pointer
to void” is used to hold any type of pointer but cannot be dereferenced itself.

The unary operator ‘s’ gives the “address of a variable”. The expression &i means the address of
variable i. The dereference operator ‘»’ gives the “contents of an object pointed to by a pointer”. The
expression xp represents the value stored in the location pointed to by variable p. It is different from the
multiplication operator and is also different from its use in declaration of variables of pointer type.

Therefore, the programming statement

p = &i;

will set the pointer p to the address of i. After that, the equality xp == i holds.

9.1 Pointer Arithmetic

As mentioned above, pointers do not have to point to a simple variable of scalar type. They can also point
to an element of an array. For example, we can write

int #*p;
int a[l10];
p = &al3];

147

9.1. POINTER ARITHMETIC CHAPTER 9. POINTERS

and we would end up with p pointing at the fourth element of the array a. Note that by default the array
index starts at 0, instead of 1. The situation is illustrated below

The pointer p can be used just like the one in the previous section. The expression p gives what p points
to, which in this case is the value of a [3].

Once we have a pointer pointing at an element of an array or dynamic allocated memory, we can perform
pointer arithmetic. Given that p is a pointer to a [3], we can add 1 to p,

p + 1

In Ch and C, adding one gives a pointer to the next cell. The following code assigns this new pointer to
another pointer variable p2.

int *p2;
p2 =p + 1;

Now the relation of pointers and array becomes

al0] a[l] a[2] al[3] al4] ... al9]

The programming statement
*p2 = 4;

will set a [4] to 4. We can compute a new pointer value and use it immediately as shown below.
*(p + 1) = 5;

In this example, we have changed a [4] again, setting it to 5. The parentheses are needed because the unary
operator * has higher precedence than the addition operator. If we wrote xp + 1, without the parentheses,
we would be fetching the value pointed to by p, and adding 1 to that value.

Besides adding one, any number can be added to or subtracted from a pointer. If p still points to a [3],
then

*(p + 5) = 7;
sets a[8] to 7, and
*(p — 2) = 4;

setsa[l] to4.

The increment operator ‘++’ and decrement operator ‘——" make it easy to do two things at once. The
expression like xp++ accesses what p points to, while simultaneously incrementing p so that it points to the
next element. The preincrement form *++p increments p, then accesses what it points to. Note that (*p)++
increments what p points to.

Pointer to characters is commonly used. A string can be defined in Ch as shown below.

char x strl;
string_ t str2;

148

9.2. DYNAMIC ALLOCATION OF MEMORY CHAPTER 9. POINTERS

The following example illustrates how pointers can be used to handle strings.

char dest[100], src[1007];
char xdp = dest, *sp = src;

strcpy (src, "abcd");
/% copy src to dest «/

while (xsp != "\0")
*dpt+ = *spt+;
xdp = "\0’;

In the above example, pointers to char are used to copy a string in array src.

When pointer arithmetic is performed, make sure it is within the valid range. For example, if the array
a has 10 elements, you can’t access a[10] or a[-1], because by default the valid subscript for a 10-element
array ranges from 0 to 9.

Besides through an explicit pointer, the elements of an array can be accessed through the array name
itself. It is because the array’s name is a pointer to the first element in the array in C and Ch. Therefore, the
statement

p = a;
is equivalent to
p = &al[0];

Both of these two statements make the pointer p point to the first element of array a. Furthermore, the third
element of array a can be accessed as follows

int aa2 = x(a+2); // obtain the value of the third element
* (a+2) = 5; // assign 5 to the third element of a

9.2 Dynamic Allocation of Memory

A problem using fixed-size array is that either it is too small to handle special cases, or it is too big and
the resource is wasted. Without using variable length arrays, this problem can be solved by dynamically
allocated memory using the standard functions malloc(), calloc(), or realloc() as well as the operator new.
The order and contiguity of storage allocated by successive calls to the functions calloc(), malloc(), and
realloc() is unspecified. The pointer returned if the allocation succeeds is suitably aligned so that it may be
assigned to a pointer to any type of object and then used to access such an object or an array of such objects
in the space allocated (until the space is explicitly freed or reallocated). Each such allocation shall yield
a pointer to an object disjoint from any other object. The pointer returned points to the start (lowest byte
address) of the allocated space. If the space cannot be allocated, a null pointer is returned. If the size of the
space requested is zero, the behavior is platform-dependent: either a null pointer is returned, or the behavior
is as if the size were some nonzero value, except that the returned pointer shall not be used to access an
object. The value of a pointer that refers to freed space is indeterminate.
As an example, we can allocate a piece of memory and copy a string into it with the function strepy()
as shown below.

char xstr = "abcd", =*copy;

149

9.2. DYNAMIC ALLOCATION OF MEMORY CHAPTER 9. POINTERS

/* +1 for NULL terminator =/
copy = (char x)malloc(strlen(str) + 1);
strcpy (copy, str);

Remember that all strings have a terminating ‘\ 0’ character which is not included by strlen(). The number
of bytes for string stris strlen(str)+1,not strlen(str).

Ch has a sizeof operator which computes the size, in bytes, of a variable or type. It’s useful to allocate
memory for variables whose sizes are unknown to the users. To allocate space for 100 ints, we could use

int *p = (int *)malloc (100 x sizeof (int));

Obviously, no computer has an infinite amount of memory available. If we call malloc(1000000000),
or if we call malloc(10) 100,000,000 times, the system is probably going to run out of memory. When
the function malloc() is unable to allocate the requested memory, it returns a NULL pointer. Therefore,
whenever you call malloc(), it is important to check the returned value before using it. A call to function
malloc() with an error check is shown below.

int *p = (int *)malloc (100 x sizeof (int));
if (p == NULL)
{
printf ("out of memory\n");
exit (1) ;
}

If function malloc() returns NULL, the code should return to its caller, or exit from the program entirely
after printing the error message. It cannot proceed with the code that would have used the memory pointed
to by p. A good application example of dynamic allocation of memory is to create a linked list which will
be described in Chapter 18]

Unlike automatic-duration variables, dynamically allocated memory does not automatically disappear
when a function returns. Just as you can use function malloc() to control exactly when and how much
memory you allocate, you can also control exactly when you deallocate it. In fact, many programs use
memory on a transient basis. They allocate some memory, use it for a while, but then reach a point where
they don’t need that particular piece any more. Because memory is not inexhaustible, it’s a good idea to
deallocate (that is, release or free) memory you are no longer using.

Dynamically allocated memory is deallocated with the function free(). Dynamically allocated memory
using operator new can be deallocated by operator delete, which will be described in Chapter Ifp
contains a pointer previously returned by function malloc(), you can call function

free(p);

to release the memory dynamically allocated. After calling free (p), it is most likely the case that p still
points at the same memory in C. However, p will be set to NULL in Ch after it is deallocated. So long as
we check to see if p is non-NULL before using it again, we won’t misuse any memory via the pointer p.

Ch supports functions which return pointers. This is useful for allocating memory within functions.
Below is a simple example of a function returning a pointer to int.

int xfnl () {
int *p = (int *)malloc(sizeof (int));

150

9.3. ARRAYS OF POINTERS CHAPTER 9. POINTERS

return p;

}

The memory which is dynamically allocated by function malloc(), inside function £n1 (), can be freed in
the calling function.
Note that the code below is invalid.

int xfn2 () {
int k;

k =5;

/* return address of kx/
return &k;

}

The function £n2 () tries to return the address of local variable k. When the function £n2 () returns, the
memory for variable k will be deallocated automatically.

9.3 Arrays of Pointers

Like C, Ch supports arrays of pointers since pointers are variables themselves, such as

int (xpl) [3]1, all2]1([3], a2[3]11[3];

pl = al; // pllil [j]1<=>all[i]l[]]

pl = a2; // pllil [j]1<=>a2[i][]]

int *p2[31]1; // declares an array of 3 pointers to ints.

Arrays of pointers are very useful in some cases. Consider the following code fragment.

char m1[7][10] = {"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};
char »m2[7] = {"Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"};

Variable m1 is a two-dimension array of char whereas m2 is an array of pointer to char. The memory layout
for m1 and m2 are shown in Figures [0.1]and respectively.

151

9.3. ARRAYS OF POINTERS CHAPTER 9. POINTERS

10

Ml «—— »

Sunday\0
Monday\0
Tuesday\0

7 Wednesday\0
Thursday\0
Friday\O
Saturday\0

Figure 9.1: 2D array.

7

-

m2[0] - -

m2[1] - |M onday\O

m2[6] Ny 9
\ Saturday\0

Figure 9.2: Array of pointers.

The advantage of using m2 is that each pointer can point to arrays with different length rather than the fixed
length of 10 bytes. This can be illustrated by the code below.

/* three text lines */
char *p[3] = {"ABC", "HIJKL", "EF"};
char xtmp;

tmp = pl[1l];
pll] = pl2];
pl2] = tmp;

This example demonstrates how an array of pointers can be used to eliminate complicated storage manage-
ment and overheads of moving lines. In this example, the original strings of different lengths pointed to by
pointers p[0],p[1] and p[2] are shown in Figures[0.3] Without moving and copying characters in these
strings, the contents pointed to by pointers p [1] and p [2] are swapped by swapping values of pointers as
shown in Figures

152

9.4. POINTERS TO POINTERS CHAPTER 9. POINTERS

PlO] | —= ABC\0

P[1] | —= [HIKLWO

P2l | —» |EFO

Figure 9.3: Before swapping texts.

PlO] | — ABC\0
P[1] >< HIJKL\O
Pl2] ERO

Figure 9.4: After Swapping texts.

9.4 Pointers to Pointers

Because a pointer of different type is a variable itself, Ch can handle a pointer to a pointer of any type.
Consider the following code

char ch; // a character
char xp = &ch; // a pointer to ch
char **pp = &p; // a pointer to p

It is visualized in Figure Here » »pp refers to memory address of *p which refers to the memory
address of the variable ch.

PP P ch

Figure 9.5: Pointer to pointer.

Because char * is used to refer to a NULL terminated string in Ch, one common, and convenient, notion
is to declare a pointer to pointer to char. For example, the code below

char «p = "ab"; // a string
char x*xpp = &p; // a pointer to p

declares p as a pointer and pp as a pointer to pointer to char as is illustrated in Figure

153

9.4. POINTERS TO POINTERS CHAPTER 9. POINTERS

pp p

Figure 9.6: Pointer to string.

Furthermore Ch supports several strings being pointed to by a double pointer as shown in the commands
below.

> char **xpp;

> pp = (charx*)malloc (3xsizeof (charx));
4006c8d0

> ppl0] = "ab";

ab

> ppl[l] = "py";

1%

> ppl2] = NULL;

00000000

The memory layout for the above code is illustrated by Figure

| > > 1a.1 1b1 1\0!

pp

T~ p |y | o

NULL

Figure 9.7: Pointer to strings.

We can refer to individual strings by pp [0] and pp [1]. Semantically this is identical to the declaration
of char *pp[]. The double pointer is useful for command line argument handling of function main().
Pointers to pointers are also useful for dynamic allocation of memory. For the program below,

void fn3 (int **xp) {
*p = (int x)malloc(sizeof (int));
xxp = 5;

}

int main() {
int *p;

fn3(&p);

154

9.4. POINTERS TO POINTERS CHAPTER 9. POINTERS

}

the memory for pointer p in calling function main() is allocated by function £n3 ().
Interactive Ch shell is especially useful for understanding how pointer works as shown in the following
interactive execution of programming statements with pointer and double pointer.

> int i, #*p

> p = &i // assign address of 1 tp p
1c4228

> xp = 90

90

> printf ("i = $d\n", i);

i = 90

> int x*p2

> p2 = &p

1c3c38

> printf ("*«*p2 = %d\n", **p2)
**p2 = 90

> i%xp // 1 * (xp)

8100

>

155

Chapter 10

Functions

A Ch program is generally formed by a set of functions, which subsequently consist of many programming
statements. Using functions, a large computing task can be broken into smaller ones; a user can develop
application programs based upon what others have done instead starting from scratch. The performance and
user friendly interface of functions are critical to a programming language. In Ch, it is guaranteed that all
function calls to a function are governed by a prototype, that all the prototypes for the same function are
compatible, and that all the prototypes match the function definition even for a program that is divided into
many separate files.

All functions, including the main function main (), in C are at the same level; functions cannot be
defined inside other functions. In other words, there are no internal procedures in C. Ch extends C with
nested functions. Functions in Ch not only can be recursive, but also nested, which means that a function
can call itself as well as can define other functions inside the function. With nested functions, details of
one functional module can be hidden from the other modules that do not need to know about them. Each
module can be studied independent of others. Software maintenance is the major cost of a program. People
who were not involved in the original design often do the most program maintenance. Nested functions
modularize a program, thus clarifying the whole program and easing the pain of making changes to modules
written by others. Nested functions are very useful for information hiding and modular programming.

Although adding nested functions to C is a conservative enhancement to the language, addition of any
new feature into the standard needs a careful examination of its potential impact on the language as a whole.
The new feature should be a natural extension to C, namely, in the so-called spirit of C; it must not break
all currently existing codes. With nested functions, local functions can be defined inside other functions. In
the spirit of C, functions in Ch can not only be nested, but also recursive. In other words, a function can call
itself either directly or indirectly. This is especially important for writing function files. Functions defined
inside function files are treated as if they were the system built-in functions in a Ch language environment.
This chapter, therefore, first describes how functions are handled in the C standard-conforming manner, then
presents new linguistic features of nested functions as they are currently implemented in Ch in the spirit of
C.

10.1 Call-by-Value versus Call-by-Reference

In general, arguments can be passed to functions in one of two models: call-by-value and call-by-reference.
In the call-by-value model, the values of the actual parameters are copied into formal parameters local to
the called function. When a formal parameter is used as an lvalue (the object that can occur at the left side
of an assignment statement), only the local copy of the parameter will be altered. In the call-by-reference
method, however, the address of an argument is copied into the formal parameter of a function. Inside the

156

CHAPTER 10. FUNCTIONS
10.2. FUNCTION DEFINITIONS

called function, the address is used to access the actual argument used in the calling function. This means
that when the formal parameter is used as an Ivalue, the parameter will affect the variable used to call the
function. FORTRAN uses the call-by-reference model, whereas the convention in C is call-by-value. If it is
desired that the called function alter its actual parameters in the calling function in C, the addresses of the
parameters shall be passed explicitly. However, in C++ and Ch, arguments can be passed by reference with
reference type described in next Chapter.

10.2 Function Definitions
A function can be defined in the form of

return_type function_name (argument declaration)
{

statements

}

Parts of the above function definition may be absent. The return_type can be any valid type specifier.
The function definition in Ch must begin with a type specifier even for functions that return int.

The traditional function definition, known as K&R C, is also supported in Ch. Although obsolescent, in
this notation, parameter identifiers in a function definition are separated by the declaration list.

Declaration statements can be mixed with executable statements. For example, in the code fragment

int funct (int 1)
{

i = 35

int 3;

return i;

}

the variable j is declared after the execution statement i = 3. The lexical level of parameter variables for
arguments of a function is lower than that of local variables defined inside the function. When an identifier
is used as both parameter variable of the function and its local variable, the variable will be treated as the
argument of the function before the declaration statement that declares it as a local variable. After the
declaration statement, the variable becomes the local variable within the function. Therefore, unlike in C,
one may use the same identifier as both the argument of the function and its local variable as shown in the
following example.

int funct (int i, 3Jj)

{

printf("i = %d \n", 1);// use 1 as the argument parameter
int j=1, i=1; // 1 and j are initialized to 1

J =1 +8 +73; // use 1 and j as local variables
return jj; // return the local variable j with 10

}

In Ch, variables are guaranteed to be initialized to zeros when they are declared. In the above function
funct (), the identifier i that contains the value of the argument parameter is printed out by the output
function printf(). The identifier i then becomes a local variable after the declaration statement int Jj, 1.

157

CHAPTER 10. FUNCTIONS
10.2. FUNCTION DEFINITIONS

The name 7 is used as both an argument and a local variable of the function. The variable j is declared as a
local variable before it is invoked inside the function. The value passed from the calling function will never
be used inside the function. In other words, the local variable hides the argument parameter of the function.

It should be pointed out that, in C, the function funct () in the above example has to be defined as
int funct (int i, int 3j). The type declarators for the subsequent arguments can be omitted in Ch
if they have the same type as the previous one. However, if the identifier in the argument list is also a typedef
name, the type declarator cannot be omitted as shown below.

typedef int INT;
int funct (int i, int INT) // int funct (int i, INT) is an error
{

INT =90;

/* ... %/

The return statement can be used to return a value from the called function to the calling function as
in

return expression;

Any expression can follow return, parentheses around the expression are optional. The expression will
be converted to the return type of the function if necessary. But if the expression cannot be converted to the
return type of the function according to the built-in data type conversion rules implicitly, it is a syntax error.
For example,

int funct ()
{
int *p;
return p; // ERROR: wrong return data type
return (int)p; // OK: C type conversion
return int (p); // OK: functional type conversion

If the return type is not void, a return statement is necessary at the end of the function; otherwise, the default
zero will be used as the return value and a warning message will be produced by the system. For example,

> int funct () {}
WARNING: missing return statement for function funct () and \
default zero is used

In other words, the function will be handled as if a return statement with a return value of zero was present
before the closing right brace. Here, the value of zero is used in a general sense. For example, zero of int is
0, zero of float is 0.0, zero of a pointer is NULL, and zero of complex is complexZero. Furthermore, if the
return type is not void, the expression following return is necessary; otherwise, the default zero will be used
as the return value and a warning message will be produced. For example,

int funct ()
{

return; // WARNING: missing return expression and use default zero

158

CHAPTER 10. FUNCTIONS
10.2. FUNCTION DEFINITIONS

However, the calling function can freely ignore the returned value. For example,

int funct (int 1i)

{

return i+1; // the same as ’'return (i+1);’

}

funct (5); // ignore the return value

If a function is defined without returning anything, the return data type should be void. It is an error to
call the function with the return type of void in a context that requires a value. For example,

void funct (int 1) {}
int k;
k = funct (3); // ERROR: lvalue and rvalue are not compatible

If the return type is void, the return statement is optional. But, if there is an expression following return,
it is a syntax error. For example,

void funct (int i)

printf ("i is equal to 3 \n");
return ij; // ERROR: return int
}
else if (i > 3)
{
printf("i is not equal to 3 \n");
return; // OK

funct (2) ;

If the number of the arguments passed to the called function by the calling function is less than that in the
function definition, it is a syntax error. For example,

int funct (int i, Jj) {return i}
funct (8) // ERROR: fewer parameters are passed to funct (),

On the other hand, if the number of actual arguments is more than the number of the formal definitions, it is
also a syntax error. For example,

int funct (int i) {return i}
funct (8, 9) // ERROR: number of arguments is 2, need 1 argument

Both system built-in and user-defined functions can be used as arguments of functions in Ch. System
built-in functions will be handled polymorphically. Furthermore, a function itself can be used as an argument
of the function. For example, in Program [I0.1] the arguments of the function call funct2 (abs (-6),

159

CHAPTER 10. FUNCTIONS
10.3. FUNCTION PROTOTYPES

functl (functl (2)), funct2 (1,2, 3)) arethe system built-in function abs () , user-defined func-
tion functl () which uses itself as the argument, and the function funct?2 () itself.

#include <stdio.h>

int functl (int 3j) {
return 2+*7j;

int funct2 (int 31, Jj2, 33) {
return jl+32+33;
}
int main () {
int ij;
i = funct2(abs(-6), functl (functl(2)), funct2(1,2,3));
printf("i = %d \n", 1); // output: i = 20

Program 10.1: Using functions as arguments of a function

10.3 Function Prototypes

The type checking for the return value and arguments of functions in Ch is more rigorous and consistent
than in C, which can help users detect some hidden bugs in a program. In C, when a program is divided into
many source files, the compiler is not required to check that

e all calls to a function are governed by a prototype,
e all the prototypes for the same function are compatible,
e or all the prototypes match the function definition.

But, Ch can check all these even for a program that is divided into many separate files. In Ch, the data type
of an actual argument of the calling function can be different from that of the formal argument of the called
function so long as they are compatible. The value of an actual argument will be converted to the data type
of its formal definition according to the built-in data conversion rules implicitly at the function interface
stage. However, the data types for the same argument in different function prototypes for the same function
must be the same even in different files. Likewise, the return types of different function prototypes for the
same function must also be the same. For example,

int functl (int 1i); // return and argument types are int

int functl (float f); // ERROR: change data type of argument
int functl (void v); // ERROR: change data type of argument
int functl (int &1); // ERROR: change data type of argument
float functl (int 1i); // ERROR: change return type of function
void functl (int 1); // ERROR: change return type of function
functl (5); // Ok

functl (5.0); // OK, 5.0 converted to 5

160

CHAPTER 10. FUNCTIONS
10.3. FUNCTION PROTOTYPES

int funct2 (int 1)
{
int funct3(int 7J); // return and argument types are int
}
int funct3(int 1)

{1}
int funct3 (int =*p); // ERROR: change data type of argument

There can only be one function definition at a given lexical level in a program. For example,

int functl (int i) {};
int functl (int 1) {}; // ERROR: redefine functl ()

The variable and function names cannot be the same at the same lexical level. For example,

int funct2;
int funct2 (int i) {}; // ERROR: redefine funct2
int funct3;
int funct4 (int 1)
{
int funct3(int 1i); // ERROR: redefine funct3

}

where names funct2 and funct 3 have been defined as simple variables before they are to be defined as
functions.

Parameter names must appear in function definitions, but the parameter names for arguments of func-
tion prototypes may not be included although they can help in documenting functions and improving the
readability of the program. For example, the following two function prototypes are the same

int funct (int);
int funct (int 1i);

Functions that have more than one argument can be prototyped in the same manner. For example

int functl (int, int);
int funct2 (int, float);

Arguments of pointer types can also be prototyped without parameter names. For example,

void funct (int x, float *, complex x*x);
void funct (int *ip, float =*fp, complex x*zp){ }

If the subsequent arguments have the same basic data type, the type specifier in function prototypes can be
omitted after the first argument. For example,

void functl (int *xip, *Jjp, **xip2);
void functl (int %, %, *x%);

void funct2 (int, ,);

void funct2 (int, int, int);

void funct2(int i, 3j, int k);

161

CHAPTER 10. FUNCTIONS
10.3. FUNCTION PROTOTYPES

Parameters with names and parameters without names can be mixed in function prototypes. For example,

void funct (int, *, float f)
void funct (int i, =xp, float);

Functions requiring no argument can be prototyped with the single type specifier void or void followed
by a dummy parameter name. For example,

void funct (void) ;
void funct (void) { }

Arguments of arrays and arrays of pointers can also be prototyped without parameter names. For example,

void funct (int *[], =*[
int xap[10], *bp[3], a
funct (ap, bp, a, ca);
void funct (int xapl[], *bpl[3], alll[3], char c[]){ }

1, [103], char []);
101 [20]

, cal3];

Similarly, pointer to arrays and arrays of assumed-shape in function arguments can be prototyped without
parameter names. For example,

int a[10]1[10];

void funct (int (%) [3
void funct (int (*a) [
funct (a, a);

References to basic data types and references to pointers can be handled in the same manner. For example,

int i, *pl, *x*p2;

void functl (int &, &, &*, &*x*);

functl (i, i, pl, p2);

void functl (int &i, &7, &xpl, &*xxp2){ };

If no argument in a function prototype. the argument type compatibility checking will be turned off in
Ch. But the return type of the function will still be checked. Both ISO C and K&R C function prototypes
can be mixed in a program, but for prototypes in C style, both return type and arguments will be checked.
The first C function prototype or the function definition determines the number and data types of the argu-
ments of the function. For example, in Program [10.2], the argument of the first C function prototype in int
functl (int 1) will be used to check other C function prototypes and function calls prior to the defini-
tion of the function functl (). Note that the function funct5 () requires no argument and its function
definition in Program [10.2]is the same as void funct5 (void) { }. It should be pointed out that the
K&R C function prototypes are error-prone. The K&R C function prototype should not be used for writing
new code.

Functions can occur in any order in a Ch program. If the function is called before it is defined, int is
assumed to be the return type of the function. The number of arguments and their data types will be decided
by the first C function prototype or the function definition. In other words, when the function funct () has
not been defined before it is invoked, it will act as if it had been prototyped by int funct (). This can
be illustrated by various programming examples in Program After the function definition, the number
of arguments and their data types in the definition of the function, rather than those in a function prototype,
will be checked against actual arguments in subsequent function calls. The function prototypes can be used
multiple times so long as they are compatible each time. But, if the return value of a function is not int, a
function prototype must be used before the function can be called as shown in Program [10.4]

162

10.3. FUNCTION PROTOTYPES

int functl

14

()
int functl (int 1i);
int functl (int i, 3J);
int functl (int *p);
int functl();
int functl (int i) { }

complex funct2(int 1i){ }

int funct2();
int funct2 (int 1i);
complex funct2 (int 1i);

int funct3(int 1)
{
int funct4d();
int funct4 (int 1i);
int functd (int i, 3j);
}
int funct4 (int 1)

{1

void functb
void functb
void functb
void functb
void funct (int);
void funct5(){ }

);
void) ;
void v);
)i

(
(
(
(

14

// return type is int,
// argument is an int
// ERROR:
// ERROR:

CHAPTER 10. FUNCTIONS

ignore arguments

change number of argument
change data type of argument

// OK to repeat the same function prototype

// function definition

// return type is complex,

// argument is an int
// ERROR:
// ERROR:
// OK:

// argument is an int
// ERROR:

// OK
// ERROR:

// function definition

change return type of function
change return type of function

change number of argument

change data type of argument

Program 10.2: K&R and ISO C function prototypes.

163

CHAPTER 10. FUNCTIONS
10.3. FUNCTION PROTOTYPES

functl (3); // by default, functl() return int;

void functl (int 1) { } // ERROR: change return type of function
int i;

funct3(3); // by default, funct3() return int;

int funct3(int i) { }// WARNING: missing return statement and default zero is returned

int i;

functd (3); // by default, functd () return int;

int functd4 (int 1)

{ return; } // WARNING: missing return expression, use default zero
funct5 (8) // WARNING: fewer parameters are passed to funct(),

// default zeros are used for missing ones
int functb5(int i, Jj) {return i}

funct6(8) ;
int functé (int i) {return 3} // OK

funct7(8)
int funct7(int 1){} // WARNING: missing return statement, use default zero

funct8(8)
void funct8(int i) {} // ERROR: change return type of function

funct9(8)
int funct9(float f){return (int)f} // OK

funct10(8) // ERROR: non ptr value passed to ptr
int functlO (int =p) {return 3} // OK

Program 10.3: Sample programs using default prototypes.

void functl (int i) { }

int funct (int i)

{
void functl(int i); // redundant prototype OK
void funct2 (int 1); // must have prototype
int funct3(int i); // can be omitted by default
functl (i) ;
funct2 (1) ;
funct3 (1) ;

}

void funct2 (int 1) { }

int funct3(int 1) { }

Program 10.4: Examples where prototypes are optional or required.

164

CHAPTER 10. FUNCTIONS
10.4. RECURSIVE FUNCTIONS

int main () { // level 1 for main
funct (1) ;
}
int funct (int j) // level 2 for funct and level 2 for]
{
if(4 <= 3)
{
printf ("recursively call funct() j = %d \n", J);
Jt+;
j = funct (j);
}
else
printf ("exit funct() j = %d \n", J);
return 7j;

Program 10.5: Direct recursive functions

10.4 Recursive Functions

Functions can be used recursively. In other words, a function can call itself directly as shown in Pro-
gram The output of Program is as follows:

recursively call funct() j = 1

recursively call funct() j = 2

recursively call funct() j = 3

exit funct() j =4

When a function calls itself recursively, each function call will have a new set of local variables. Inside
a recursive function, conditional statements, such as i f—else, are normally needed in order to exit the
function and return the control flow of a program to the calling function. A function may also call itself in-
directly as shown in Program[10.6l In Program[10.6] functions funct1 () and funct2 () call themselves
indirectly, the function funct?2 () calls the function funct2 () whereas funct2 () calls functl ().
The output of Program is displayed in Figure [10.1

10.5 Nested Functions
In the spirit of C, the function definition with nested functions in Ch takes the form of

return_type function_name (argument declaration)

{

statements
function_definitions

or

return_type function_name (argument declaration)

165

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

int main () {
functl (1) ;

}

int functl (int 1)

{
i = funct2(i);
printf ("exit functl() 1 = %d \n", 1i);
return 1i;

}

int funct2(int 3j)

{

if(3 <= 3)

{
printf ("recursively call funct2() j = %d \n", 7J);
Jt+;

j = functl(j);
}

else

{
printf ("exit funct2() j = %d \n", J);
Jt+i

}

return j;

Program 10.6: Indirect recursive functions

recursively call funct2() 7 =1
recursively call funct2() j = 2
recursively call funct2() j = 3
exit funct2() j = 4
exit functl() i =5
exit functl () 1 5
exit functl () i 5
exit functl() 1 =5

Figure 10.1: Output of Program[10.6|

166

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

int 1i; // level 1
void functl (int 1) // level 2 for i, level 1 for functl
{

int 1i; // level 3

void funct2(int 1) // level 4 for i, level 3 for funct?2

int k;
k = 1; // use 1 at level 4
int i=6; // level 5
i = 30; // use 1 at level 5
printf ("k = %d \n", k);
}
i = 10+1; // use i at level 3
funct2 (i) ; // use i at level 3
}
i =5; // use i at level 1
functl (1) ; // output: 10

Program 10.7: Lexical levels in Ch.

function_definitions
statements

}

where statements can be any valid Ch statements and local functions can be defined inside other local
functions. There is no restriction on the number of function nesting in Ch. In this section, the linguistic
features of nested functions will be described.

10.5.1 Scopes and Lexical Levels of Nested Functions

Variable and function names in Ch are associated with their scopes. The scope of a variable or function name
is a part of the program within which the variable can be used. The scope of the function arguments is the
body of the function. The scope of the variables defined inside a function begins right after its declaration
and ends at the closing right brace for the function definition. Local variables of the same name in different
functions are not related to each other. The same is true for parameters of functions. The scope of a local
function is the function within which the local function is defined. The scope of a top level function in Ch
is the entire program, but the function may have to be prototyped if it is invoked prior to its definition. Note
that, in C, although the scope of all functions is the entire program, consistent function prototypes must be
provided. The inconsistency of function prototypes for the same function in different files cannot be detected
by C compilers, but it can be detected in Ch. The programs in Ch can be much less error-prone.

The lexical level of a variable or function name is the place where it is declared. If we treat the top level
of a program as the first lexical level, the arguments of the top level function are at level 2; the local variables
declared inside the function are at level 3; the argument parameters in a nested function are at level 4; the
local variables defined inside the nested function are at level 5, and so forth. The lexical level 7 is higher
than the lexical level ¢ + 1. These different lexical levels of variables in nested functions are illustrated in
Program [I0.71 In Program [I0.7] the function funct2 () is not visible outside the function functl ().
The same name can be used for variables and functions at different lexical levels. The part of a program at a

167

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

void functl () { // level 1
void funct2() { // level 2
void funct3() // level 3
{1}
}
funct3 () ; // Error: funct3() is at lower level

Program 10.8: The part of the program at the higher lexical level cannot call functions at the lower level.

void functl ()
{
void funct?2 (int i) // level 4
{
int k; // level 5
}
void funct22 (int i); // level 4

{
int k; // level 5

Program 10.9: Arguments and local variables at different local functions are unrelated.

lower lexical level can access variables and functions at a higher lexical level in nested functions so long as
the variables and functions are within their scopes. But the part of a program at a higher lexical level cannot
access variables and functions at a lower lexical level. For example, the function funct3 () defined at the
lexical level 3 cannot be invoked at the lexical level 2 in Program [10.8] Arguments and local variables with
the same name in different functions at the same lexical level are unrelated. For example, arguments i and
local variables k of different local functions funct2 () and funct22 () in Program are unrelated.
The modification of the variable k inside the function funct?2 () will not affect the variable k inside the
function funct22 ().

Functions can be defined inside other local functions as shown in Program where the function
funct3 () is defined inside the local function funct2 (). The number of function nesting is not limited
in Ch. Not only can the name of variables at different lexical levels be the same, but also the name of
functions. If there are several variables with the same name at different lexical levels, the variable with the
lowest lexical level will be used within the scope of all variables. It is also true for functions. For example,
there are three functions with the same name at three different lexical levels in Program [10.11]

All syntax rules for regular functions, such as initialization of local variables, passing arrays of assumed-
shape, and passing arguments by reference, can be applied to nested functions as well. For example, the
variable A1 in the local function funct2 () is initialized as a 3x3 complex array in Program [[0.12] The
first dimension of A1 is determined by the number of rows as the array is initialized at the declaration stage.
The float array F is passed to the argument A of the function funct2 () ; the shape of array A, assumed
from F, is 4x4. The second argument z of the function funct?2 () is passed by reference. The output of
Program [10.12] printed by the last statement of the function funct1 () is

168

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

void functl (complex zl) { // definition of the function

int 1i;

complex funct2 (complex z2) { // define local funct before it is used
complex z;
complex funct3 (complex z3) { // double nested function

return z3;

}
z = funct3(z2);
return z;

}
i = funct2 (complex(1,2));

Program 10.10: Double nested functions in Ch.

void funct () { // level 1
void funct () { // level 2
void funct () // level 3
{1
}
funct () ; // invoke funct () at level 2

Program 10.11: Different functions with the same name at different lexical levels.

void functl (int i)

{
void funct2 (complex A[:][:], &z)

{
complex ALl[][3]={

{ComplexInf, ComplexNaN, Inf},
{-Inf, complex (-3,-1), complex(-7,2)},
{complex (-4,-3), complex(6,3), complex(2,1)}

bi
z += A[1][2] + A1l[1][2];

}

float F[4][4];

complex z = complex(-3,2);

FI1][2] = -1i;

funct2 (F, z);

printf("z = $f \n", 2z);
}
functl (10); // output: z = complex(-20.000000,4.000000)

Program 10.12: Initialization, arrays of assumed-shape, and references in nested functions in Ch.

169

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

void functl () // level 1
{
_ _declspec(local) float funct2(); // local function prototype
funct2 () ;
float funct2 () // definition of the local function,
{

return 9;

Program 10.13: The type qualifier __declspec (local) qualifies funct2 () as alocal function.

void functl () // level 1
{
_ _declspec(local) float funct2(); // required ’'local’
_ _declspec(local) int i; // optional ’'local’
funct2 () ;
_ declspec(local) float funct2() //optional ’local’
{
_ declspec(local) int 7J; // optional ’'local’
return 9;

Program 10.14: Optional type qualifier in Ch.

z = complex (-20.000000,4.000000)

10.5.2 Prototypes of Nested Functions

All local functions in the program examples discussed so far have been defined before they are invoked
inside nested functions. The definition of a local function, however, can be placed at any places inside a
function. If a local function is invoked prior to its definition, a local function prototype must be used as
shown in Program [I0.13] In Program[I0.13] because the function funct?2 () is used before it is defined, a
function prototype is needed. Since it is a local function, the type qualifier __declspec (local) is used
to distinguish a local function from the top level regular C functions. The type qualifier for local functions
can also be placed before the type specifier for declarations of local variables and function definitions inside
a function, but it is optional as shown in Program [10.14]

If a function prototype inside a function is not qualified as a local function by the type qualifier 1ocal,
it is assumed as a top level function. This will guarantee that all existing C code will not break when
nested functions are added to the language. For example, there are two functions named funct?2 () in
Program One is defined inside the main routine main () and the other is a top level function.
Inside the function functl (), the prototype void funct2 (int i) informs the compiler that the
name funct? is a function name with the return data type of void and one argument of int. Because there
is no type qualifier preceding the function prototype, the function funct2 () is a top level function by
default. Therefore, the subsequent function call of funct2 (i) will use the function funct2 () at the top
level. After the definition of the local function funct2 (), the function call of funct?2 (100) inside the

170

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

int main () // level 1
{
void functl (int i) // level 2
{
void funct2 (int 1i);
funct?2 (i) ; // use funct2 () at level 1
}
void funct2 (int 1) // level 2

{
printf("i = %d \n", i+1);

functl (100);

funct2 (100); // use funct2 () at level 2
}
void funct2 (int i) // level 1, top level

{
printf("i = %d \n", i+5);

Program 10.15: Function prototypes with no type qualifier are at the top level.

main routine main () will use the local function. The output of Program [10.13]is as follows:
i=105
i=101

If a function is called before it is defined, it is assumed that the function is a top level function with the
return type of int. The number of arguments and their data types will be decided by the first occurrence of
the C function prototypes or the function definition. In other words, when the function funct () has not
been defined at the point where it is called, it will act as if it had been prototyped by int funct (), which
is C compatible. For example, the function funct3 () in Program is invoked before it is defined or
prototyped. By default, the function funct3 () is a top level function that returns a value of int type.

For deeply nested functions, if a function that is defined neither at the top level nor at the same level is to
be invoked, a local function qualifier can be used to prototype the function at the beginning of the function
within which the prototyped function is defined. The function prototypes for this purpose are called the
auxiliary function prototype. In Program [I0.17] the local function funct3 () can be used by the nested
functions funct2 () and funct4 () due to the auxiliary function prototype of __declspec (local)
void funct3 (). The scopes, lexical levels, and function prototypes in nested functions can be further
demonstrated by the four code fragments given in Program [10.18]

10.5.3 Nested Recursive Functions

In Ch, whether a function is defined as a local function or top level function has no significant effect on
the memory space and execution speed of a program even in recursive situations. Inside nested functions,
functions can call each other recursively so long as scope and lexical rules of function calls are not violated.
In Program the function funct1 () calls its local function funct?2 () as well as itself recursively.
But, the function funct?2 () only calls itself recursively. The output of Program [10.20]is as follows:

171

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

void functl (int 1) { // level 1
void funct2 (complex A[:][:]);// funct2(): default function at level 1
complex A1[3][31];
i = funct3()+4; // funct3(): default function at level 1 return int

funct2 (Al) ;

}

void funct2 (complex A[:]1[:]1) { // level 1
A[1]1[2] =70;

}

int funct3() { // level 1
int i=90;
return i;

Program 10.16: Functions invoked prior to their definitions and prototypes are at the top level by default.

void functl () { // level 1
_ declspec(local) void funct3(); // auxiliary function prototype
void funct2 () { // level 2

funct3 () ; // use funct3() at level 2
void functd () {
funct3 () ; // use funct3() at level 2
}
funct3 () ; // use funct3() at level 2
}
void funct3 () // level 2

{1}

Program 10.17: Using the type qualifier __declspec (local) to invoke functions at different lexical
levels.

172

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

/*x% EXAMPLE 1 *x/

void functl () { // level 1
void funct2 () { // level 2
int ij;
i = funct3(); // use funct3() at level 1
}
void funct3 () // level 2
{ }
funct3 () ; // use funct3() at level 2
}
int funct3 () // level 1

{1

/*x% EXAMPLE 2 *x/

void functl () { // level 1
__declspec(local) void funct3();
void funct2 () { // level 2
funct3 () ; // use funct3() at level 2

void funct3() { // level 3
__declspec(local) void funct3();

funct3 () ; // use funct3() at level 4
void funct3() // level 4
{1}
}
funct3 () ; // use funct3() at level 3
}
void funct3 () // level 2
{3
funct3 () ; // use funct3() at level 2

Program 10.18: Illustrative sample programs for scopes, lexical levels, and prototypes of nested functions.

173

10.5. NESTED FUNCTIONS

/*x EXAMPLE 3 %%/

void funct2 () {

}

void functl () {
funct2 () ;

void funct2 () {
void funct3 ()
{1}

}

/*x EXAMPLE 4 %%/
void funct2 ()

{ 1
void functl () {

_ declspec(local)

funct2 () ;

void funct2 () {
void funct3 ()
{1}

// level 1

// level 1

// invoke funct2 ()

// level 2
// level 3

// level 1

// level 1

void funct2();
// invoke funct2 ()

// level 2
// level 3

at level 1

at level 2

CHAPTER 10. FUNCTIONS

Program 10.19: Illustrative sample programs for scopes, lexical levels, and prototypes of nested functions

(continued).

174

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

void functl (int &1i) // level 1
{

int funct2 (int 7) // level 2
{
if(§ <= 3)
{
printf ("recursively call funct2() J = %d \n", 3j);
Jt+;

J = funct2(j);
}
else

{
printf ("exit funct2() j = %d \n", J);

Jt+;
}
return j;

}
i = funct2(i);
printf ("after call funct2() i = %d \n", 1i);

if(i < 6)

functl (i) ;

}
functl (1) ;

Program 10.20: Direct recursive functions.

175

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

int functl (int i) // level 1

{
int funct2 (int 7) // level 2

if(j <= 3)

{
printf ("recursively call funct2() J = %d \n", 3j);
Jt+;

J = functl (j);
}
else
{
printf ("exit funct2() j = %d \n", 7J);
Jt+;
}
return j;
}
i = funct2(i);
printf ("after call funct2() i = %d \n", 1i);

if(i < 6)
i = funct2(i);
return 1i;

}
functl (1) ;

Program 10.21: Indirect recursive functions.

recursively call funct2() j = 1
recursively call funct2() j = 2
recursively call funct2() j = 3
exit funct2() j =4

after call funct2()i =5

exit funct2() j=5

after call funct2() i = 6

In Program [10.21] the function functl () calls its local function funct2 () and the local function
funct?2 () calls its upper level function funct1 (). The output of Program [10.21]is as follows:
recursively call funct2() j = 1

recursively call funct2() j = 2

recursively call funct2() j = 3

exit funct2() j =4

after call funct2()i =5

exit funct2() j =5

after call funct2() i = 6

after call funct2() i = 6

176

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

int functl (int i) // level 1

{
int funct2 (int 7) // level 2

{

if(j <= 3)

{
printf ("recursively call funct2() J = %d \n", 3j);
Jt+;

J = funct3(j);
}
else
{
printf ("exit funct2() j = %d \n", 7J);
Jt+;
}
return j;
}
i = funct2(i);
printf ("after call funct2() i = %d \n", 1i);
return 1i;
}
functl (1) ;
int funct3(int 1)
{
i = functl (i);
return i;

Program 10.22: Indirect recursive functions via a top level function.

after call funct2() i = 6

In Programs and [[0.21] the recursive function calls are restricted within the nested functions only.
In Ch, any nested functions can call top level functions. The indirect recursive function calls with top
level functions can be illustrated by Program [10.22] where the function funct1 () calls the local function
funct?2 (). The local function funct?2 () calls the top level function funct 3 () which calls the function
functl (). Therefore, functions functl (), funct2 (), and funct3 () form a closed loop. One
programming alternative for Program [10.22] is to handle both functions funct1 () and funct2 () at
the same lexical level so that the function funct3 () can be removed as shown in Program The
following output from Program [10.23]is the same as that from Program [10.22t
recursively call funct2() j = 1
recursively call funct2() j = 2
recursively call funct2() j = 3
exit funct2() j = 4
after call funct2()i =5
after call funct2()i =5
after call funct2()i =5

177

CHAPTER 10. FUNCTIONS
10.5. NESTED FUNCTIONS

int main () {
_ _declspec(local) int funct2();

int functl (int i)

{
i = funct2(i);
printf ("after call funct2() i = %d \n", 1);
return 1i;

}
functl (1) ;

int funct2 (int 3j)

if(j <= 3)

{
printf ("recursively call funct2() J = %d \n", 3j);
Jt+;

J = functl (j);
}

else

{
printf ("exit funct2() j = %d \n", J);

Jt+;
}

return j;

Program 10.23: Indirect recursive functions at the same lexical level

178

CHAPTER 10. FUNCTIONS
10.6. USING POINTERS TO PASS ARGUMENTS OF FUNCTION BY REFERENCE

after call funct2()i =5

10.6 Using Pointers to Pass Arguments of Function by Reference

When Ch passes arguments to functions it passes them by value. However, in many cases we may want
to alter the passed argument in the function. Assume a sorting routine try to exchange two out-of-order
elements a and b with the function swap (), the following code will not work.

swap (a, b);
where the swap function is defined as

void swap(int x, int y) { // doesn’t work as expected
int temp;

temp = x;

X = Yr

y = temp;
}

Because of call by value, swap () can’t affect the arguments a and b in the calling function. It only swaps
x and y, which are copies of a and b respectively, inside function swap () .

Pointers can be used to pass the addresses of the variables to the functions and access variables through
their addresses indirectly. Using pointers explicitly, the function call in the program becomes

swap (&a, &b)

As mentioned above, the operator ’&’ gives the address of a variable, expression &a is a pointer to a. In this
case, the function swap () should use the addresses rather than the copies of values a and b.

void swap (int xpa, int #*pb) {
int temp;

temp = *pa; // contents of pointer
*pa = *pb;
*pb = temp;

}

In the function definition for swap (), the parameters are declared as pointers pa and pb, and the variables
a and b in the calling function are accessed indirectly through pointers pa and pb .

10.7 Variable Number Arguments in Functions

Ch allows a variable number of arguments to be passed to a function. In some application, numbers of
arguments passed to a function are unknown in advance and could be different for different cases. With
this feature, one function could handle argument lists with different lengths for different cases. A typical
function which takes a variable number of arguments is defined as follows:

179

CHAPTER 10. FUNCTIONS
10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS

Table 10.1: Macros defined in header file stdarg.h for handling variable argument list.

Macro Description

VA NOARG Second argument for va_start(), if no argument is passed to function
CH_UNDEFINETYPE not an array.

CH_CARRAYTYPE C array.

CH_CARRAYPTRTYPE pointer to C array.
CH_CARRAYVLATYPE C VLA array.
CH_CHARRAYTYPE Ch array.
CH_CHARRAYPTRTYPE | pointer to Ch array.
CH_CHARRAYVLATYPE | Ch VLA array.

va_arg Expands to an expression that has the specified type and the
value of the next argument in the calling function.

va_arraytype Determine if the next argument is an array.

va_arraydim Obtain the array dimension of the variable argument.

va_arrayextent Obtain the number of elements in the array of variable argument.

va_arraynum Obtain the number of elements in the array of variable argument.

va_copy Makes a copy of the va_list.

va_count Obtain the number of variable arguments.

va_datatype Obtain the data type of variable argument.

va_end Facilitates a normal return from the function.

va_start Initializes ap for subsequent use by other macros.

va_tagname Obtain the tag name of struct/class/union type of a variable argument.

#include <stdarg.h>
typel funcname (arg_list, type2 paramN, ...) {
va_list ap;
type3 v; // first unnamed argument
va_start (ap, paramN); // initialize the list
v = va_arg(ap, type3); // get 1lst unnamed argument from the list
// get the rest of the list
va_end (ap) ; // clean up the argument list

}

where arg_11st is the argument list of the named argument, paramN is the last named argument and v is
the first unnamed argument of type t ype 3. The data type ChType_t is defined in the header file stdarg.h
also. The standard header file stdarg.h also contains a set of macro definitions which define how to deal
with an argument list. Some of these macros for array types and functions are listed in Table [10.1]

Besides these macros, the type va_list is also defined in header file stdarg.h. It is used to declare an ob-
ject that can hold information of the argument list and refer to each argument in turn. This object is re-
ferred to as ap according to the Ch notational convention. Macros VA_NOARG, va_count, va_datatype,
va_arraydim, va_arrayextent, va_arraynum, va_arraytype, and va_tagname are usefull for implementa-
tion of polymorphic functions. Depending on the array type of its argument, function va_arraytype() returns
a value in one of the macros CH_.UNDEFINETYPE, CH_.CARRAYTYPE, CH_. CARRAYPTRTYPE ,
CH_CARRAYVLATYPE , CH_.CHARRAYTYPE, CH CHARRAYPTRTYPE , CH_.CHARRAYVLATYPE

180

CHAPTER 10. FUNCTIONS
10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS

. Appliction these functions will be described in detail in section

The macro va_start initializes ap to point to the first unnamed argument. It shall be called once before
ap is used. The rightmost named parameter which plays a special role in accessing a variable argument list
is designated paramN here. It is used by va_start to get started. After that, each call of va_arg() returns one
unnamed argument and steps ap to the next one. The macro va_arg takes a type name as an argument to
determine what type to return and where the next unnamed argument to get is. The data type can be a simple
data type, such as int, pointer, or an aggregate data type, such as class, computational array. Finally, after
all of the arguments have been read and before returning from the function, macro va_end must be called
to clean up the argument list. For example, function £1 () in Program takes a variable number of
arguments. The number of arguments, which is specified by the last named argument, arg_num, can range
from 1 to 6. The output of Program [10.24]is shown in Program

In C, functions which take variable-length argument lists must have at least one named parameter prior
to the variable parameter list. In Ch, if there is no named argument prior to the variable parameter list,
macro VA_NOARG is used by va_start to get started. For example, function £2 () in Program [10.26] takes
no named argument. In this case, VA_NOARG can be used by va_start. The number of arguments passed to
the function can be obtained by macro va_count. The output of Program is shown in Program
Ini conjunction with other features, this is useful for function polymorphism.

As an object of va_list, ap can be copied by macro va_copy or passed as arguments to functions. In
Program [10.28] the object of va_list ap2 is a copy of ap. The object ap2 has the same state as ap when it
is copied. It means that ap2 points to the same argument as ap points to when it is copied. In this example,
ap?2 starts from the second argument in the variable-length arguments list. Each invocation of va_copy
macros shall be matched by a corresponding invocation of the va_end macro. Function funct?2 () takes
an argument of type va_list. In Program [10.28] ap is passed to funct2 () as an argument. The output of
Program [10.28]is shown in Program

Using variable number arguments, arrays of different data types can be passed to the same argument of
a function. As an example, the source code for function lindata() with the function prototype

int lindata (double first, double last, ... /* type al:]...[:] */);

defined in header file numeric.h is listed in Program [10.30l This function generates linearly spaced data
with initial and final values specified by input arguments first and last, respectively. Function lindata()
calls the va_arraynum() function to determine the number of elements of the passed array a. It then uses
this information to generate a linearly space data set. The result is finally copied into array a in the third
passed argument using function arraycopy(). The total number of data points generated is passed as the
return value.

Function arraycopy() defined in header file stdarg.h has the prototype of

int arraycpoy (void *des, ChType_t destype,
void *src, ChType_t srctype, int n);

It can be used to pass results of arrays of different data types from a called function to the calling function
using a variable argument list. In Program [10.31] array a of int type and computational array b of double
type in the main() function are assigned with linear-spaced values using the function lindata () and
passed back to the calling function as the third argument. The output from Program [10.31] is shown in

Figure[10.21

181

10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS

#include<stdarg.h>
struct tag {int 1i; float 7j;};

void fl(int arg_num, ...) {
va_list ap;
int 1i;
char *str;
struct tag s;
int =*aj;
int al;

va_start (ap, arg_num);

if (arg_num <= 1)

return;
if (arg_num >= 2) {
i = va_arg(ap, int);

printf ("\nthe 2nd argument is %d\n", 1i);
}
if (arg_num >= 3) {

str = va_arg(ap, char x);

printf ("the 3rd argument is %s\n", str);
}
if (arg_num >= 4) {

s = va_arg(ap, struct tag);

printf ("the 4th argument s.i is %d, s.j is %f\n",
}
if (arg_num >= 5) {

a = va_arg(ap, int x);

printf ("the 5th argument a is %d, %d, %d\n", al0],

}
if (arg_num >= 6) {
al = va_arg(ap, int);
printf ("the 6th argument al is %d\n", al);

va_end(ap);
return;
}
int main () {
struct tag s = {1, 2.0};
int af[] = {1, 2, 3};
int arg_num = 3;
fl (arg_num, 3, "abc");
arg_num = 6;
fl(arg_num, 6, "def", s, a, alll);

return 0;

CHAPTER 10. FUNCTIONS

s.J3);

all]l, alzl);

Program 10.24: Variable-length argument lists.

182

CHAPTER 10. FUNCTIONS
10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS

the 2nd argument is 3
the 3rd argument is abc

the 2nd argument is 6

the 3rd argument is def

the 4th argument s.i is 1, s.j is 2.000000
the 5th argument a is 1, 2, 3

the 6th argument al is 2

Program 10.25: Output of Program [10.24]

#include<stdarg.h>
#include<stdio.h>

void £2(...) {
va_list ap;
int vacount;
int i, num = 0;

va_start (ap, VA_NOARG) ;
vacount = va_count (ap);
printf ("vacount = $d\n", vacount);

while (num++, vacount—--) {
i = va_arg(ap, int);
printf ("argument %d = %d, ", num, 1i);
}
printf ("\n\n");
va_end(ap);
return;

int main () {
f2(1);
f2(1, 2, 3);
f2(1, 2, 3, 4, 5);

return 0;

Program 10.26: No named argument in argument lists.

vacount = 1

argument 1 = 1,

vacount = 3

argument 1 = 1, argument 2 = 2, argument 3 = 3,

vacount = 5

argument 1 = 1, argument 2 = 2, argument 3 = 3, argument 4 = 4, argument 5 = 5,

Program 10.27: Output of Program [10.26

183

CHAPTER 10. FUNCTIONS
10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS

#include <stdarg.h>

int funct2(int num, va_list ap) {
int args;
while (num——) {
args = va_arg(ap, int);
printf ("args in funct2() is %d\n", args);

void functl (int arg_num, ...) {
va_list ap, ap2;
int args;
int num;

va_start (ap, arg_num);

printf ("print with ap\n");

args= va_arg(ap, int); // ap points to the next
printf ("args in functl is %d\n", args);

va_copy (ap2, ap); // ap2 starts from the second argument
num = arg_num - 1;
while (num——) {

args= va_arg(ap, int);
printf ("args in functl is %d\n", args);
}

va_end(ap) ;

printf ("\nprint with ap2\n");
num = arg_num - 1;
while (num—-) {
args= va_arg(ap2, int);
printf ("args in functl is %d\n", args);
}
va_end(ap2); // for va_copy()

/* pass ap as argument to functions =/
printf ("\npass ap to another function\n");
va_start (ap, arg_num); // restart

funct2 (arg_num, ap);

va_end(ap) ;

int main () {
int arg_num = 3;
functl (arg_num, 1, 2, 3);

Program 10.28: ap is copied and passed as arguments.

184

10.7. VARIABLE NUMBER ARGUMENTS IN FUNCTIONS

print with ap

args in functl is 1
args in functl is 2
args in functl is 3

print with ap2
args in functl is 2
args in functl is 3

pass ap to another function
args in funct2() is 1
args in funct2() is 2
args in funct2() is 3

Program 10.29: Output of Program [10.28]

/+ File: lindata.chf «/
#include <stdarg.h>
#include <stdio.h>
int lindata (double first, double last, ...){
va_list ap;
int i, n;
ChType_t dtype;
double step;
void *vptr;

va_start (ap, last);
if (!va_arraytype (ap)) {

CHAPTER 10. FUNCTIONS

fprintf (stderr, "Error: 3rd argument of %s() is not array\n", __ func_);

return -1;

n = va_arraynum(ap);

double al[n];

step = (last - first)/(n-1);

for (1i=0; i<n; i++) {
al[i]l=first+ixstep;

dtype = va_datatype (ap);
vptr = va_arg(ap, voidx);
arraycopy (vptr, dtype, a, CH_DOUBLETYPE, n);

// or arraycopy (vptr, dtype, a, elementtype (double),

return n;

Program 10.30: The source code for function lindata().

185

CHAPTER 10. FUNCTIONS
10.8. POINTER TO FUNCTIONS

#include <numeric.h>
int main () {
int i, a[6], =*p;

array double b[6];

lindata(2, 12, a);

printf("a = ");

for (i=0; i<6; i++) {
printf("sd ", alil);

}

p = &al0];

lindata (20, 120, p, 6);

printf ("\na = ");

for (1i=0; i<6; i++) {
printf("sd ", alil);

}

printf ("\nb = ");

lindata (2, 12, b);

printf ("%g", b);

Program 10.31: Use function arraycopy() to copy an array passed as an argument in function lindata().

a =246 810 12
= 20 40 60 80 100 120
b=214¢6 810 12

o
|

Figure 10.2: Output of Program [10.311

10.8 Pointer to Functions

In Ch, a pointer to function can be defined. Each function contains programming statements which are
located in memory. A function pointer is a variable containing the address of the function. A function’s
address is the entry pointer of the function. So, a function pointer can be used to call a function. Furthermore,
a function pointer can be assigned, placed in arrays, passed to functions, returned by functions, and so on.
The declarations of function pointers are shown below.

void (xfl) (void);

int (x£f2) ();

int (x£3) (float f);
typedef int (xPF) (int 1i);
PEF f4;

where f£1 is declared as a pointer to function which has no return value or arguments; £2 is declared as
a pointer to function which returns an integer with or without arguments; £3 is declared as a pointer to
function which returns an integer and takes an argument of float type. Like other data types, pointer to
function can be defined as a user-defined data type. Data type PF is typedefed as pointer to function which
returns an integer and takes an argument of int. Therefore, £4 is a variable of type PF, i.e. a pointer to
function. Program [10.32] illustrates how a pointer to function is used. fun () is a regular function which

186

CHAPTER 10. FUNCTIONS
10.8. POINTER TO FUNCTIONS

int fun (float f) {
printf("f = %f\n", f);
return 0;

}

int main() {
int (xpf) (float £f);

fun (10) ;

pf = fun; // no & before fun
pf(20); // call function fun by calling pf

return 0;

}

/* execution and output

f = 10.000000
f = 20.000000
*/

Program 10.32: Use pointer to function.

has the same prototype as the function pointed to by pf. After the declaration and assignment of pf, the
function fun can be called by using pf. The execution and output of Program [10.32]is attached at the end

of the program.
Note that, like an array name, a function name stands for the address of a function, The address operator

’&” 1s ignored in both C and Ch. For example, statement
pf = &fun;
is treated as
pf = fun;
Two pointers to functions can be compared like other pointers. For example, given

int fun (float f) {
printf ("f = $f\n", f);
return 0;

}

int (xpfl) (float f);

int (xpf2) (float f);

pfl = fun;
rf2

fun;

the equality pf1 == pf2 holds.

Pointers to functions can be placed in an array or struct. Array of pointers to functions is an effective
way to implement a menu. In Program[10.33] array opt i ons has three elements of pointers to functions. It
can be defined as int (xoptions[]) (),an array of pointers to functions which return values of int. In
program [10.33] the declaration of array options is simplified by a new data type PF which is defined as

187

CHAPTER 10. FUNCTIONS
10.9. COMMUNICATION BETWEEN FUNCTIONS

typedef int (*PF) (), a pointer to function which returns a value of int. Function getChoice ()

returns an integer which is used as the subscript of array options to call the corresponding function. The
interactive execution and output of Program [10.33]is attached at the end of the program. Pointers to functions
can be passed as arguments to functions, which is commonly used to set callback functions. Program [10.34]
is an example of using pointers to functions as arguments of functions. Function £2 takes two arguments,
one is a function pointer pf and the other is an integer. Inside function f 2, the argument of function pointer
is used to call the function which takes an argument of int. In the main function, the name of function £1 ()

is passed to £2 () as a function pointer. The execution and output of Program [[0.34]is attached at the end
of the program.

Like regular pointers, function pointers not only can be arguments of functions, but also be returned val-
ues of functions. Program [10.33]is rewritten in Program Instead of the array of pointers to functions,
function processChoice () is used to process different options. The return data type PF of function
processChoice () is defined as a function pointer type. The function processChoice () can be
prototyped either by PF processChoice (int 1); orby int (xprocessChoice (int)) ();
Another way to obtain a function pointer through a function is to pass the address of a function pointer
(pointer to pointer to function) to the function. In Program function processChoice?2 () takes
two arguments, one is a pointer to pointer to function, and the other is an integer which is the option returned
by function getChoice (). Infunctionmain (), the address of function pointer p £ is passed into function
processChoice? (), then the proper function pointer is assigned into the address of pf according to the
option i. After calling function processChoice?2 (), through pointer to function pf, one of functions
optl (),opt2 () and opt3 () is called.

Pointers to nested functions are treated the same as pointers to regular functions as shown in Pro-
gram[I0.37] where fp is a pointer to the nested function func () . The output from executing Program [10.37]
is attached at the end of the program.

Pointers to functions can be used for registering callback functions. In Ch, when a local function is
registered as a callback function, it can only use local variables, arguments of the local function, or global
variables, but no intermediate variable in the enclosing block of nesting function is allowed.

10.9 Communication between Functions

Because of nested functions, more options are available for communication between functions in Ch than in
C. Methods for communication between functions in Ch can be summarized as follows.

Functions in Ch can communicate through return values, arguments, and variables at higher lexical
levels. The input to a function can be obtained from its arguments or using the variables at higher lexical
levels. The output of a function can be a return value, its arguments, and variables at higher lexical levels.
In order to pass results back to the calling function from the called function, one can use pointers for pass-
by-value or use references for pass-by-reference. If a function is used as an operand in expressions, the
result from the function should be implemented as a return value. If a large number of variables must be
shared among different functions, variables at higher lexical levels are more convenient than long argument
lists. Programs written using nested functions in Ch tend to be modular. For better readability, a function
shall not be defined across multiple files, hence, local variables inside a function are not visible outside the
file within which the function is defined. Variables at higher lexical levels are useful for communication
between local functions, especially if local functions must share some data yet neither calls the other. To
avoid too many data connections between functions, a function that is self-containing should communicate
with other functions with its arguments and return value.

188

10.9. COMMUNICATION BETWEEN FUNCTIONS

#include <stdio.h>
#include <stdlib.h>

int optO0() {
printf ("to handle option 0\n");
return 0;

int optl() {
printf ("to handle option 1\n");
return 0;

int opt2() {
printf ("to exit\n");
exit (0);

int getChoice () {

int 1i;

printf ("input the choice (0,1,2): ");
scanf ("%d", &i);

if (1 > 2 || 1 <0) i=2;

return 1i;

typedef int (xPF) ();
int main() {
// or int (xoptions[]) () = {
PF options[] = {
optO0,
optl,
opt2,
}i

do {
options[getChoice ()] ();

}

while (1);

return 0;

/*xx**x execution and output
input the choice (0,1,2): O
to handle option 0

input the choice (0,1,2): 1
to handle option 1

input the choice (

to exit

*okkKkkk/

CHAPTER 10. FUNCTIONS

Program 10.33: Implement a menu using pointers to functions.

189

CHAPTER 10. FUNCTIONS
10.10. THEMAIN () FUNCTION AND COMMAND-LINE ARGUMENTS

#include<stdio.h>

int fl(int 1i

) |
printf("i =

sd\n", 1i);
return 0;
}
int £2(int (*xpf) (), int 1) |

pf(1);
return 0;

}

int main () {
f2(f1, 5);
return 0;

}

/% execution and output
i =25

*/
Program 10.34: Example of passing function pointer as argument to function.

10.10 Themain () Function and Command-Line Arguments

The main routine main () is a special function. Command-line arguments or parameters can be passed to a
program through the arguments of the function main () in two formats shown below.

int main(int argc, char xargv([], char xxenviron) {

}

int main(int argc, char xargv[]) {

}

The function main () can have up to three arguments. The first argument, conventionally called argc
for argument count, is the number of the command-line arguments; the second, called argv for argument
vector, is a pointer to an array of character strings of variable length. Each string contains one argument of
the command line. Therefore, the argument argv can also be considered as a pointer to pointer to char.
Then, the function main () can be written alternatively as

int main(int argc, char x*argv) {

}

The third optional argument is a pointer to the table of environmental variables. When a program is invoked,
values for arguments argc and argv of the function main () are passed to the program by the Ch pro-
gramming environment. Following the C standard, argv [0] is the name of the program so that argc is
at least 1. If argc is 1, there are no command-line argument after the program name. In addition, the value
of argv [argc] is a null pointer. For example, Program [10.38 will echo its command-line arguments on a
single line, separated by blanks. Assume that the file name of Program is echo, Program [10.38| can
be executed in Ch command line mode as follows,

190

CHAPTER 10. FUNCTIONS
10.10. THEMAIN () FUNCTION AND COMMAND-LINE ARGUMENTS

#include <stdio.h>
#include <stdlib.h>

typedef int (*PF) ();

int optO0() {
printf ("to handle option 0\n");
return 0;

int optl() {
printf ("to handle option 1\n");
return 0;

int opt2() {
printf ("to exit\n");
exit (0);

int getChoice () {
int 1i;
printf ("input the choice (0,1,2): ");
scanf ("%d", &i);
if(i > 2 || i < 0)
i=2;
return 1i;

}

// or int (sprocessChoice(int 1i)) () {
PF processChoice(int i) {
switch (i) {
case 0:
return optO0;
case 1:
return optl;
default:
return opt2;

}

int main() {
do {
// call function returned from processChoice ()
processChoice (getChoice()) ();
}
while (1) ;

return 0;

Program 10.35: Example of returning a function pointer.

191

CHAPTER 10. FUNCTIONS
10.10. THEMAIN () FUNCTION AND COMMAND-LINE ARGUMENTS

#include <stdio.h>
#include <stdlib.h>

int optO0() {
printf ("to handle option 0\n");
return 0;

int optl () {
printf ("to handle option 1\n");
return 0;

int opt2() {
printf ("to exit\n");
exit (0);

int getChoice () {
int 1i;
printf ("input the choice (0,1,2): ");
scanf ("%d", &i);
if(i > 2 || i < 0)
i=2;
return 1i;

}

void processChoice?2 (int (x*pf) (), int 1) {
switch (i) {
case 0:
*pf = opt0;
break;
case 1:
*pf = optl;
break;
default:
*pf = opt2;
}
return;

}

int main() {

int (xpf) (

do {
processChoice2 (&pf, getChoice());
pf();

}

while(1);

return 0;

)i

Program 10.36: Example of passing address of function pointer as argument to function.

192

CHAPTER 10. FUNCTIONS

10.10. THEMAIN () FUNCTION AND COMMAND-LINE ARGUMENTS

int main () {

int func(int i) {
printf("i in funcl() = %d\n", 1i);
return 2+i;

}

int 3;

int (xfp) (int);

fp = func;
j = fp(10);
printf("j in main() = %d\n", Jj);
}
/* output
i in funcl () = 10
J in main() = 20
*/

Program 10.37: Pointer to a nested function.

int main(int argc, char xargv|[])
// or int main (int argc, char xxargv)

{

int 1i;

for(i = 0; 1 < argc; i++)
printf ("%s ", argv[il]);

/% or */

// do{

// printf ("$s ", argv([il]);

// ltwhile (argv[++i] != NULL);

printf ("\n");

Program 10.38: Command line arguments in the main () routine.

193

CHAPTER 10. FUNCTIONS
10.10. THEMAIN () FUNCTION AND COMMAND-LINE ARGUMENTS

> echo testing example -a
echo testing example -a
>

where the command line echo testing example -a with four arguments is also the output of the
program.

One of the common conventions of programs on Unix systems is that the argument beginning with a
minus sign ‘-’ indicates an option. For example, the which.ch program in Ch can take two valid options,
—-a and -v. The command which -a finds all commands, including environment variables and header
files. The command which -v sends out search messages if the name is not found. These two options can
be used at the same time, for example, which —-a —-vorwhich -va

Program is the code for handling command-line arguments, which is extracted from the program
which.ch. Here, the variables a_option and v_opt ion indicate that the options —a and —v are on or not.
Their values are false by default. If there is no command-line argument, the program will print out the
error message, because the program which.ch at least has one argument, i.e. the name to be searched for.
The while-loop in this program handles all arguments which begin with the minus sign —. If the argument
which is pointed to by the pointer argv begins with the minus sign, the equality

xxargv == ' -’

holds. The statement
s = argv[0]+1

makes s point to the second character of this argument. More information about pointers to pointers is avail-
able in section If the characters ‘a’ and ‘v’ are found in these arguments, the variables a_option and
v_option are set to true, respectively. If other characters are found, the error messages will be printed out.
At the end of Program [10.39] options and the remaining command-line arguments are printed out. Assume
that the file name of Program is commandline. ch, the results from executing Program with
different options are shown below.

> commandline.ch —-a -v argl
option —-a is on

option -v is on

argl

> commandline.ch —-av argl
option —-a is on

option -v is on

argl

> commandline.ch -v argl arg?2
option -v is on

argl

argz

The function function main() can also be used with three arguments. The third optional argument is a
pointer to the table of environmental variables. The program below can be used to print out all environment
variables and their corresponding values.

#include <stdio.h>
int main(int argc, char xargcv[], char x*environ) {
int 1i;

194

CHAPTER 10. FUNCTIONS
10.10. THEMAIN () FUNCTION AND COMMAND-LINE ARGUMENTS

#include <stdio.h>
#include <stdbool.h>

int main(int argc, char xxargv) {

char +s;
int a_option = false; // default, no -a option
int v_option = false; // default, no -v option
if (argc == 1) { // no argument
fprintf (stderr, "Usage: which [-av] names \n");
exit (1);
}
argc-—; argv++; // for every argument beginning with -
while (argc > 0 && **argv == ’'-')

{
/* empty space is not valid option =/
for(s = argv[0]+1; xs&&xs!=’ ’; s++) { // for -av
switch (*s)
{
case "a’:
a_option
break;
case 'v’:
v_option = true; // print message
break;
default:
fprintf (stderr, "Warning: invalid option %$c\n", =s);
fprintf (stderr, "Usage: which [-av] names \n");
break;

true; // get all possible matches

}

argc-—; argv+t;

if (a_option)
printf ("option -a is on\n");
if (v_option)
printf ("option -v is on\n");
while(argc > 0) { // print out the remaining arguments
printf ("$s\n", xargv);
argc——; argv++;
}

return 0;

Program 10.39: Program commandline. ch for handling command-line arguments.

195

CHAPTER 10. FUNCTIONS
10.11. FUNCTION FILES

for (i=0; environ[i] != NULL; i++) {
printf ("environ[%d] = %s\n", i, environ[i]);

}

Alternatively, using global variable environ defined in the header file std1ib . h, the following program
can also print out all environment variables and their corresponding values.

#include <stdlib.h>
#include <stdio.h>

int main () {
int 1ij;
for (i=0; environ[i] != NULL; i++) {
printf ("environ[%d] = %s\n", i, environ[i]);

10.11 Function Files

A Ch program can be divided into many separate files. Each file consists of many related functions, at the
top level, which are accessible to any part of a program. Each top-level function may subsequently contain
many local functions in the nested form as described in the previous sections. A file that contains more
than one function is usually suffixed with . ch to identify itself as part of a Ch program. One can create a
function file in a Ch programming environment. A function file in Ch is a file that contains only one function
definition. The name of a function file ends in . chf, such as gsort . chf. The names of the function file
and function definition inside the function file must be the same. The functions defined using function files
are treated as if they were the system built-in functions in a Ch programming environment. For example,
if a file named gsort.chf contains the program shown in Program the function gsort () will
be treated as a system built-in function, which can be called to sort elements of a one-dimensional array
in an increasing order. In Program [10.40] the function gsort () is called recursively to sort elements of a
one-dimensional array in an increasing order. The function swap () is used only by the function gsort (),
where swap () is defined as a local function. Therefore, the function gsort () can be used as a stand-
alone system function, which is illustrated by Program [[0.41] In Program [[0.41] the function gsort ()
is called without a function prototype in the main() function so that the function prototype defined inside
the function file gsort . chf will be invoked. Note that the return type of the function gsort () is void.
Without function files, the default return type for functions, which are invoked before they are prototyped or
defined, is int. The output of Program [[0.41]is as follows
al0] =1al[l] =2al2] =3al[3] =4al[4] =5a[5] =6

In Ch, local functions can be defined inside a function which can be called recursively as shown in
Program [10.40l The function in a function file may call other function files and even recursively call itself
indirectly. Like system built-in functions that can be replaced by changing keywords, the function defined
in a function file can be suppressed in a Ch program. If a function is defined in a program before it is
called, the user-defined function will be used in the program. Similarly, if a function is prototyped before
it is called, it is a user defined function. If the function is prototyped, the user must define it somewhere,
regardless of whether it has been defined in a function file or not. Although many functions can be defined
in a function file, it is a good practice to contain only one function and many local functions in a function
file. For example, if one wants to treat the function funct () as a top level system function, it is a bad
design to include other functions in the function file funct . chf as shown in Program [10.42]

196

CHAPTER 10. FUNCTIONS
10.11. FUNCTION FILES

/* gsort: sort v[left] .. v[right] into increasing order =/
void gsort (int v[], int left, int right) {
int i, last;
/* interchange v[i] and vI[]j] =*/
void swap(int v[], int i, int j) // local function
{
int temp;
temp = v[i]; vI[i] = vI[3j]; vVvI[]] = temp;

if(left >= right)

return;
swap (v, left, (left + right)/2);
last = left;

for(i = left+l; i <= right; i++)
if(v[i] < v[left])
swap (v, ++last, 1i);

swap (v, left, last);
gsort (v, left, last-1);
gsort (v, last+l, right);

Program 10.40: The function file gsort . chf for the function gsort () .

int main () {
int i, al] = {2, 6, 5, 3, 4, 1};

gsort(a, 0, 5);

for (1i=0; 1i<=5; 1i++) {
printf("a[%d] = %4 ", i, alil);

}

printf ("\n");

Program 10.41: A program using the function file gsort .chf.

197

CHAPTER 10. FUNCTIONS
10.12. GENERIC FUNCTIONS

int funct ()
{
void localfunctl() // OK
{ 1}
void localfunct2() // OK
{ 1}
}
int anotherfunct () // bad
{ 1}

Program 10.42: More than one top level function in the function file funct.chf.

As described in section[6.4] functions defined in function files cannot be used as initializers for identifiers
of static variables at the function or block scope.

10.12 Generic Functions

A generic function is a built-in system function. A list of generic functions in Ch is given in section 2.2
Most generic functions are polymorphic. When a generic function such as sin() is explicitly called, the built-
in system function is used even if the user has redefined the function. In this case, the user defined function
will be ignored. For example, function call of sin(x) uses the built-in system function so that argument x can
be any valid data type for function sin().

However, there are no corresponding standard C functions for generic functions alias(), dlrunfun(),
elementtype(), polar(), max(), min(), and transpose(). The user shall not redefine these generic functions.
Execpt for function polar(), when one of these generic functions is redefined, a warning message will be
displayed.

When a generic function name is assigned to a pointer to function, the standard C function is used. For
example, in the following code fragment with symbol sin,

#include <math.h>
double funcl (double (*xfp) (double), double x) {
return fp(x);
}
int main () {
double (xfp) (double) = sin;
fp = sin;
double val;
val = fp(10.0); // same as val = sin(10.0);
funcl (fp, 10);
funcl (sin, 10);

}
the standard C function with the prototype of
double sin (double);

is used. The user can use a generic function name as an identifier of non-function type. For example, names
of generic functions max, min, and exp are declared as scalar variables below.

198

CHAPTER 10. FUNCTIONS
10.12. GENERIC FUNCTIONS

double max;
void func2 () {
int min, exp;

}

Generic functions can be used in system startup files chrc, and .chrc in Unix and _chrc in Windows in
the user’s home directory.

199

Chapter 11

Reference Type

This chapter presents linguistic features of references as they are currently implemented in Ch. A program
written in a procedural computer programming language is generally formed by a set of functions, which
subsequently consist of many programming statements. Using functions, a large computing task can be
broken into smaller ones, a user can develop application programs based on what others have done instead of
starting from scratch. The performance and user-friendly interface of functions are critical to a programming
language. The user may not need to know details inside functions that were developed by others. But, to
use the functions effectively, the user has to understand how to interface functions through their arguments
and return values. In general, arguments can be passed to functions in one of two ways: call-by-value and
call-by-reference. In the call-by-value model, when a function is called, the values of the actual parameters
are copied into formal parameters local to the called function. When a formal parameter is used as an lvalue
(the object that can occur at the left side of an assignment statement), only the local copy of the parameter
will be altered. If the user wants the called function to alter its actual parameters in the calling function, the
addresses of the parameters must be passed to the called function explicitly. In the call-by-reference method,
however, the address of an argument is copied into the formal parameter of a function. Inside the function,
the address is used to access the actual argument used in the calling function. This means that when the
formal parameter is used as an lvalue, the parameter will affect the variable used to call the function.

FORTRAN uses the call-by-reference model, whereas C uses the call-by-value. FORTRAN is one of the
oldest computer programming languages and it is still the primary language for scientific supercomputing.
There are numerous well-crafted FORTRAN programs. When a FORTRAN subroutine or function is ported
as a function in C, the formal arguments of the subroutine are generally treated as arguments of pointer type
in the function of C. All variables of arguments inside a subroutine then have to be modified accordingly,
which may degrade the clarity of the original algorithm and code readability. This is also a point where
beginners of C who have prior FORTRAN experience get confused. Ch is designed to be a superset of C, but
it encompasses all the programming capabilities of FORTRAN 77. To bridge the gap between FORTRAN
and C and to ease the pain of porting FORTRAN code to Ch, many programming features such as complex
type and arrays of assumed-shape have been designed and implemented in Ch. References are added to Ch
to further simplify the porting of subroutines and functions in FORTRAN to functions in Ch.

Adding references to C is not new. C++ has reference types. The primary use of references in C++ is in
specifying operations for user-defined types. The references in Ch not only ease the porting of FORTRAN
code to Ch and to make Ch more suitable for scientific programming and for novice users, it is also essential
for passing arguments to functions in a safe Ch program where pointers are restricted. References in Ch are
designed and implemented in the spirit of C, C++, and FORTRAN. We have extended the linguistic features
of references in C++ and FORTRAN for scientific programming. In Ch, both variables of basic data type,
and variables of pointer type can be used as references. In addition, variables of different data types can be

200

CHAPTER 11. REFERENCETYPE
11.1. REFERENCES IN STATEMENTS

passed to arguments of functions by reference. Furthermore, references can be used as arguments and local
variables of nested and recursively nested functions.

11.1 References in Statements

A reference in Ch is an alternative name for an object just as in C++. The declaration statement
int i, &j = i;

indicates that the variable j is a reference to i of int data type. In other words, j is an alias to i. If the
variable that is declared and the variable that is referenced are the same data type, they can be considered to
be references to each other. Therefore, we may also say that 1 is a reference to j in the above example. Both
variables 1 and j share the same memory space inside the system. Once a linkage has been established for
two variables of the same type, they can be used interchangeably. For example,

int i, &3 = i;
i++; // the same as ' j++’

In C++, only simple variables of basic data type can be treated as references. In Ch, not only can simple
variables of basic data type, be declared as references, but also variables of pointer type. For example,

int i, *pl = &i, **xp2 = &pl;
int &xppl = pl, &**pp2 = p2;

where pp1 is a reference to p1 of pointer to int and pp?2 is a reference to p2 of pointer to pointer to int.

A reference must be initialized at the declaration stage. Once the reference relation has been established,
it cannot be changed. For example, the following code has syntax errors because the variables j and p of
reference are not initialized.

int &3; // ERROR: reference not initialized
int &*p; // ERROR: reference not initialized

More than two variables can refer to the same memory location. For example,

int i, &3 = 1i, &k =1, &1 = k;
int &m = 1i;

where variables 1, j, k, 1 and m are referenced to each other. The modification of one variable will
affect all other variables.

To avoid the aliasing and to simplify implementation, only simple variables can be referenced to each
other at its current implementation of Ch. If the rvalue initialized to a reference is not a simple variable, the
reference will be treated as a simple variable and the initialization will be treated as the initialization for the
simple variable. For example, all references in the following declaration are effectively treated as simple
variables in the system.

int a[10];

float £, *fp = &f;

complex z;

int &1 = 6; // int i = 6;

int &j =6+all]; // int jJ 6+all];

201

CHAPTER 11. REFERENCETYPE
11.1. REFERENCES IN STATEMENTS

int &*pp = &i+6; // int xpp = &1i+6;

float &fl = real (complex(1l,2)); // float f1 = real (complex(1l,2));
float &f2 = real(z); // float f2 = real(z);

float &f3 = a[ll; // float £3 = a[l]l;

float &f4 = xfp; // float f4 = *fp;

float &xp = &f; // float *p = &f;

f = 5; // the same as *fp = 5 or *p = 5;

real (z), all] and xptr are lvalues in the above example, but they are not simple variables. Therefore,
they cannot be references. Note that the pointer p is pointed at the address of the variable f in the C
conforming manner.

Variables of different data types can also be considered as references so long as their data types are
compatible. For example, in the following code

int i1 = 30;
double &d = 1i;
printf ("d = %1f \n", d); // output: d = 30.000000

The variable d of double data type is a reference to int of i. Both variables i and d refer to the same
memory space of an int which occupies four bytes. The data type of the variable d is double, therefore, the
results of abs(d) and d+3 are doubles. When d is used in an expression, the value of int will be converted
into double implicitly prior to the execution of the operation. In the same token, when d is used as an
Ivalue in an assignment statement, the result of the rvalue will be cast into an int before it is assigned to
the memory which has only four bytes. Therefore, if the value is beyond the range for the integer value
of [INT_MIN, INT_MAX], the information may be lost because of the implicit data conversion. On the
other hand, if a variable of int is a reference to a variable of double, all information, except the fractional
part of the double variable, will be preserved. For example,

double d = 3.6;

int &i = d;

printf("i = %i \n", i); // output: i = 3

i = 7; // i ="7; d 7.000000
d = 5.2; // 1 =5; d= 5.2

where both variables i and d share the same memory space of a double datum which is eight bytes. Variables
of incompatible data type cannot become references. For example,

int i, *p = &i;
int &*ptr = i; // data types of ptr and i are incompatible
int &3 = p; // data types of Jj and p are incompatible

The reference linkage can also be applied to variables at different lexical levels. Variables at a lower
lexical level can be declared and initialized to refer to a variable defined at a higher lexical level as shown in
the following sample code

int 1 = 8;
void funct ()

{
int &3 = i, &k =i; // J =8; k = 8;

CHAPTER 11. REFERENCETYPE
11.2. PASSING ARGUMENTS OF FUNCTION BY REFERENCES

printf("j = %4, ", J); // output: j = 8,

j =90;
}
funct () ; // get output: j = 8
printf("i = %d \n", i); // output: i = 90

where both variables j and k share the same memory space with the variable i. The output of the above

program is as follows:
j=81i=90

11.2 Passing Arguments of Function by References

In C, when a function is called, the actual arguments of the calling function are passed to arguments of the
called function by value. The values of the actual parameters are copied into formal parameters local to the
called function. When a formal parameter is used as an lvalue, only the local copy of the parameter will
be altered. Therefore, the function swap () below will not work correctly because x and y are passed by
value.

int a = 5, b = 6;
void swap (int x, V)
{
int temp;
temp = x; x = y; y = temp;
}
swap(a, b); // fails to swap a and b

In C, if the user wants the called function to alter its actual parameters in the calling function, the addresses
of the parameters must be passed to the called function explicitly. One correct version of the function
swap () is to use pointers to pass the addresses of variables in the calling function to the called function as
shown in the following code.

int a =5, b = 6;
void swap (int #*x, *y)
{
int temp;
temp = *X; *x = *xy; *y = temp;
}
swap (&a, &b); // a = 6; b =75;

where the indirection operations are used to change the values of variables in the calling function.

In the call-by-reference method as in FORTRAN, however, the address of an argument is copied into the
formal parameter of a function. Inside the function, the address is used to access the actual argument used
in the calling function. This means that when the formal parameter is used as an lvalue, the parameter will
affect the variable used to call the function. When references in Ch are used as arguments of functions, the
functions will be called by reference. The function swap () can be implemented using references in Ch as
follows:

203

CHAPTER 11. REFERENCETYPE
11.2. PASSING ARGUMENTS OF FUNCTION BY REFERENCES

int 1 =5, #*pl = &i, *x*p2;
int &*ppl = pl, &xxpp2 = p2; // ppl = &1

P2 = malloc(5*sizeof (int));
void functl (inté& =xp)
{
p = malloc(9);
printf("In funct2() p = %$p \n", p);
}
printf ("Before functl() ppl = %p \n", ppl);
functl (ppl);
printf ("After functl() ppl = %p \n", ppl);

void funct2 (inté& x=*pp)
{
ppt+;
printf("In funct2() pp = %p \n", pp);

}

printf ("Before funct2() pp2 = %p \n", pp2);
funct2 (pp2) ;

printf ("After funct2() pp2 = %p \n", pp2);

Program 11.1: References to pointers in Ch.

int a = 5, b = 6;
void swap (int &x, &y)
{
int temp;
temp = x; x = y; vy = temp;
}
swap (a, Db); // a = 6; b =05;

where no pointer indirection is involved.

In C, if a function needs to change the value of a variable of pointer type through an argument of the
function, a pointer to pointer, that is, a double pointer, has to be passed to the function. In Ch, not only simple
variables, but also pointers can be passed by reference as shown in Program [[1.1l In Program [I1.1] the
pointer variable ppl points at the memory location for the variable i before the function functl (ppl)
is called. The pointer ppl points at the newly allocated memory space of 9 bytes through the function call
of funct1l (ppl), which is achieved by the formal argument p of the function. Similarly, the variable of
double pointer pp?2 is passed to the formal argument pp of the function funct?2 (). It is incremented by 4
bytes, the space for an int, by the address arithmetic inside the function. The output of Program [[1.1lis as
follows:

Before functl() ppl = 11b578
In funct2() p = 11ea38
After functl() ppl = 11ea38

204

CHAPTER 11. REFERENCETYPE
11.2. PASSING ARGUMENTS OF FUNCTION BY REFERENCES

void deallocate (void &* ptr)
{
free (ptr);
ptr = NULL;
}
void *p;
p = malloc(10);
deallocate(p); // free memory and reset p to NULL

Program 11.2: Function deallocate () free the memory and reset the pointer to NULL.

int 1i;
void funct (int &rl, &r2, r3)
{
rl = 3; r2++; r3++;
printf ("rl = %d\n", rl); // output: rl = 4
}
funct (i, i, 1);
printf("i = %d\n", i); // output: i = 4

Program 11.3: A same variable passed to different references

Before funct2() pp2 = 11e930
In funct2() pp = 11e934
After funct2() pp2 = 11e934

In Ch, the function free (ptr) will deallocate the memory pointed at by the pointer pt r and reset
the pointer pt r to NULL. In C, ptr is not set to NULL when the memory it points to is deallocated. This
dangling memory makes the debugging of a C program very difficult because the problem will not surface
until this deallocated memory is claimed again by other parts of the program. Because the function free()
is implemented as an external function in C, there is no way to set the pointer ptr to NULL when it is
freed by the function call of free (ptr). But, if references were added to the C, we could implement
the function deallocate (ptr) which would free the memory, pointed to by the pointer pt r, and reset
ptr to NULL as shown in Program [I1.2]in Ch. In Program [I1.2] we assume that the function free() is a C
function which does not set its argument to NULL upon the completion of the function call.

In Ch, the same memory space of a variable can be passed to different references in the arguments of
a function. For example, in Program both arguments r1 and r2 in the function funct () use the
same memory space of the variable i whereas r3 has its own local memory when the function is called by
funct (i, i, 1).

In FORTRAN, when an argument of a function is used as an Ivalue inside a subroutine, the actual
argument in the calling function must be a variable. Unlike in FORTRAN, a reference variable in Ch can
be used as an Ivalue inside a function even if the actual argument is not an lvalue. If the actual argument of
a function, corresponding to a reference in the formal definition, is not a simple variable, the argument will
be passed by value. In Program [I1.4] references r1 and r2 are used as Ivalues in the function funct ().
The function call of funct (i+8, 6) passes expressions i+8 and 6 to references r1 and r2, respectively.
Note that the reference k, instead of the variable j, is passed to the reference r2 in the function call of
funct (i, k). In the function call of funct (abs (-3), funct (1, 2)), the user-defined function

205

CHAPTER 11. REFERENCETYPE
11.3. PASSING VARIABLES OF DIFFERENT DATA TYPES TO THE SAME REFERENCE

int i =50, =0, &k = 3j;
int funct (int &rl, &r2)
{

rl += 100;

r2 += rl+2;

printf ("rl = %d, r2 = %d\n", rl, r2);

return rl+r2;
}
funct (i+1, 3) ; // output: rl = 151, r2 = 156
funct (1, k) ; // output: rl = 150, r2 = 152
funct (abs (-3), funct(1l,2)); // output: rl 101, r2 = 105

// output: rl = 103, r2 311

printf(i, " ", J, "\n"); // output: 150 152

Program 11.4: Using references as Ivalues when actual arguments are expressions.

int i=5;
void funct (int 3j)
{
int &r = 3J;
printf("r = %d ", 1r);
r++;
printf("j = %d ", 3J);
}
funct (1) ;
printf("i = %d\n", 1);

Program 11.5: Local variable is a reference to the argument of the function.

uses the system built-in function abs () and itself as arguments of the function.

Local variables inside functions can be references to the arguments of functions. For example, in Pro-
gram the local variable r is a reference to the integer argument j of the function. The output of
Program [I1.3]is as follows:
r=5j=6i=95

11.3 Passing Variables of Different Data Types to the Same Reference

Like initializing a reference with a variable of different data type in a declaration statement, variables of
different data types can also be passed to references in the arguments of functions. The interface rules in
this case are similar to those described in section For example, in Program the variables r1 and
r2 inside the function funct () share the same memory spaces of the variables £ and i in the function
call of funct (£, 1), respectively. The interface of arguments is treated as if the values of variables £
and i were converted to int and complex types first and then copied to variables r1 and r2, respectively.
When the flow of program execution exits the function, the results of r1 and r2 were then converted to the
values of variables f and i, respectively. The ability to interface different data types in function arguments

206

CHAPTER 11. REFERENCETYPE
11.3. PASSING VARIABLES OF DIFFERENT DATA TYPES TO THE SAME REFERENCE

float £ = 90;
int 1 = -4,
void funct (int &rl, complex & r2)
{
printf("rl = %d ", rl++);
printf ("sgrt(r2) = %.3f \n", sqgrt(r2--));
}
funct (£, i); // output: rl = 90 sqgrt(r2) = complex(0.000,2.000)
printf(£," ", i,"\n"); // output: 91.000 -5

Program 11.6: Passing actual arguments to references with different data types.

float £ = 90;
int 1 = -4;
void funct (int xrl, complex * r2)
{
printf("rl = %d ", (xrl)++);

printf ("sgrt(r2) = $.3f \n", sgrt((xr2)--));
}
funct (&f, &i); // output: rl = 1119092736 sqrt(r2) = complex (NaN, NaN)

printf(£," ", i,"\n"); // output: 90.000 -4

Program 11.7: Passing pointers of different type to arguments of pointer type in functions.

is a significant enhancement as there is no way to pass variables whose data types are different from their
definitions and get the correct results back in C. Note that the square root of an int datum returns a float in
Ch, therefore, sqrt(—4) is NaN. Program [I1.6]is different from Program [I1.7l In Program [[1.7, when the
address of the variable f is passed to the argument r1 in the function call of funct (&£, &1), nothing but
the address is passed. Inside the function, the memory map of a float is used as a memory map for an int,
which may not be what the user intended to do. Similarly, the memory location for the variable i of int is
passed to the pointer to complex of the variable r2 in the function call.

If the actual argument of a reference of a function call is not a simple variable, the reference inside the
function will be treated as a simple variable. If the actual argument of a reference of a function call is not a
simple variable and its data type is different from its definition, the result will be converted to the data type
of the definition before it is assigned to the variable of the reference. For example,

void funct (float &r)
{

printf ("r = %.3f \n", 1r);
}

funct (90.0) ; // output: r = 90.000
funct (90) ; // output: r = 90.000
funct (complex (90,0)); // output: r = 90.000
funct (complex (1,2)); // output: r = NaN

Note that the real number converted from a complex number whose imaginary part is not identically zero is
NaN.

207

CHAPTER 11. REFERENCETYPE
11.3. PASSING VARIABLES OF DIFFERENT DATA TYPES TO THE SAME REFERENCE

When a simple variable whose data type is different from the formal definition of a reference argument
of a function is passed to the argument of the function, the Ch program will reconcile the value when it
is used as an lvalue or operand in expressions. However, if the argument of a function is a reference to
pointer data type, the system will treat the object passed into the function as the pointer type declared for the
reference. In other words, only the memory for the object is used and its original pointer type in the calling
function will be ignored inside the function. For example, in Program[I1.8] variables p1 and p2 are pointers
to int and float, respectively. They have been passed to the function funct (int &, float &=*) by
the function calls of funct (pl, p2) and funct (p2, pl). When the reference of pointer type is
passed with different data type, the indirection operation will not be reconciled to deliver the correct result
in the function call of funct (p2, pl). The output of Program [I1.8lis as follows:
before: Fiptr = 4 *fptr = 5.000000
after: *iptr = 90 *fptr = 90.000000
*nl = 90 *p2 = 90.000000
before: *iptr = 1084227584 *fptr = 0.000000
after: *iptr = 90 *fptr = 90.000000
*pl = 1119092736 *p2 = 0.000000
However, a reference to a pointer can be used as a regular pointer inside the function when no indirection
operation is involved. For example, pointer pl is allocated its memory by the function getmem (p1,
sizeof (int)) and is freed of its memory and reset to NULL by the function call deallocate (pl).
Note that the variable p1 is a pointer to int, but the data type of the corresponding argument of functions
getmem () and deallocate () are pointer to void.

208

CHAPTER 11. REFERENCETYPE

11.3. PASSING VARIABLES OF DIFFERENT DATA TYPES TO THE SAME REFERENCE

void deallocate (void &* ptr)
{
free (ptr);
ptr = NULL;
}
void getmem(void &x ptr, int i)
{
ptr = malloc(i);
}
void funct (int &xiptr, float &xfptr)
{
printf ("before: xiptr = %d *fptr = $f \n", *xiptr, =*fptr);
*iptr = 90;
~fptr = 90;
printf ("after: xiptr = %d *fptr = $f \n", *iptr, =*fptr);
}
int xpl;
float *p2;
getmem (pl, sizeof(int)); // pl = malloc(sizeof (int))
P2 = malloc(sizeof (float));
*pl = 4; *p2 = 5;
funct (pl, p2);
printf ("«pl = %d *p2 = %f \n", xpl, *p2);
*pl = 4; *xp2 = 5;
funct (p2, pl);
printf ("xpl = %d *p2 = $£ \n", *pl, *p2);
deallocate(pl); // free memory and reset pl to NULL
deallocate (p2); // free memory and reset p2 to NULL

Program 11.8: Passing pointers of different type to arguments of reference to pointer in functions.

209

Chapter 12

Scientific Computing Using Generic
Mathematical Functions

Ch is a language designed for both scientific and system programming. In this chapter, the scientific com-
puting aspect of the Ch language will be addressed. The ANSI/IEEE 754 standard for binary floating-point
arithmetic [[11] is a significant milestone on the road to consistent floating-point arithmetic with respect to
real numbers. To make the power of the IEEE 754 standard easily available to the programmer, the floating-
point numbers of Inf, —Inf, and NaN, referred to as metanumbers, are introduced in Ch. These metanumbers
are transparent to the programmer. Signed zeros +0.0 and —0.0 in Ch behave like correctly signed infinites-
imal quantities 0 and 0_, whereas symbols Inf and —Inf correspond to mathematical infinities co and —oo,
respectively. Although the application of symbols such as Inf and NaN can be found in some software pack-
ages, their handling of these special numbers has deficiency. For example, one can find ComplexInfinity in
the software package Mathematica, and Inf and NaN in MATLAB. In Mathematica, there is no distinction
between complex infinity and real infinities, nor between —0.0 and 0.0; therefore, many operations defined
in this chapter cannot be achieved in Mathematica. In MATLAB, there is no complex infinity.

A computer language with no mathematical functions is not suitable for scientific computing and many
other applications. The C language is a small language; it does not provide mathematical functions inter-
nally. The mathematical functions are provided in a standard library of mathematical functions. Because
C does not provide mathematical functions internally, like arithmetic operations in K&R C, the returned
value from a standard mathematical function is a double floating-point number regardless of the data types
of the input arguments. In some of C implementations, if the input arguments are not doubles, the mathe-
matical functions may return erroneous results without warning. Numerically oriented programmers have
little tolerance with respect to the implicit conversion of the data type from float to double for arithmetic
operations of a computer language. However, they generally accept the strongly typed implementation of
mathematical functions. If a different return data type is desired for a mathematical function, a new function
with a different name will be needed. For example, the function call of sin(1) appears right in C. Indeed,
most C programs will execute this operation calmly, but maybe with an erroneous result because the input
data type of integer is not what sin() function expected. As another example, the function abs() in C returns
an absolute int number whereas fabs() will result in a double number. To get a float absolute value, a new
function has to be created. As a result, one has to remember many arcane names for different functions. Ch
uses generic functions to resolve this problem.

The external functions of Ch can be created in the same manner as in C. The commonly used mathemat-
ical functions are built internally into Ch. The mathematical functions in Ch can handle different data types
of the arguments gracefully. The output data type of a function depends on the data types of the input argu-
ments, which is called polymorphism. Like arithmetic operators, the commonly used generic mathematical

210

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.1. GENERIC MATHEMATICAL FUNCTIONS IN THE ENTIRE DOMAIN

functions in Ch are polymorphic. For example, for the polymorphic function abs(), if the data type of the
input argument is int, it will return an int as the absolute value. If the input argument of abs() is a float or
double, the output will return the same data type of float or double, respectively. For a complex number
input, the result of abs() is a float with the value of the modulus of the input complex number. Similarly,
if the argument data type is lower than or equal to float, sin() will return a float result correctly. Function
sin() can also return double and complex results for double and complex input arguments, respectively. Be-
cause I/O functions are also built into Ch itself, different data types are reconciled inside Ch. For example,
printf ("$£f", x) in C can print x if x is a float. However, if x is changed to int in a program, the
printing statement must also be changed accordingly as printf ("$d", x). Therefore, the change of
data type declaration of a variable will have to accompany the change of many other parts of the program.
The commands printf(x) and printf(sin(x)) in Ch are flexible and can handle different data types of x; x can
be char, int, float, double, or complex.

For portability, all mathematical functions included in the C header math . h have been implemented
polymorphically in Ch. The returned data type of a function depends on the data types of the input ar-
guments. This will simplify scientific numerical computing significantly. The names of these generic
mathematical functions of Ch described in this chapter are based upon the C header file math.h. These
mathematical functions are C compatible. If the arguments of these functions have the data types of the cor-
responding C mathematical functions, there is no difference between the C and Ch functions from a user’s
point of view.

12.1 Generic Mathematical Functions in the Entire Domain

In this section, the generic mathematical functions of Ch will be discussed. The input and output of the
functions involving the metanumbers will be highlighted. The results of the mathematical functions in-
volving metanumbers are given in Tables to In Tables to unless indicated otherwise,
x, 1, xo are real numbers with 0 < x, x1, x2 < 00; and k is an integral value. The value of p1i is the finite
representation of the irrational number 7 in floating-point numbers. The returned data of a function is float
or double depending on the data type of the input arguments. In Table[I2.1] if the order of the data type x is
less than or equal to float, the returned data type is float. The returned data type is double if x is of double
type. If the argument x of a function in Table is NaN, the function will return NaN. In Tables [12.2] to
the returned data type will be the same as the higher order data type of two input arguments if any of
two arguments is float or double. Otherwise, the float is the default returned data type.

Functions defined in this section will return float or double, except for functions abs() and pow(). If
the argument of the function abs() is an integral value, the returned data type is int. If the argument of the
function fabs() is a simple data type including int and float, the returned data type is double. If the arguments
of the function pow() are integral values, the returned data type is double. For example, pow(2,16) will
return the value 65536 of double type.

The absolute function abs(x) will compute the absolute value of an integer or a floating-point number.
The absolute value of a negative infinity —oo is a positive infinity co.

The sqrt(x) function computes the nonnegative square root of x. If x is negative, the result is NaN,
except that sqrt(—0.0) = —0.0 according to the IEEE 754 standard. The square root of infinity sqrt(co) is
infinity.

The exp(x) function computes the exponential function of x. The following results hold: e =
0.0; ™ = 00; 100 = 1.0.

The log(x) function computes the natural logarithm of x. If x is negative, the result is NaN. The value of
—0.0 is considered equal to 0.0 in this case. The following results hold: log(£0.0) = —oo;log(c0) = oc.
The 10g10(x) function computes the base-ten logarithm of x. If x is negative, the result is a NaN. Like the

211

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.1. GENERIC MATHEMATICAL FUNCTIONS IN THE ENTIRE DOMAIN

Table 12.1: Results of real functions for £0.0, +00, and NaN

function x value and results
—Inf —x1 -=0.0 0.0 x2 Inf NaN
abs(x) Inf T 0.0 0.0 9 Inf NaN
fabs(x) Inf T 0.0 0.0 To Inf NaN
sqrt(x) NaN NaN —0.0 0.0 sqr(x) Inf NaN
exp(X) 0.0 e ™1 1.0 1.0 er? Inf NaN
log(x) NaN NaN —Inf —Inf log(x2) Inf NaN
log10(x) NaN NaN —Inf —Inf log(x2) Inf NaN
sin(x) NaN —sin(x1) —0.0 0.0 sin(rs) NaN NaN
cos(X) NaN cos(x1) 1.0 1.0 cos(rs) NaN NaN
tan(x) NaN —tan(z1) —0.0 0.0 tan(rs) NaN NaN
Note: tan(£7/2 + 2 % k %) = £Inf
asin(x) NaN —asin(x1) —0.0 0.0 asin(zo) NaN NaN
Note: asin(x) = NaN, for |z| > 1.0
acos(x) NaN acos(ry) pi/2 pi/2 acos(ro) NaN NaN
Note: acos(x) = NaN, for |z| > 1.0
atan(x) —pi/2 —atan(z;) —0.0 0.0 atan(x) pi/2 NaN
sinh(x) —Inf —sinh(x1) —0.0 0.0 sinh(zs) Inf NaN
cosh(x) Inf cosh(x1) 1.0 1.0 cosh(xs) Inf NaN
tanh(x) —-1.0 —tanh(xz1) —0.0 0.0 tanh(zs) 1.0 NaN
asinh(x) —Inf —asinh(z1) —0.0 0.0 asinh(xs) Inf NaN
acosh(x) NaN NaN NaN NaN acosh(xs) Inf NaN
Note: acosh(x) = NaN, for z < 1.0; acosh(1.0) = 0.0
atanh(x) NaN —atanh(z1) —0.0 0.0 atanh(xo) NaN NaN
Note: atanh(x) = NaN, for |z| > 1.0; atanh(£1.0) = £Inf
ceil(x) —Inf ceil(—xy) —0.0 0.0 ceil(zs) Inf NaN
floor(x) —Inf floor(—x1) —0.0 0.0 floor(x9) Inf NaN
ldexp(x, k) —Inf ldexp(—x1,k) —0.0 0.0 Idexp(x2, k) Inf NaN
modf(x, &y) | —0.0 modf(—z1,&y) —0.0 0.0 modf(zy,&y) 0.0 NaN
y —Inf y —0.0 0.0 Y Inf NaN
frexp(x, &k) | —Inf frexp(—z1,&k) —0.0 0.0 frexp(xo, &k) Inf NaN
k 0 k 0 0 k 0 0

212

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.1. GENERIC MATHEMATICAL FUNCTIONS IN THE ENTIRE DOMAIN

Table 12.2: Results of the function pow(y, x) for 0.0, +=co0, and NaN

POW(Y, X)
y value x value
—Inf —x1 —-2k—-1 -2k -0.0 0.0 2k 2k+1 x2 Inf NaN
Inf 0.0 0.0 0.0 0.0 1.0 1.0 Inf Inf Inf Inf NaN
y2>1 0.0 y, y;zk_l y;zk 1.0 1.0 y3F y%kﬂ (I Inf NaN
1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 NaN NaN
0<y2<1 Inf y, ™ oyt o 100 1.0 3¢yt 422 00 NaN
0.0 Inf Inf Inf Inf 1.0 1.0 0.0 0.0 0.0 0.0 NaN
—-0.0 Inf Inf —Inf Inf 1.0 1.0 0.0 —-0.0 0.0 0.0 NaN
—yl NaN NaN —y; %71y 10 1.0 gy —4?1 NaN NaN NaN
—Inf NaN NaN —-0.0 0.0 1.0 1.0 Inf —Inf NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Table 12.3: Results of the function atan2(y, x) for 0.0, 00, and NaN
atan2(y, x)
y value x value
—Inf —x1 —-0.0 0.0 x2 Inf NaN
Inf 3xpi/4 pi/2 pi/2 pi/2 pi/2 pi/4 NaN
y2 pi atan2(yz, —x1) pi/2 pi/2 atan2(ys, x2) 0.0 NaN
0.0 pi pi pi 0.0 0.0 0.0 NaN
—-0.0 —pi —pi —3xpi/d —pi/2 —0.0 —-0.0 NaN
-yl —pi atan2(—yi, —1) —pi/2 —pi/2 atan2(—y;,z3) —0.0 NaN
—Inf —3xpi/4 —pi/2 —pi/2 —pi/2 —pi/2 —pi/4 NaN
NaN NaN NaN NaN NaN NaN NaN NaN
Table 12.4: Results of the function fmod(y, x) for +0.0, 00, and NaN
fmod(y, X)
y value x value
—Inf —x1 —=0.0 0.0 x2 Inf NaN
Inf NaN NaN NaN NaN NaN NaN NaN
y2 Y2 fmod(ys, —z1) NaN NaN fmod(ys, x2) yo NaN
0.0 0.0 0.0 NaN NaN 0.0 0.0 NaN
—-0.0 —-0.0 —0.0 NaN NaN —0.0 —-0.0 NaN
—yl y1 fmod(—y;,—z;) NaN NaN fmod(—y;,z2) —y1 NaN
—Inf NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

213

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.1. GENERIC MATHEMATICAL FUNCTIONS IN THE ENTIRE DOMAIN

function log(), the value of —0.0 is considered equal to 0.0. The following results hold: log10(+£0.0) =
—00;1log10(c0) = 0.

The trigonometric functions sin(x), cos(x), and tan(x) compute sine, cosine, and tangent of x measured
in radians, respectively. The sine and tangent are odd functions so that sin(+0.0) = £0.0 and tan(£0.0) =
+0.0. The cosine is an even function so that cos(+0.0) = 1.0. When the value of the argument is positive
or negative infinity, all these functions return NaNs. Theoretically, it is true that tan(+7/2 + 2% kx 7)) =
+00. But, in practice, because the irrational number 7 cannot be represented exactly in float or double
data, the tan(x) function will never return infinities of £00. The function tan() is not continuous at /2,
tan(m/2 —) = oo, and tan(7/2 4 €) = —oo, where ¢ is a very small number. Due to the finite precision
and round-off errors of floating-point numbers, one may get a wrong result near the value of 7 /2.

The properties of odd functions of sine and tangent are reflected in their inverse functions asin(x) and
atan(x). The asin(x) function computes the principal value of the arc sine of x. When the value of x is in
the range of [—1.0, 1.0], the asin(x) function returns the value in the range of [—m/2, 7/2] radians. When
x is outside the range of [—1.0, 1.0], the arc sine is undefined and asin(x) returns NaN. The range of the
input value for the even function acos(x) of arc cosine is the same as that of asin(x). The acos(x) function
computes the principal value of the arc cosine of x. The range of the principal value of the arc cosine is
[0.0, 7] radians. The atan(x) function computes the principal value of the arc tangent of x. The atan(x)
function returns the value in the range of [—7 /2, 7 /2] radians. The following results hold: atan(+oo) =
+7/2.

Like trigonometric functions sin(x) and tan(x), the hyperbolic functions sinh(x) and tanh(x) are odd
functions. The sinh(x) and tanh(x) functions compute the hyperbolic sine and tangent of x, respectively.
The even function cosh(x) computes the hyperbolic cosine of x. The following results hold: sinh(+0.0) =
+0.0; cosh(£0.0) = 1.0;tanh(+0.0) = +£0.0;sinh(+o00) = £o0;cosh(+oo) = oo;tanh(+oco) =
+1.0;

The inverse hyperbolic functions are not defined by the C standard. In Ch, the inverse hyperbolic sine,
cosine, and tangent are defined as asinh(x), acosh(x), and atanh(x), respectively. For the acosh(x) function,
if the argument is less than 1.0, it is undefined and acosh(x) returns NaN. acosh(1.0) returns a positive
zero. The valid domain for function atanh(x) is [—1.0, 1.0]. The following results hold: asinh(+0.0) =
+0.0; asinh(+00) = +00; acosh(co) = oo;atanh(40.0) = £0.0; atanh(+1.0) = +oo.

The ceil(x) function computes the smallest integral value not less than the value of x. The counterpart of
ceil(x) is the function floor(x) which computes the largest integral value not greater than the value of x. The
following results hold: ceil(+0.0) = +0.0; floor(£0.0) = £0.0; ceil(£o0) = +o0; floor(£oo) = +oo

The ldexp(x, k) function multiplies the value of the floating-point number x with the value of 2 raised
to the power of k. The returned value of 2 * 2¥ keeps the sign of .

The functions modf(x, xptr) and frexp(x, iptr) have two arguments. The first argument is the input data
and the second argument is a pointer which will store the resulted integral part of the function call. The
modf(x, xptr) function breaks the argument x into integral and fractional parts, each of which has the same
sign as the argument. The modf() function returns the fractional part and the integral part is stored to the
memory pointed to by the second argument. The basic data types of two arguments must be the same. For
example, if the first argument x is float, the second argument xpt r must be a pointer to float. If the first
argument is a metanumber, the integral part will equal the metanumber whereas the fractional part becomes
zero with the sign of the first argument except for NaN. The frexp(x, iptr) function breaks a floating-point
number into a normalized fraction and an integral power of 2 in the form of x % 2*. The frexp(x, iptr)
function returns the normalized fraction and the integral part is stored to the memory pointed to by the
second argument, which is a pointer to int. If the first argument is a metanumber, the fractional part will
equal the metanumber whereas the integral part becomes zero.

The mathematical functions pow(y, x), atan2(y,x), and fmod(y,x) have two input arguments. The results
of these three functions are given in Tables [12.2] to [[2.4l The pow(y, x) function computes y raised to the

214

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.2. PROGRAMMING EXAMPLES

power of x, which is y* or e* log(¥) If x is negative, y* becomes 1/ yl#l with the defined division operation
given in Table If y is less than zero and X is not an integral value including zero, the function is
undefined. The value of —0.0 is considered equal to 0.0 in the evaluation of log(—0.0) when the value of x
is not an integral number. When x is an odd integer number and y is negative, the result is negative. For a
positive value of y, the result depends on the value of y when x is infinity. If y is less than 1, y*° is 0.0; 1.0%°
is indeterminate; if y is greater than 1, y° is infinity. If y is infinity and x is zero, (j:oo)io'o are 1.0.

The atan2(y, x) function computes the principal value of the arc tangent of y/x using the signs of both
arguments to determine the returned value in the range of [—, 7| radians. Given the (z,y) coordinates of a
point in the X-Y plane, the atan2(y, x) function computes the angle of the radius from the origin to the point.
Any positive number that overflows is represented by Inf. The negative overflow is —Inf. The following
results hold: atan2(+Inf, —Inf) = £37/4; atan2(+Inf,Inf) = +7/4; atan2(£Inf,x) = +7/2;
atan2(+y,Inf) = 40.0; and atan2(+y, —Inf) = +x. When both values of y and x are zeros, the
function atan2(y, x) will return the results consistent with the manipulation of metanumbers discussed so
far. The value of —0.0 is considered as a negative number less than zero. Therefore, the following results are
defined for these special operations: atan2(0.0, —0.0) = m; atan2(0.0,0.0) =0.0; atan2(—0.0, —0.0) =
—3n/4; and atan2(—0.0,0) = —7 /2, which is consistent with the treatment of the metanumbers of +Inf in
atan2(—Inf, —Inf) = —3pi/4. In Ch, atan2(0.0,0.0) is a specially defined value. These results are different
from those by the SUN’s C compiler, which is in conformance with 4.3 Berkeley Software Delivery (SUN,
1990a). According to 4.3BSD, the results for these special cases are atan2(£0.0,—0.0) = 40.0 and
atan2(£0.0,0.0) = 4, which implies that the values of £0.0 on the x-axis are different from those on
the y-axis.

The fmod(y,x) function computes the floating-point remainder of y/x. The fmod(y,x) function returns
the value of y — ¢ * x for some integer ¢. The magnitude of the returned value with the same sign of x is
less than the magnitude of x. If x is zero, the function is undefined and returns NaN. When y is infinity, the
result is also undefined. If x is infinity and y is a finite number, the result is the same as y.

12.2 Programming Examples

12.2.1 Computation of Extreme Values of Floating-Point Numbers

Due to different machine architectures for representation of floating-point numbers, the extreme values
such as the maximum representable floating-point value are different. For two machines with the same
representation of floating-point values, the same operations such as adding two values on each machine may
get different results, depending on the schemes for rounding a number that cannot be represented exactly.
To aid serious numerically oriented programmers in writing their programs, the C standard added the header
float.h as a companion to the existing header 1imits.h to deal with the machine-dependent integer
values only. In this section, we will show how parameters defined in the C standard library f1oat .h can
be computed in Ch without knowing the intricate architecture of the computer. A program can depend less
on these parameters if a language can support metanumbers Inf and NaN. The use of metanumbers such as
Inf and NaN instead of parameters is recommended for Ch programming.

Minimum Floating-Point Numbers FLT_MIN and FLT_ MINIMUM

The parameter FLT_MIN is defined in the C standard library header f1oat .h as a minimum normalized
positive floating-point float number. If a number is less than FLT_MIN, it is called an underflow. Because
the IEEE 754 standard provides a gradual underflow, the minimum denormalized positive floating-point
float number is defined as FLT_MINIMUM in Ch. Because of gradual underflow, the Ch expression x -
y == 0 is TRUE iff x =y, which is not true for systems that lack gradual underflow. This parameter is

215

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.2. PROGRAMMING EXAMPLES

very useful from a programming point of view. As an example, assume that values of FLT_MINIMUM and
FLT_MIN are 1.401298e-45 and 1.175494¢-38, respectively. The following Ch code will illustrate subtleties
of these two parameters.

float f, *flt_minimum;
int minimum, i;

minimum = 1; // memory location becomes 00000001

flt_minimum = &minimum; // =flt_minimum becomes FLT_MINIMUM

i = xflt minimum > 0.0; // i becomes 1

i = FLT_MIN > xflt_minimum; // 1 becomes 1

i = fabs(*flt_minimum) > 0.0; // 1 becomes 1

f = (xflt_minimum)/ (*flt_minimum); // £ becomes 1.0; note 0.0/0.0 = NaN
f = f/1.e-46 // f becomes Inf: 1.e-46 < FLT_MINIMUM

Applications of these two numbers in the handling of branch cuts of multiple-valued complex functions are
described in Chapter [131

Machine Epsilon FLT_EPSILON

The machine epsilon FLT_EPSILON is the difference between 1 and the least value greater than 1 that
is representable in float. This parameter, defined in the C header f1oat.h, is a system constant in Ch.
This parameter is very useful for scientific computing. For example, due to the finite precision of the
floating-point representation and alignment of addition operation, when a significantly small value and a
large number are added together, the small number may not have contribution to the summation. Using
FLT_EPSILON, adding a small positive number x to a large positive number y can capture at least three
decimal digits of significance of y that can be tested by

if(x <y % FLT_EPSILON % 1000)

The following Ch code can calculate and print out the machine epsilon on the screen

float epsilon;
epsilon = 1.0;
while (epsilon+l > 1)
epsilon /= 2;
epsilon x= 2;
printf ("The machine epsilon FLT_EPSILON is %e", epsilon);

For SUN SPARCStations, the output from the execution of the above code is as follows:

The machine epsilon FLT_EPSILON is 1.192093¢-07

which matches the value of the parameter FLT_EPSILON defined in the C header £ 1oat . h. Although the
above computation of the parameter FLT_EPSILON is simple in Ch which uses the default rounding mode
of round toward nearest, it may be vulnerable to other rounding modes. A more robust method (Plauger,
1992) to obtain this parameter is to manipulate the bit pattern of the memory of a float variable as shown in

Section[12.2.11

Maximum Floating-Point Number FLT_MAX

The parameter FLT_MAX defined in the C header f1oat . h is the maximum representable finite floating-
point number. Any value that is larger than FLT MAX will be represented as Inf and any value less than

216

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.2. PROGRAMMING EXAMPLES

—FLT_MAX is represented by —Inf. If the value of FLT MAX is represented as fltmax * 10°, then the
following two equations will be satisfied

(fltmazx + FLT_EPSILON) % 10° = Inf

(fltmaz + FLT_EPSILON/2) + 10¢ = FLT_MAX

where the machine epsilon FLT_EPSILON was defined in Section [12.2.1] and the exponential value e is
to be calculated. The following Ch program will calculate FLT_MAX as well as FLT_MAX_10_EXP and
FLT_MAX_EXP of the machine and print them on the screen. The value of FLT MAX_10_EXP is the maxi-
mum integer such that 10 raised to its power is in the range of the representable finite floating-point numbers.
The value of FLT_MAX_EXP is the maximum integer such that 2 raised to its power minus 1 is a representable
finite floating-point number. For the illustrative purpose, only the while-loop control structure is used in this
example.

float b, £, flt_max;

int e, i, flt_max_exp, flt_max_10_exp;

b = 10; e = 0; £ = b;

/* calculate exponential number e, 38 in the example x/
while (f !'= Inf)

flt_max_10_exp = e;
/* calculate leading non-zero number, 3 in the example =/
i=0; £ =20.0;

while (f != Inf)
f = ++1i « pow(b, e);
/* calculate numbers after decimal point, 40282347... in the example */
flt_max = 1i;
while(e !'= 0)
{
flt_max = ——flt_max * b;
e——; 1 =0; £ = 0.0;
while(£ != Inf && 1 < 10)

{
f = ++flt_max » pow(b, e);

i++;
}
}
f = frexp(flt_max, &flt_max_exp); // calculate FLT MAX_ EXP
printf ("FLT_MAX = %.8e \n", flt_max);
printf ("FLT_MAX (in binary format) = %b \n", flt_max);

(
printf ("FLT_MAX_10_EXP = %d \n", flt_max_10_exp);
printf ("FLT_MAX_EXP = %d \n", flt_max_exp);

The output of the above code on SUN SPARCStations is as follows:
FLT_MAX = 3.40282347e+38
FLT_MAX (in binary format) = 01111111011111111111111111111111

217

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.2. PROGRAMMING EXAMPLES

FLT MAX_10_EXP = 38

FLT MAX EXP = 128

The above values for FLT MAX, FLT_MAX_10_EXP, and FLT_MAX_EXP are the same as the parameters
defined in the C header f1loat .h. By just changing the declaration of the first statement from float to
double, the corresponding extreme values DBL_MAX, DBL_MAX_10_EXP, and DBL_MAX_EXP for double
can be obtained. In this case, the polymorphic arithmetic operators and mathematical functions pow() and
frexp() will return double data.

In the above calculation of the extreme floating-point values, the user does not need to know the in-
tricate machine representation of floating-point numbers. If one knows the machine representation of a
floating-point number, the calculation of the extreme values can be much simpler. For example, according
to Table the value of FLT_MAX is represented in a hexadecimal form as (7TF7FFFFF)6. The following
Ch program can be used to obtain the maximum representable finite floating-point number FLT _MAX.

int i; float *flt_max;
flt max = &i; // flt_max points to the memory location of i
i = OX7F7T7FFFFF; // *flt_max becomes FLT_MAX

The maximum float number FL.T_MAX can also be readily obtained by the I/O function scanf() with the
binary input format "$32b". For interested readers, can you think of any other method for computing the
maximum representable finite floating-point number FLT_MAX by a C or Fortran program without knowing
the machine architecture? The major difficulty is that, due to the internal alignment for calculation of the
floating-point numbers, the significantly small number will be ignored when it is added to or subtracted
from a large number. For example, the execution of the command £ = FLT_MAX + 3.0e30 will give
the variable f the value of FLT_MAX although the value of 3.0 * 103" is not a small number, but it is
significantly smaller than FLT_MAX and ignored in the above addition operation. The following two Ch
expressions will further demonstrate the difference between FLT_MAX and Inf.

1/Inf * FLT_MAX = 0.0

1/FLT_MAX « FLT_MAX = 1.0

12.2.2 Programming with Metanumbers

The Ch language distinguishes —0.0 from 0.0 for real numbers. The metanumbers 0.0, —0.0, Inf, —Inf, and
NaN are very useful for scientific computing. For example, the function f(z) = e is not continuous at the
origin as is shown in Figure [I2.1] which was generated by Program 23.12] on page described in Chpa-
ter This discontinuity can be handled gracefully in Ch. The evaluation of the Ch expression 1exp(1/0.(1))

will return Inf and exp(1/(—0.0)) gives 0.0, which corresponds to mathematical expressions e+ and e~
or lim, o, e% and lim,_,o_ e%, respectively. In addition, the evaluation of expressions exp(1.0/Inf) and
exp(1.0/(—Inf)) will get the value of 1.0. As another example, the function finite (x) recommended by
the IEEE 754 standard is equivalent to the Ch expression ~-Inf < x && x < Inf, where x can be a
float/double variable or expression. If z is a float, -Inf < x && x < Inf isequivalent to —-FLT_MAX
<= x && x <= FLTMAX;Ifxisadouble, -Inf < x && x < Infisequivalentto -DBL MAX <=
X && x <= DBL_MAX. The mathematical statement “if — oo < value <= oo,then y becomes o
can be easily programmed in Ch as follows

if (-Inf < value && value <= Inf) y = Inf;

218

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.2. PROGRAMMING EXAMPLES

function exp(1/x)

-10 -5 o 5 10
x value

1
x

Figure 12.1: Function f(x) = e=.

However, a computer can only evaluate an expression step by step. Although the metanumbers are limits
of the floating-point numbers, they cannot replace mathematical analysis. For example, the natural number
e equal to 2.718281828... is defined as the limit value of the expression

1 X
lim (1 + —) —e.
T—00 T

However, the value of the expression pow(1.0 + 1.0/Inf, Inf) in Ch is NaN. The evaluation of this expression
is carried out as follows:

(1.0 + ﬂynf = (1.0 4+ 0.0)'"f = 1.0'"f = NaN
Inf

If the value FLT_MAX instead of Inf is used in the above expression, the result is obtained by

1.0 FLT_MAX
<10 + m) — (10 + O'O)FLT_MAX — 1'0FLT_MAX —1.0

Because metanumber NaN is unordered, a program involving relational operations should be handled
cautiously. For example, the expression x > vy is not equivalent to ! (x <= y) if either x or y is a NaN.
As another example, the following Ch code fragment

if(x > 0.0) functionl () ;
else function2();

is different from the code fragment

219

CHAPTER 12. SCIENTIFIC COMPUTING USING GENERIC MATHEMATICAL FUNCTIONS
12.2. PROGRAMMING EXAMPLES

if(x <= 0.0) function2();
else functionl ();

The second i f-statement should be written as if (x <= 0.0 || isnan (x)) in order for these two
code fragments to have the same functionality.

220

Chapter 13

Programming with Complex Numbers

The complex number, an extension of real number, has wide applications in science and engineering. Owing
to its importance in scientific programming, numerically oriented programming languages and software
packages usually provide complex number support in one way or another. For example, Fortran a language
mainly for scientific computing, has provided complex data type since its earliest days. The early version
of C does not have complex as a basic data type because numerically oriented scientific computing was not
its original design goal. Complex data types have been added in C99. Ch supports all features mandated
by C99 with extensions. Generic mathematical functions are overloaded for handling complex numbers
with optional arguments for different branch cuts. Ch provides real metanumbers of Inf, —Inf, and NaN
and signed zeros 0.0 and —0.0, which makes the power of the IEEE 754 standard for binary floating-point
arithmetic easily available to the programmer. Ch extends the idea of metanumbers to complex numbers
not only for arithmetic, but also for commonly used mathematical functions in the spirit of the IEEE 754
standard. Ch treats floating-point real numbers with signed zeros and complex numbers with unsigned zeros
as well as Not-a-Number and infinities in an integrated consistent manner.

13.1 Complex Numbers

13.1.1 Complex Constants and Complex Variables

Complex numbers z € C = {(z,y) | =,y € R} can be defined as ordered pairs
z = (z,y) (13.1)

with specific addition and multiplication rules [10][17]]. The real numbers x and y are called the real and
imaginary parts of z. If we identify the pair of (x,0.0) as the real numbers, the real number R is a subset of
C;thatis, R = {(z,y) | z € R,y = 0.0} and R C C. If a real number is considered either as x or (x, 0.0)
and let ¢ denote the pure imaginary number (0, 1) with i x ¢ = —1, complex numbers can be mathematically
represented as

z=x+ 1y (13.2)

Both Equations (I3.1)) and (I3.2) can be implemented for complex numbers in a computer language. General-
purpose computer programming languages such as Fortran, Ada, and Common Lisp tend to use Equa-
tion (I3.1) whereas some mathematical software packages incline to Equation (I3.2)).

Following the lead of FORTRAN in scientific programming, a complex number can be created in Ch by
the complex constructor complex(x, y) with x,y € R. For example, a complex number with its real part of
3.0 and imaginary part of 4.0 can be constructed by complex(3.0, 4.0). The new type qualifier complex is a
keyword in Ch. Internally, a complex number consists of two floats at the current implementation. Therefore,

221

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.2. COMPLEX PLANES AND COMPLEX METANUMBERS

if arguments of a complex constructor are not floats, they will be cast to floats internally. All floating-
point constants in Ch are double by default. The float constants can be obtained by suffixing a floating-
point constant with F or f. The complex constructor returns complex or double complex polymorphically,
depending on the data types of the input arguments. For example, complex(3, 4.0), complex(3.0f, 4.0), and
complex(3.0, 4.0F) return a double complex number of complex(3.0, 4.0).

One can declare not only a simple complex variable, but also pointer to complex, array of complex, and
array of pointer to complex, etc. Declarations of these complex variables are similar to the declarations of
any other data types in C. The array and pointer of complex in Ch are manipulated in the same manner as
the floating-point float and double. The following code segment will illustrate how complex is declared and
manipulated in Ch:

double complex z; // declare z as double complex variable
float complex z1l; // declare zl as float complex variable
complex *zptrl; // declare zptrl as pointer to complex variable

complex z2[2], z3[2,31;// declare z2 and z3 as arrays of complex
complex *zptr2[2][4]; // declare zptr2 as array of pointer to complex
zptlr = &z1; // zptrl point to the address of =zl

*zptrl = complex(1,2); // zl1 becomes 1+i2

Complex numbers are supported in C99 and C++. In order to be compatible with both C99 and C++, Ch
defined one micro, two types, and some functions prototypes in both header files complex.h and complex.
The macro I is defined as complex (0.0, 1.0) torepresent an imaginary number with the unit length.

13.2 Complex Planes and Complex Metanumbers

Mathematically, complex numbers can be represented in the extended complex plane shown in Figure [13.1]
[LON[17]. In Figure there is a one-to-one correspondence between the points on the Riemann sphere
I" and the points on the extended complex plane C. The point p on the surface of the sphere is determined
by the intersection of the line through the point z and the north pole N of the sphere. There is only one
complex infinity in the extended complex plane. The north pole N corresponds to the point at infinity.
Because of the finite representation of floating-point numbers, the extended finite complex plane shown in
Figure is introduced in this chapter. Any complex values inside the ranges of |z| < FLT_MAX
and |y| < FLT_MAX are representable in finite floating-point numbers. Variable x is used to represent
the real part of a complex number and y the imaginary part; FLT_MAX, a predefined system constant,
is the maximum representable finite floating-point number in the float data type. Outside this rectangular
area, a complex number is treated as a Complex-Infinity represented as ComplexInf or complex(Inf,Inf) in
Ch. The one-to-one correspondence between points on the Riemann sphere I' and the extended complex
plane is no longer valid for the unit sphere A and the extended finite complex plane. All points on the
surface of the upper part A; of the unit sphere correspond to the complex infinity. Points on the lower part
A5 of the sphere and points in the extended finite complex plane are in one-to-one correspondence. The
boundary between surfaces A and As corresponds to the threshold of overflow. For example, points p; and
P2 on the unit sphere A correspond to points z; = complex(FLT_MAX, 0.0) and zo, = complex(FLT_MAX,
FLT_-MAX), respectively, in the extended finite complex plane shown in Figure The origin of the
extended finite complex plane is complex(0.0, 0.0), which stands for complex zero. In Ch, an undefined or
mathematically indeterminate complex number is denoted as complex(NaN, NaN) or ComplexNaN, which
stands for Complex-Not-a-Number. The special complex numbers of ComplexInf and and ComplexNaN
are referred to as complex metanumbers.

222

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.2. COMPLEX PLANES AND COMPLEX METANUMBERS

Figure 13.1: The Riemann sphere I' and extended complex plane.

ComplexInf

—FLT_MAX FLT_ MAX

FLT_MAX

ComplexInf ComplexInf

Figure 13.2: The unit sphere A and extended finite complex plane.

223

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.2. COMPLEX PLANES AND COMPLEX METANUMBERS

Because of the mathematical infinities of o0, it becomes necessary to distinguish a positive zero 0.0
from a negative zero —0.0 for real numbers. Unlike the real line, along which real numbers can approach
the origin through the positive or negative numbers, the origin of the complex plane can be reached in any
directions in terms of the limit value of lim,_,(e’ where is the modulus and 6 is the phase of a complex
number. Therefore, complex operations and complex functions in Ch do not distinguish 0.0 from —0.0 for
real and imaginary parts of complex numbers. Because of these differences, some operations and functions
need to be handled differently for real and complex numbers, especially for real metanumbers and complex
metanumbers. For example, following the IEEE 754 standard, the addition of two real positive infinities is a
value of infinity in Ch. The addition of two complex infinities is indeterminate according to complex anal-
ysis, although the value of ComplexInf is represented internally as two positive infinities of Inf. As another
example, following the C standard, the mathematical function atan2(y, x) in Ch returns a value in the range
of [—7, 7]. The value of the expression atan2(—0.0, —1) is —. Using this result as the phase angle for com-
plex number —1.0 — 0.0, the square root of —1.0 — 0.0, expressed in Ch as sqrt(complex(—1.0, —0.0)),
becomes complex(0.0, —1.0), which is obtained by cos(—m/2) + isin(—n/2) = 0.0 — 4. In our definition,
this is the second branch of the square root function for the complex number of complex(—1.0, —0.0) ob-
tained by the expression sqrt(complex(—1.0, —0.0), 1) where the second argument of the function sqrt()
indicates the branch number with the default value of 0. As illustrated in this example, the mathematical
functions in Ch are polymorphic with a variable number of arguments so that the function sqrt() cannot
only be used to compute the square root of a real number, but also to calculate the different branches of the
square root of a complex number. Due to polymorphism and variable number of arguments for mathematical
functions, scientific computing with complex numbers in Ch is much simpler in comparison to Fortran and
other languages.

13.2.1 Data Conversion Rules

Ch is a loosely typed language. All arguments of calling functions will be checked for compatibility with
the data types of the called functions. The data types of operands for an operation will also be checked for
compatibility. If data types do not match, the system will signal an error and print out some informative
messages for the convenience of program debugging. However, unlike languages such as Pascal which
prohibits automatic type conversion, some data type conversion rules have been built into Ch so that they
can be invoked whenever necessary. This will save many explicit type conversion commands for a program.
The order of the data type in Ch is arranged as

data type order

double complex
complex

double

float

int

char

high

low

with char being the lowest data type and double complex the highest data type. The default conversion rules
will be briefly discussed in this section as follows:

1. Char, int, float, and double can be converted according to ISO C data conversion rules. The ASCII
value of a character will be used in conversion for a char data type. Demotion of data may cause loss
of the information.

224

13.2.

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
COMPLEX PLANES AND COMPLEX METANUMBERS

. Char, int, float, and double can be converted to complex with its imaginary part being zero. When

casting a real number into a complex number, the values of Inf and —Inf become ComplexInf; and
the value of NaN becomes ComplexNaN. Conversion from double to complex may lose the infor-
mation. A real number can be cast into a complex explicitly by the complex construction function
complex(x,y), which will be discussed in details in section

. When a complex is converted to char, int, float, and double, only its real part is used and the imaginary

part will be discarded if the imaginary part is zero. If the imaginary part is not equal to zero, the
converted real number becomes NaN. The real and imaginary components of a complex number can
be obtained explicitly by the functions real(z) and imag(z), which will be discussed in detail in
Section When a complex number is converted to a real number either implicitly by assignment
statement such as f = z or explicitly by real(z), imag(z), float(z), double(z), (float)z, and (double)z;
the sign of a zero will not be carried over. Converting a complex number to an integral value such
as char and int is equivalent to conversion of real(z) to an integral value if the imaginary part is not
identically zero. For example, i = ComplexInf will make i equal to INT_.MAX. However, if
real() or imag() is used as an lvalue, the sign of zeros from rvalue will be preserved, which will allow
experimentation with signed zeros in computations of complex numbers. An /value is any object that
occurs on the left hand side of an assignment statement. The lvalue refers to a memory such as a
variable or pointer, not a function or constant. On the other hand, the rvalue refers to the value of
the expression on the right hand side of an assignment statement. Details about the lvalue will be
discussed in Section

. In binary operations such as addition, subtraction, multiplication, and division with mixed data types,

the result of the operation will carry the higher data type of two operands. For example, the result of
addition of an int and a double will result in a double. When one of the two binary operands is complex
and the data type of other operand is a real number, the real number will be cast into a complex before
the operation is carried out. This conversion rule is also valid for an assignment statement when data
types of the lvalue and rvalue are different.

In a pointer assignment statement, the pointer types of lvalue and rvalue can be different. They
will be reconciled internally. To comply with the ISO C standard, the data type of the rvalue can
also be explicitly cast into that of the lvalue in an assignment in Ch. For example, the statement
fp = (floatx)intptr will cast the integer pointer intptr to float pointer before its address is assigned
to float pointer fp. However, the contents pointed to by intptr will not be changed by this data type
casting operation. For example, if xintptr is 90, the value of * fp will not be equal to 90 because of
the difference in their internal representations for int and float. The memory of a complex variable
can be accessed by pointers. If the real or imaginary part of a complex variable is obtained by a float
pointer, the sign of a zero will be carried over, which will be discussed in Section

The following code segment will illustrate how different data types are automatically converted in Ch.

char c;

int 1i;

float £;

double d;

complex z, *zptr;

c = 'a’; // ¢ is 'a’

i = ¢; // 1 is 97, ASCII number of 'a’
f = 1; // £ is 97.0

d = 1i; // d is 97.0

225

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.3. I/O FOR COMPLEX NUMBERS

z = complex(c+l, f); // z is 98.0 + i 97.0

z = complex (Inf, Inf);// z is ComplexInf

z = Inf; // z is ComplexInf

z = —-Inf; // z is ComplexInf

f = z; // £ is NaN, since real (ComplexInf) is NaN

d = z; // d is NaN, since real (ComplexInf) is NaN

i = Inf; // i is 2147483647 = INT_MAX,

i=z; /+ 1 is 2147483647, int of NaN is 2147483647

plus warning message */

z = complex (d+1, 3); // z is 98.0 + i 3.0

c = z; // c 1s the delete character, ASCII number is 127
i = z; // 1 is 2147483647, int of NaN

f = z; // £ is NaN

d = z; // d is NaN

z = NaN; // z is ComplexNaN

zptr = &z; // zptr point to address of =z

zptr++; // zptr point to memory z plus 8 bytes

13.3 1/0 for Complex Numbers

Since complex is a basic data type in Ch, it is desired that the I/O for this data type is also handled in the
same manner as real numbers. Similar to Fortran, the real and imaginary parts of a complex number can be
treated as two individual floats by the functions real(z) and imag(z) as will be discussed in Sections
and[13.3l Then, all standard I/O functions such as printf() and scanf() for real numbers can be readily used.
In this section, how a complex number is treated as a single object by the standard I/O function will be
discussed. Due to the space limit, only the enhancement related to the function printf() will be explained in
the following discussions. However, the underlining principle can be applied to other I/O functions as well.
The format of function printf() in Ch is as follows
int printf (char xformat, argl, arg2, ...)

The function printf() prints output to the standard output device under the control of the string pointed to
by format and returns the number of characters printed. If the format string contains two types of objects
— ordinary characters and conversion specifications beginning with a character of % and ending with a
conversion character — the ISO C rules for printf() will be used. If the format string in printf() contains
only ordinary characters, the subsequent numerical constants or variables will be printed according to preset
default formats. For function printf(), a single conversion specification for a float will be used for both real
and imaginary parts of a complex number. The default format for complex is %.2f, which will be applied
to both real and imaginary parts of a complex number. The metanumbers ComplexInf and ComplexNaN
are treated as regular complex numbers in I/O functions. For debugging purposes, the default output for
ComplexInf and ComplexNaN are complex(Inf, Inf) and complex(NaN, NaN), respectively. The default
output for complex zero is complex(0.00,0.00). The format for real and imaginary parts can be controlled
by a format specifier. The following Ch program will illustrate how complex numbers are handled by the
I/0 functions printf() and scanf().

complex z1l;

double complex z2, xzptr;

zptr = &z22; /* zptr points to z2’s memory location =/

printf ("Please type in real and imaginary of two complex numbers \n");
scanf (&z1, zptr);

226

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.4. COMPLEX OPERATIONS

Table 13.1: The complex operations

Definition Ch Syntax Ch Semantics
negation -z —r — 1y
addition z1 + 72 (1 + 22) + i(y1 + y2)
subtraction z1 — 72 (1 —m2) + i(y1 — y2)
multiplication | z1 * z2 (1 %22 — y1 % Y2) +i(y1 * T2 + 1 * y2)
division zl /72 $1*$§+y5*y2 NRpE TR i
T3+ Y3 T3+ Y
equal zl ==z72 r1 == x2 and y; == yo
not equal z11=22 x1!=x9 Or Y1 != Yo

printf ("The first complex is ", zl1l, "\n");
printf ("The second complex is ", z2, "\n");
printf ("The second complex is %f \n", z2);

The result of the interactive execution of the above program is shown as follows
Please type in real and imaginary of two complex numbers

12.03.04

The first complex is complex(1.0000,2.0000)
The second complex is complex (3.0000,4.0000)
The second complex is complex (3.000000,4.000000)

where the second line in italic is the input and the rest are the output of the program.

13.4 Complex Operations

The arithmetic and relational operations for complex numbers are treated in the same manner as those for
real numbers in Ch. This section will discuss how these operations are defined and handled by Ch.

13.4.1 Complex Operations with Regular Complex Numbers

The negation of a complex number, and arithmetic and comparison operations for two complex numbers
are defined in Table where the complex numbers z, z1, and z, are defined as x + iy, x1 + ty1, and
T9 + 1y, respectively.

The negation of a complex number will change the sign of both real and imaginary parts of the complex
number. The addition of two complex numbers will add the real and imaginary components of two complex
numbers, separately. The subtraction of two complex numbers will subtract the real and imaginary parts of
the second complex number from the real and imaginary of the first complex number, respectively. Treating
the imaginary number ¢ as a complex number of complex(0, 1), the multiplication and division for two
complex numbers are defined in Table [I3.1l For binary operations with real and complex operands, the
regular real operand will be cast into a complex before the operation. Complex numbers are not ordered;
one cannot compare to see whether one complex number is larger or smaller than the other. But, two complex
numbers can be tested whether they are equal or not. Two complex numbers are equal to each other if and

227

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.4. COMPLEX OPERATIONS

Table 13.2: Complex negation results

Negation —
operand | complex(0.0, 0.0) z ComplexInf ComplexNaN
result complex(0.0, 0.0) —z ComplexInf ComplexNaN

Table 13.3: Complex addition and subtraction results

Addition and Subtraction +
left operand right operand
complex(0.0, 0.0) 72 ComplexInf ComplexNaN
complex(0.0, 0.0) | complex(0.0, 0.0) +72 ComplexInf ComplexNaN
z1 zl z1 + 72 ComplexInf ComplexNaN
ComplexInf ComplexInf ComplexInf ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

only if both the real and imaginary parts of two complex numbers are equal to each other, separately. If the
real or imaginary parts of two complex numbers are not equal to each other, then the two complex numbers
are not equal.

13.4.2 Complex Operations with Complex Metanumbers

In the above definitions of complex operations, we assume that all operands are regular complex numbers.
The real and imaginary parts of a complex number are then treated as two regular floating-point floats.
If the values of operands involve complex metanumbers, the definitions defined in Table may not be
valid. For example, ComplexInf is represented internally as complex(Inf, Inf). According to the complex
addition definition defined in Table [13.1] and addition rule for real numbers in Ch, the result of addition of
two ComplexInfs would be complex(Inf, Inf). But, addition of two complex infinities is mathematically
indeterminate. Therefore, the results for arithmetic and relational operations with both regular complex
numbers and complex metanumbers are defined in Tables[13.2]to

From a programmer’s point of view, values of complex(£0.0, +0.0) are the same as complex(0.0, 0.0)
when they are used as operands or arguments in Ch. In the following discussions, the positive zero 0.0
and the negative zero —0.0 for real and imaginary components of a complex number are considered the
same. Therefore, although the negation of complex(0.0, 0.0) returns complex(—0.0, —0.0), the result listed
in Table[13.2lis complex(0.0, 0.0). Negation of a complex infinity is still a complex infinity. And of course,
negation of a complex not-a-number is ComplexNaN.

For binary operations in Tables [13.3] to [13.3] if any one of the operands is ComplexNaN, the result is
ComplexNaN. If one of two operands is ComplexInf and other is a finite complex number, the result of
addition and subtraction is ComplexInf. Unlike real numbers, addition and subtraction of two ComplexInfs
are ComplexNaNs. Multiplication of ComplexInf with complex(0.0, 0.0) is ComplexNaN; multiplication
of ComplexInf with a finite nonzero number is ComplexInf; multiplication of two ComplexInfs becomes
ComplexInf. Like real numbers, divisions of complex(0.0, 0.0) by complex(0.0, 0.0) and ComplexInf by
ComplexInf are ComplexNaNs. A finite number or infinity divided by complex(0.0, 0.0) becomes Complex-
Inf. The division of ComplexInf by a finite number gives ComplexInf. Theoretically, two complex infinities
cannot be compared with each other because they may or may not be equal to each other. In Ch, however,

228

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.4. COMPLEX OPERATIONS

Table 13.4: Complex multiplication results

Multiplication
left operand right operand
complex(0.0, 0.0) 72 ComplexInf ComplexNaN
complex(0.0, 0.0) | complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN ComplexNaN
z1 | complex(0.0, 0.0) z1xz2 ComplexInf ComplexNaN
ComplexInf ComplexNaN ComplexInf ComplexInf ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.5: Complex division results

Division /
left operand right operand
complex(0.0, 0.0) 72 ComplexInf ComplexNaN
complex(0.0, 0.0) ComplexNaN complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN
z1 ComplexInf z1/z2 complex(0.0, 0.0) ComplexNaN
ComplexInf ComplexInf ComplexInf ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.6: Complex equal comparison results

Equal comparison ==
left operand right operand
complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0, 0.0) 1 0 0 0
z1 0 z1 ==272 0 0
ComplexInf 0 0 1 0
ComplexNaN 0 0 0 0

Table 13.7: Complex not equal comparison results

Not equal comparison !=
left operand right operand
complex(0.0, 0.0) 72 ComplexInf ComplexNaN
complex(0.0, 0.0) 0 1 1 0
z1 1 z1 =272 1 0
ComplexInf 1 1 0 0
ComplexNaN 0 0 0 0

229

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.5. COMPLEX FUNCTIONS

two ComplexInfs are considered the same from the programming point of view as shown in Table[13.6 Like
NaN in real number, the comparison of two ComplexNaNs will get a logic false. This design consideration
is also reflected in the not equal relational operation shown in Table [13.7]

13.5 Complex Functions

Besides the polymorphism, the mathematical functions implemented in Ch can have a variable number
of arguments, which is very convenient for calculations of complex mathematical functions with multiple
branches. If a mathematical function, as a real function, has only one real argument, the additional second
argument will render the function to a complex function unless explained otherwise. The integral value
of the second argument will indicate the branch of the complex function. When this second argument is
present, the first argument will be cast into a complex number according to the previously discussed data
type conversion rules when the order of its data type is lower than complex. For a mathematical function
with two arguments as a real function, if either one of two input arguments is a complex, the mathematical
function becomes a complex function. If an additional third argument as a branch indicator is provided,
the function becomes a complex function if data types of the first two arguments are lower than or equal to
complex. If their data types are lower than complex, they will be cast into complex numbers.

13.5.1 Results of Complex Functions with Regular Complex Numbers

The built-in functions related to the complex numbers are listed in Table along with their
definitions. The input arguments of these functions can be complex numbers, variables, or expressions. For
presentation purposes, the complex numbers z, z1, and 29 are defined as x + iy, x1 + iy1, and x2 + 1yo,
respectively. The integer values of k, k1, and ko are the branch numbers of complex functions. If arguments
for these branch numbers of the calling function are not integers, they will be cast into integers internally. For
mathematical expressions in the second column in Table[13.8] if the arguments of mathematical functions are
regular real numbers, the mathematical functions are real mathematical functions. The results of complex
functions involving complex metanumbers will be discussed in the next section. In Table[I3.8] the principal
value © of the argument of a complex number is in the range of —7m < © < 7. The definition of the
principal value © for various complex numbers is given in Table[13.91 Note that the trigonometric function
atan2(y,x) is in the range of —m < atan2(y,x) < . Normally, through complex arithmetic and complex
functions, one shall not get a complex number with its real or imaginary part being the value of —Inf, Inf,
or NaN whereas the other part is a regular real number. This kind of result can be obtained only explicitly
by functions real(z) and imag(z), and float pointer variables through lvalues, which will be discussed in
Section

The first four functions in Table [13.8] return real numbers. The sizeof() function returns, in bytes, an
integer of the variable, type specifier, or expression that it precedes. the returned data type is of type unsigned
int. If the argument is a complex, it will return the value of 8, which is the number of bytes required for
storing two floats of real and imaginary parts of a complex. The abs(z) function computes the modulus of a
complex number. Its returned data type is float if the input is float complex. Its returned data type is double
if the input is double complex. When the input type is complex type, the function fabs(z) behaves the same
as the function abs(z). The functions real(z) and imag(z) return the real and imaginary parts of a complex
number, respectively. The results of real(z) and imag(z) are always floats. If the data type of the argument
for real() is lower or equal to double, the input data will be cast into a float. If the data type of the argument
for imag() is lower than or equal to double, the value of zero will be returned. The sign of a zero will be
ignored in real(z) and imag(z) functions. For example, real(complex(—0.0,0.0)) will return 0.0.

A complex number can be created from two real numbers by the complex construction function com-

230

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.5. COMPLEX FUNCTIONS

Table 13.8: The syntax and semantics of built-in complex functions

Ch Syntax Ch Semantics
sizeof (2) 8
abs(2) sqrt(z? + y?)
fabs(z) sqrt(z? + y?)
real(z) x
imag(2) y
complex(z,y) T + 1y
conj(z) x — iy
carg(z) ©; © = atan2(y, x)
polar(z) sqrt(x? 4+ y?) +i0; O = atan2(y, v)

polar(r, theta)

rcos(theta) + ir sin(theta)

sqrt(z) sqrt(sqrt (22 + y?))(cos 9 4 isin —(5)—), © = atan2(y, x)
sqrt(z, k) sqrt(sqrt(z? + y?))(cos _+2M + isin MQM), © = atan2(y, z)
exp(z) e*(cosy + isiny)
log(2) log(v/#2 + y?) +1©; © = atan2(y, x)
log(z, k) log(v/x? + y?) +i(© + 2k7); © = atan2(y, x)
log(2)
log10(z) Tog (10)
log(z, k)
logl0(z, k) Tog(10).
pow(z1, 22) 2172 = #2021 — exp(zy * log(21))
pow(z1, 22, k) 2172 = e*2M%1 = exp(z * log(21, k))
ceil(z) ceil(z) + i ceil(y)
floor(z) floor(z) + i floor(y)

fmod(z1, 22)
modf(z1, &22)
frexp(z1, &22)
ldexp(z1, 22)

2 % =k+£5. k>0
modf(xy, &xo) + 7 modf(y1, &ys2)
frexp(x1, &x2) + i frexp(y1, &ya2)
ldexp(x1,x2) + ¢ 1dexp(y1,y2)

sin(z) sin x cosh y + ¢ cos sinh y
cos(z) cos z coshy — isinx sinh y
sin 2
tan(2) COS Z
asin(z) —ilog(iz + sqrt(1 — 22))
asin(z, k) —ilog(iz + sqrt(1 — 22, k))
asin(z, k1,k2) | —ilog(iz +sqrt(1 — 22, k1), ka2)
acos(z) —ilog(z + isqrt(1 — 22))
acos(z, k) —ilog(z + disqrt(1 — 22, k))
acos(z, k1,k2) | —ilog(z +isqrt(1 — 22, k1), k2)
atan(z) 1 - log(7 1 + ;i)
atan(z, k) % <1 1re g
+121/ %
atan2(z1, 22) 21 e o Zzllizz)
141421/
atan2(z1, 22, k) 2% lo (71 — Zzllizz)
sinh(z) sinhz cosy + icosh zsiny
cosh(z) coshz cosy + isinhxsiny
tanh(2) sinh z cos y 4 ¢ cosh x sin y

coshx cosy + isinhxsiny

continued2®1 next page

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.5. COMPLEX FUNCTIONS

Table 13.8: continued

Ch Syntax Ch Semantics
asinh(z) log(z + sqrt(z? + 1))
asinh(z, k) log(z + sqrt(22 + 1, k))
asinh(z, k1,%k2) | log(z + sqrt(2? + 1, ky), ko)
acosh(z) log(z + sqrt(z + 1)sqrt(z — 1))
acosh(z, k) log(z + sqrt(z + 1, k)sqrt(z — 1, k))
acosh(z, k1, k2) | log(z + sqrt(z + 1, k1)sqrt(z — 1, k1), k2)
atanh(z) % log(%iz)
atanh(z, k) %log(%ii, k)

Table 13.9: The principal value © (—7 < © <) of the argument for complex(x,y)

©
y value x value
—x1 =00 0.0 x2 Inf NaN

y2 atan2(ys, —x1) pi/2 pi/2 atan2(ys, x2)

0.0 pi 0.0 0.0 0.0
—-0.0 pi 0.0 0.0 0.0

—yl atan2(—y1, —x1) —pi/2 —pi/2 atan2(—yy,x2)

Inf Inf
NaN NaN

232

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.5. COMPLEX FUNCTIONS

plex(x,y). If the input arguments are not floats, they will be cast into floats according to the internal data
conversion rules. The sign of a zero for x or y will be carried over to the complex number.

The conj(z) function returns the complex conjugate Z of z. The complex number Z represented by the
point (z, —y) is the reflection in the real axis of the point (x, y) representing z.

The function polar() is implemented mainly for the convenience of transformation between Cartesian
and polar representations of a complex number. If there is only one input argument, then a complex number
with its real and imaginary parts being the modulus and argument, respectively, of the input complex number
will be returned. If there are two input arguments, the complex number z in the polar form will be returned.
The first and second input arguments are the modulus and argument of z, respectively. According to the
definition re® for the polar function, negative values for r are valid.

For the square root function sqrt(), whenever there are two arguments, the first argument is treated as a
complex number. In case it is not a complex number and cannot be cast into a complex number, a syntax
error message will be reported by the system. If the second argument is not an integer, it will be cast into an
integral value according to internal data conversion rules. For the complex square root, there are only two
distinct branches because of the periodic natures of the sine and cosine functions. In general, for taking the
nth root, there are n distinct branches. If the function sqrt() is invoked with a single complex argument, the
default branch value of 0 will be used.

The exp(z) function will calculate the exponential function of the complex number 2.

Like the square root function, the natural logarithmic function log() has multiple branches. The branch
number is provided by the second argument of the function. For convenience, the function logl0() will
calculate the base-ten logarithmic function of a complex value.

The exponential function with a complex base can be calculated by the function pow(), which is accom-
plished by the exponential function and logarithmic function as is shown in Table The branch of the
logarithmic function determines the branch of the function pow(). Unlike its corresponding real function,
the complex function pow() is always well defined. If any one of two arguments of pow(z1, z2) is complex,
the result is complex, which is obtained by the principal branch of the expression exp(z2xlog(z1)). The
result of the expression y* equals the real part of the expression pow(complex(y,0.0), complex(x,0.0)) with
its imaginary part being zero. For the function pow(z1, z2, k), z1 and z2 can be any data type lower than or
equal to complex, and £ is an integer. Whenever there are three arguments for the function pow(), the first
and second arguments are treated as complex numbers. If z2 is an integer, all branches will have the same
result; thus, the solution is unique.

For functions ceil(z), floor(z), and ldexp(z1, z2), the real and imaginary parts are treated as if they were
two separate real functions. The functions modf(z1, &z2) and frexp(zl, &z2) are handled in the same
manner. For these two functions, when the data type of the first arguments is complex, the data type of the
second argument must be a pointer to complex. The fmod(z1,z2) function computes the complex remainder
of z1/z2.

The complex trigonometric functions sin(z), cos(z), and tan(z) and complex hyperbolic functions sinh(z),
cosh(z), and tanh(z) have unique values. However, the complex inverse trigonometric functions asin(z),
acos(z), and atan(z) and complex inverse hyperbolic functions asinh(z), acosh(z), and atanh(z) have mul-
tiple branches for a given input complex value. The second argument of these inverse functions indicates
the branch number. For functions asin(), aces(), asinh(), and acosh(), the second and third arguments spec-
ify the branches of the related square root and logarithmic functions, respectively. The function atan2() is
implemented similar to the function atan().

13.5.2 Results of Complex Functions With Complex Metanumbers

Like complex arithmetic operations, the definition for regular complex functions may not be valid when
the input arguments are complex metanumbers. The results of the built-in complex functions with complex

233

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.6. LVALUES RELATED TO COMPLEX NUMBERS

metanumbers as their input arguments are given in Table [13.10l

In Table[I3.10] complex(+0.0, +0.0) in Ch is treated as complex(0.0, 0.0). When the input argument of
a function is ComplexNaN, the returned result is always ComplexNaN except for the function sizeof(). As
shown in Figure [13.2] a complex infinity is different from the real infinities of 00. When either the real or
imaginary part of a complex value is outside the range of the representable floating-point number, it becomes
ComplexInf. Therefore, the absolute value of ComplexInf is a real number of Inf. The real and imaginary
parts of ComplexInf are NaN. However, the conjugate of ComplexInf is still a complex infinity. The result of
polar(complex(0.0,0.0)) is defined as complex(0.0,0.0) because the principal value © for complex(0.0, 0.0)
equals 0.0 as defined in Table[13.91 The result of polar(ComplexInf) is defined as complex(Inf, Inf). There-
fore, if z equals complex(0.0,0.0) or ComplexInf, the equality of z = polar(real(polar(z)), imag(polar(z)))
will still be satisfied. Like a real function, the square root of ComplexInf is ComplexInf.

As a real function, exp(Inf) = Inf whereas exp(—Inf) = 0.0. However, both values of +Inf become
ComplexInf if they are cast into complex numbers. Therefore, the complex exponential function exp(z) is
ComplexNaN when the input argument is ComplexInf. The complex logarithmic function log(z) with the
input argument of complex(0.0,0.0) or ComplexInf will return ComplexInf. With complex metanumbers
as their input arguments, the real and imaginary parts of functions ceil(z), floor(z), and ldexp(z1, z2) are
handled equivalent to two individual real functions. Like real functions, the complex trigonometric functions
sin(z), cos(z), and tan(z) are undefined when the input arguments are ComplexInfs. The irrational number
7 is not representable in a computer program. If we had the value of , the expression of tan(kr + 7/2)
would return ComplexInf. Unlike real functions, the complex inverse trigonometric functions asin(z) and
acos(z) return ComplexInfs when the input arguments are ComplexInfs. As an inverse function of tan(z),
the function atan(z.k) has different branches when the first input value is ComplexInf. According to the
definition, atan(=£:) equals ComplexInf. The results of the complex hyperbolic functions sinh(z), cosh(z),
and tanh(z), and complex inverse hyperbolic functions asinh(z), acosh(z), and atanh(z) are implemented
similar to those of complex trigonometric functions and complex inverse trigonometric functions.

The results of the complex construction function complex(x,y) are given in Table [3.11] ~ For con-
structing a complex number, if either its real or imaginary part is NaN, the result is a complex Not-a-
Number. Likewise, if either one is a value of 4-oo, the result is ComplexInf. For the function polar(r,
theta) shown in Table when the modulus is infinitely large, the resultant complex number is
ComplexInf even if the provided argument of a complex number is infinity, which is compatible with the
result of polar(ComplexInf) = complex(Inf, Inf). This also follows the rule that, through complex arith-
metic and complex functions, one shall not get a complex number, what is —Inf, Inf, or NaN for either the
real or imaginary part while the other part is a regular real number. Like the exponential function exp(z),
the function pow(z1,z2) is undefined when the second argument is ComplexInf as shown in Table

When the imaginary part y2 of z2 is a finite value, the results of the function depend on the value
of its real part x2 when the value of z1 is complex(0.0, 0.0) or ComplexInf. Like the real function, the
following expressions pow(complex(0.0,0.0), complex(0.0,0.0)), pow(complex(0.0,0.0), complex(0.0,y2)),
pow(ComplexInf, complex(0.0,0.0)), and pow(ComplexInf, complex(0.0,y2)) are ComplexNaN. Because
pow(0.0, Inf) = 0.0 and pow(0.0, —Inf) = Inf, and both Inf and —Inf are considered as ComplexInf,
pow(complex(0.0,0.0),ComplexInf) is defined as ComplexNaN. The results of function fmod(z1,z2) for
complex metanumbers are given in Table[13.14]

13.6 Lvalues Related to Complex Numbers

As defined before, an lvalue is any object that occurs on the left hand side of an assignment statement.

The valid lvalues related to complex numbers are listed in Table The assignment operations
+=, -=, ==, /=, as well as increment operation ++ and decrement operation —— can be applied to all

234

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.6. LVALUES RELATED TO COMPLEX NUMBERS

Table 13.10: Results of complex functions for complex(0.0, 0.0), ComplexInf, and ComplexNaN

function z value and results
complex(0.0,0.0) ComplexInf ComplexNaN
sizeof(z) 8 8 8
abs(z) 0.0 Inf NaN
real(z) 0.0 NaN NaN
imag(z) 0.0 NaN NaN
conj(z) complex(0.0,0.0) ComplexInf ComplexNaN
polar(z) complex (0.0, 0.0) ComplexInf ComplexNaN
sqrt(z) complex(0.0,0.0) ComplexInf ComplexNaN
exp(z) complex(1.0,0.0) ComplexNaN ComplexNaN
log(z) ComplexInf ComplexInf ComplexNaN
log10(z) ComplexInf ComplexInf ComplexNaN
ceil(z) complex (0.0, 0.0) ComplexInf ComplexNaN
floor(z) complex(0.0, 0.0) ComplexInf ComplexNaN
modf(z, &z2) | complex(0.0,0.0) complex(0.0,0.0) ComplexNaN
z2 complex(0.0,0.0) ComplexInf ComplexNaN
frexp(z, &z2) | complex(0.0,0.0) ComplexInf ComplexNaN
z2 complex(0.0,0.0) complex(0.0,0.0) ComplexNaN
ldexp(z, z2) complex (0.0, 0.0) ComplexInf ComplexNaN
sin(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
cos(z) complex(1.0,0.0) ComplexNaN ComplexNaN
tan(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
Note: tan(complex(w/2 + k * m,0.0)) = ComplexInf
asin(z) complex (0.0, 0.0) ComplexInf ComplexNaN
acos(z) complex(pi/2, 0.0) ComplexInf ComplexNaN
atan(z) complex(0.0,0.0) complex(pi/2, 0.0) ComplexNaN
Note: atan(complex(0.0, +1.0)) = ComplexInf;
atan(ComplexInf, k) = complex(pi/2 + kxpi, 0.0)
sinh(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
cosh(z) complex(1.0,0.0) ComplexNaN ComplexNaN
tanh(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
Note: tanh(complex(0.0,7/2 + k * 7)) = ComplexInf
asinh(z) complex(0.0, 0.0) ComplexInf ComplexNaN
acosh(z) complex(0.0, pi/2) ComplexInf ComplexNaN
atanh(z) complex(0.0,0.0) complex(0.0, pi/2) ComplexNaN
Note: atanh(complex(£1.0,0.0)) = ComplexInf;
atanh(ComplexInf, k) = complex(0.0, pi/2 + kxpi)

235

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.6. LVALUES RELATED TO COMPLEX NUMBERS

Table 13.11: Results of the function complex(x, y) for 0.0, 0o, and NaN

complex(x, y)

x value y value
—Inf -yl 0.0 y2 Inf NaN
Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
x2 ComplexInf complex(x2, —y1) complex(x2, 0.0) complex(x2, y2) ComplexInf ComplexNaN
0.0 ComplexInf complex(0.0, —y1) complex(0.0, 0.0) complex(0.0, y2) ComplexInf ComplexNaN
—x1 ComplexInf complex(—x1, —yl) complex(—x1, 0.0) complex(—x1, y2) ComplexInf ComplexNaN
—Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
NaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN
Table 13.12: Results of the function polar(r, theta) for 0.0, 00, and NaN
polar(r, theta)

r value theta value
—Inf —thetal 0.0 theta2 Inf NaN
Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
2 ComplexNaN polar(r2, —thetal) complex(r2, 0.0) polar(r2, theta2) ComplexNaN ComplexNaN
0.0 ComplexNaN complex(0.0, 0.0) complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN ComplexNaN
—rl ComplexNaN polar(—rl, —thetal) complex(—rl,0.0) polar(—rl, theta2) ComplexNaN ComplexNaN
—Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
NaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.13: Results of the function pow(z1, z2) for complex(0.0, 0.0), ComplexInf, and ComplexNaN

pow(zl, z2)

z1 value 72 value

complex(0.0, 0.0) 22; (|y2| < o0) ComplexInf ~ ComplexNaN
—oo < 22 < 0.0 x2=0.0 0< 22 <00

complex(0.0, 0.0) ComplexNaN ComplexInf ~ ComplexNaN complex(0.0,0.0) ComplexNaN ComplexNaN
z1 | complex(1.0, 0.0) 232 232 272 ComplexNaN ComplexNaN
ComplexInf ComplexNaN complex(0.0,0.0) ComplexNaN ComplexInf ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 13.14: Results of the function fmod(z1, z2) for complex(0.0, 0.0), ComplexInf, and ComplexNaN

fmod(z1, z2)
z1 value z2 value
complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0,0.0) ComplexNaN complex(0.0,0.0) complex(0.0,0.0) ComplexNaN
z1 ComplexNaN fmod(z1,z2) z1 ComplexNaN
ComplexInf ComplexNaN ComplexNaN ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

236

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.7. CREATION OF USER’S COMPLEX FUNCTIONS

Table 13.15: The valid lvalues related to complex numbers

Case Meaning of lvalue Example
1 simple variable z = complex (1.0, 2);
2 an element of a complex array zarray[i] = complex(1.0,2)+ComplexInf;
3 complex pointer variable zptr = malloc (sizeof (complex) * 3;
zptr = &z;
4 address pointed to by a complex variable xzptr = complex (1.0, 2) + z;
5 an element of a complex pointer array zarrayptr[i] = malloc (sizeof (complex) *3;
zarrayptr[i] = &z;
6 address pointed to by an element of xzarrayptr[i] = complex (1.0, 2);
a complex pointer array
7 real part of a complex variable real (z) = 3.4;
real part of a complex variable real («zptr) = 3.4;
real part of a complex variable real (x (zptr+l)) = 3.4;
real part of a complex variable real (xzarrayptr[i]) = 3.4;
8 imaginary part of a complex variable imag(z) = complex (1.0, 2);
imaginary part of a complex variable imag (*xzptr) = 3.4;
imaginary part of a complex variable imag (* (zptr+l)) = 3.4;
imaginary part of a complex variable imag («zarrayptr[i]) = 3.4;
9 float pointer variable fptr = &z;
fptr = zptr;
pointer to real part of a complex variable xfptr = 1.0;
pointer to imaginary part of a complex variable | » (fptr+1) = 2.0;

these lvalues. Besides the simple variable in case 1, an element of a complex array can be an Ivalue, which
is case 2 in Table In case 3, pointer to complex is used as an lvalue to get the memory or to point to
a memory of a complex object. In case 4, the memory pointed to by the pointer zptr is assigned the value
of the expression on the right hand side of an assignment statement. In addition to a single pointer variable,
one can have an array of complex pointers. Cases 5 and 6 show how an element of a complex pointer array
is used to access its memory. The function real() can not only be used as an rvalue or an operand, but it can
also be used as an Ivalue to access the memory of its argument. In case 7, the argument of real() must be a
complex variable, or an address pointed to by a complex pointer or pointer expression. A constant complex
number or expression can be used as an input argument of the function real() only when it is an rvalue or an
operand. In case 8, the imaginary part of a complex is accessed by the function imag() in the same manner
as the function real(). Because a complex number occupies two floats internally, this memory storage can
be accessed not only by the functions real() and imag(), but also by a pointer to float as is shown in case
9 where the variable fptr is a pointer to float. For cases 7-9, a real number, including 0.0, £Inf, and
NaN, on the right hand side will be assigned to an lvalue formally without filtering. Therefore, abnormal
complex numbers such as complex(Inf, NaN), complex(Inf,0.0), etc. may be created. For example, two Ch
commands real(z) = NaN and imag(z) = Inf make z equal to complex(NaN,Inf); and real(z) = —0.0 and
imag(z) = NZero gives z the value of complex(—0.0, —0.0).

13.7 Creation of User’s Complex Functions

User’s complex functions in Ch can be created in the spirit of ISO C, which will be demonstrated by the
computation of the following complex function f(z1, 22).

(421 + 3 4 145) * sin(zy * 29) * €2
Zl(ZQ -2 - ’i2)

f(Zl,ZQ) = (133)

237

CHAPTER 13. PROGRAMMING WITH COMPLEX NUMBERS
13.7. CREATION OF USER’S COMPLEX FUNCTIONS

The complex function f(z1, z2) can be easily programmed in Ch as follows.

complex f (complex zl, complex z2) {
complex z;
z = (4xz1+3+complex (0,5))*sin(zl*z2)«polar(l, 2.5))/
(z1lx (z2-complex(2,2)));
return z;

}

Using the above-programmed external gamma function, the commands

printf ("£(0, 0) = %f \n", £(0, 0));
printf("£(0, 1) = %f \n", £(0, 1));
printf("f(1, 1) = %f \n", f£(1, 1));
printf ("f (0, complex(2, 2)) = %f \n", £(0, complex(2,2)));
printf ("f (1, complex (2, 2)) = %f \n", f£(1, complex(2,2)));

will produce the following output.

(0, 0) = ComplexNaN

0, 1) = ComplexNaN

fil, 1) = complex(1.385598,-2.925680)
O, complex(2, 2)) = ComplexInf

f(l, complex(2, 2)) = ComplexInf

Note that the function f(z1, z2) gets ComplexInf at the singular point zo = 2 + 42 and f(0, z2) becomes
division of complex zero by complex zero.

238

Chapter 14

Pointers and Arrays

Arrays are commonly used programming features. An array consists of elements that extend in one or
more dimensions to represent columns, planes, cubes, etc. The number of dimensions in an array is referred
to as the rank of the array, the number of elements in a dimension is called the extent of the array in
that dimension. The shape of an array is a vector where each element of the vector is the extent in the
corresponding dimension of the array. The size of an array is the number of bytes used to store the total
number of elements of the array.

This chapter will first illustrate how pointers can be used to access elements of arrays. Next, we will
describe how to allocate memory for one- and two-dimensional arrays. From a mathematical point of view,
these two kinds of arrays are very useful to represent vectors and matrices. Then mechanisms for passing
arrays to functions in C90 are described. It shows that passing multi-dimensional arrays of variable length
to functions in the C90 standard conforming manner is cumbersome and error-prone. Variable length arrays
described in the next chapter are recommended for applications.

14.1 Accessing Array Elements Through Pointers

Arrays and pointers are intimately tired. Not only a pointer can be used to access an array, but also the
variable name of an array itself can be treated as a pointer. Assume that A1 is a one-dimensional array of int
type with length of 10 and p is a pointer to int, elements of A1 can be accessed by three methods illustrated
in the interactive execution in a Ch shell as follows.

for (i=0; i<10; i++) printf("sd ", Al[i])
003450000

> int 1

> int A1[10], *p

> A1[3]=3 // method 1

> for (1i=0; i<10; i++) printf("%d ", Al[i])
0003000O0O0C0O0

> x (Al+4)=4 // <==> Al[4]=4, method 2

> for (i=0; i<10; i++) printf("%d ", Al[i])
0003400000

> p = Al

> * (p+5)=5 // <==> Al1[5]=5, method 3
>

0

>

239

CHAPTER 14. POINTERS AND ARRAYS
14.2. DYNAMIC ALLOCATION OF ARRAYS

According to the pointer arithmetic described in Chapter O] p+5 points to the sixth element of A1. The
variable name A1 in statement

* (Al+4)=4

is actually treated as a pointer to int.

For two- or multiple-dimensional arrays, the variable name of an array is treated as a pointer to array.
For example, if A2 is a two-dimensional array of int type with size (3 x 4) and p is a pointer to int, methods
of accessing elements of A2 are shown below.

int i, 7

int A2[3]1[4]1, =*p;

A2[1]1[1]=3 // method 1

for (i=0; 1<3; i++) for(j=0; j<4; Jj++) printf("%d ", A2[i]l[j])
00003000000

p = A2

* (p+1x4+2) =4 // <==>A2[1]1[2]=4, method 2

for (i=0; i<3; i++) for(j=0; j<4; J++) printf("sd ", A2[i][j])
00003400000

% (% (A2+1)+3)=5 // <==>A2[1]1[3]=5, method 3

for (i=0; i<3; i++) for(3=0; j<4; j++) printf("sd ", A2[i][j])
00003450000

vV OV V OV V V OV V V YV

The value of p+1+4+2 points to the address of the seventh element of array A2 at A2 [1] [2]. Variable
A2 is a pointer to array of 4 elements. The point expression (A2+1) gives the address at the fifth element
of array A2. Therefore, » (* (A2+1) +3) is equivalent to the array element A2 [1] [3].

14.2 Dynamic Allocation of Arrays

In many applications, especially in engineering and science, the size of an array or a matrix is known only
at the program execution. It will be more efficient to use dynamic allocation of arrays instead of declaring
arrays of large fixed size. In this section, we will describe how to implement dynamic allocation of one-
and two-dimensional arrays. The standard functions malloc(), calloc(), and realloc() described in Chapter[9l
can be used to dynamically allocate memory for arrays. Function free() can be called to deallocate the
dynamically allocated memory when they are no longer needed.

14.2.1 Dynamic Allocation of One-Dimensional Arrays

A one-dimensional array is typically used to represent a vector. For example, a row vector is a (1 X n)
matrix, and a column vector is a (n X 1) matrix, where n is a positive integral value. Both of them can be
written in the form of one-dimensional array.

As an example, assume vector A1 is of double type and its length vectLen is determined at runtime.
The following code fragment shows how to allocate memory dynamically for A1 with function malloc().

double =*Al;
/* ... source code to obtain vectLen at runtime =/
Al = (double *)malloc (vectLen*sizeof (double));
if (Al == NULL) {
fprintf (stderr, "ERROR: %s(): no enough memory\n", _ func_);

240

CHAPTER 14. POINTERS AND ARRAYS
14.2. DYNAMIC ALLOCATION OF ARRAYS

exit (1);
}
/* ... source code to handle vector Al */
free (Al);
/* ... source code no longer use Al x*/

Variable A1 is declared as a pointer to double. After obtaining the value for vectLen at run time, the
memory with vectLen * sizeof (double) bytes is allocated dynamically. A1l can be treated as a
one-dimensional array, and its elements can be accessed through its name A1.

> int 1

> double xAl

> Al = (double x)malloc(l0*sizeof (double))
40070280

> Al[5] = 10 // method 1

> for (i=0; i<10; i++) printf("%1.1f ", A1[i])
0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0

> x (Al+6) = 20; // <==> A1[6]=20, method 2
0.0 0.0 0.0 0.0 0.0 10.0 20.0 0.0 0.0 0.0

> p = Al

40070280

Two different methods to access an element of the array are presented in the above example. For array A1
with vectLen number of elements, the subscript i in the form of A1[i] or = (Al+1i) can go from O
to vectLen—1. An attempt to access element A1 [vectLen] is illegal, because it points to the memory
outside the boundary for array A1.

A one-dimensional array can also be used to represent a two-dimensional matrix. For example, pointer
p can allocate a memory for a two-dimensional array of size (n x m). The element (i, 3j) of matrix
(n X m) can be accessed by pointer indirection operation * (p+1i+m+7j). In the example below, n is 3 and
m is 4.

> int 1

> double xAl, *p

> Al = (double *)malloc(3*4*sizeof (double))

40070280

> p = Al

40070280

> % (ptlx4+2) = 30; // assigned 30 to element (1,2)

>

14.2.2 Dynamic Allocation of Two-Dimensional Arrays

From a mathematical point of view, a matrix or an array of (m X n) is a set of numbers arranged in a
rectangular block of m horizontal rows and n vertical columns. From a programming point of view, it is
a block of memory with each row of the matrix lying in a contiguous block of memory. Two methods of
dynamical allocation of two-dimensional arrays will be presented in this section. In the first method, the
memory for the matrix allocated is in a single contiguous block, whereas in the second method, each row of
the matrix lies in a contiguous block of memory, but the whole matrix is not in a sequential memory block.

Assume A2 is a two-dimensional array of size (m x n). The values of m and n are determined at run
time. The following code fragment shows how to allocate a single contiguous memory dynamically for
array A2 [m] [n].

241

CHAPTER 14. POINTERS AND ARRAYS
14.2. DYNAMIC ALLOCATION OF ARRAYS

L) A2[0][0] | A2[0][1] | A2[0][2] | A2[0][3] —
= A2[0] | -
-
A2[1] | =| A2[2][0] | A2[2][1] | A2[1][2] | A2[1][3] |
A2[2] |- I
= | A2[2][0] | A2[2][1] | A2[2][2] | A2[2][3]

Figure 14.1: Dynamic allocation of two-dimensional arrays (method 1).

int 1ij;

double *x*A2;

/* ... source code to obtain m and n at runtime =/

A2 = (double **)malloc(m x= sizeof (doublex));

if (A2 == NULL) {
fprintf (stderr, "ERROR: %s(): no enough memory\n", _ func_);
exit (1);

}

A2[0] = (double *)malloc(m * n sizeof (double));

if (A2[0] == NULL) {
fprintf (stderr, "ERROR: %s(): no enough memory\n", _ func_);
exit (1);

}

for(i = 1; i < m; 1i++) {
A2[i] = A2[0] + 1 * n;

}

/* ... source code to handle vector A2 */

free (A2[0]);

free (A2);

/* ... source code no longer use A2 */

Frist, A2 is declared as a pointer to pointer to double. After obtaining the values of m and n, the memory for m
pointers to double is allocated for A2. So, A2 can be considered as a one-dimensional array of pointers with
m elements shown in Figure [I4.1l Then a single contiguous memory withm * n * sizeof (double)
bytes form * n elements is allocated. Each pointer A [1] points to a segment in this block. Therefore, A2
becomes a two-dimensional array. In the example below, elements of array of size (3 x 4) are accessed by
two different methods.

> int 1, j

> double *%A2

> A2 = (double xx)malloc (3 * sizeof (doublex)); // with size (3 X 4)
4006cdcO

> for (i=0; i<3; i++) printf("%p ", A2[i])

00000000 00000000 00000000

> A2[0] = (double x)malloc (3 * 4 x sizeof (double));

242

14.2. DYNAMIC ALLOCATION OF ARRAYS

** A2

CHAPTER 14. POINTERS AND ARRAYS

A2[0][0] | A2[0][1] | A2[0][2] | AZ2[O][3]
A2[0] |
A2[1] | A2[1][0] | A2[1][1] | A2[1][2] | A2[1][3]
A2[2]

A2[2][0] | A2[2][1] | A2[2][2] | A2[2][3]

Figure 14.2: Dynamic allocation of two-dimensional arrays (method 2).

> A2[1] = A2[0]
> A2[2] = A2[0]
> for (i=0; 1<3;

+ 4

+ 2x4

it++)

printf ("Sp ",

4007bee8 4007b£f08 4007bf28

> for (1i=0; 1<3;

.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A2[1]1[1]1=3
* (x (A2+1)+2)=4

it++)

i++)

for (j=0;

// A2[i]
// A2[i]
A2[1i])
j<4; j++) printf("$1.1f
0.0

// method 1
// <==> A2[1l][2

for (3=0;

J<4; J++

.0 0.0 0.0 0.0 0.0 3.0 4.0 0.0 0.0 O.

PP A2

0
>
>
> for (i=0; 1<3;
0
>
4006cdcO

, method 2

1=4
) printf("%1.1f ",
00

.0 0.0

A2[0]
A2[0]

",OA2[4

A2[1

+ 1 * n
+ 1 * n

// l-dimension of pointer

1031)

1031)

Once a memory block withm * n x sizeof (double) bytes is allocated for A2, the subscripts 1 and
j in the form of A2 [1] [j] or * (x (A2+1)+7) can go from 0 to m—1 and O to n—-1, respectively. Any
attempt of access to A2 [m] [n] is illegal.

The following code fragment shows the second method for dynamic allocation of two-dimensional array
A2. Memory for each row of the matrix is allocated separately. Therefore, the memory block for different
rows may not be continguous. The memory layout for array A2 is shown in Figure [14.21

int 1ij;
double *x*A2;
/ * source code to obtain m and n at runtime x/
A2 = (double **)malloc(m *= sizeof (doublex));
if (A2 == NULL) {
fprintf (stderr, "ERROR: %s(): no enough memory\n", _ func_);
exit (1);
}
for(i = 0; i < m; i++) {
A2[i] = (double x)malloc(n » sizeof (double));
if (A2[i] == NULL)
fprintf (stderr, "ERROR: %s(): no enough memory\n", _ func_);
exit (1) ;

243

CHAPTER 14. POINTERS AND ARRAYS
14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH

int main () {
double d1[10], d2[10];
double d3[5], d4[5];
void oneDadd (double ddl[], double *dd2, int n);
oneDadd (dl, d2, 10);
oneDadd (d3, d4, 5);

volid oneDadd (double ddl[], double *dd2, int n) {
int 1ij;
for (i=0; i<=n-1; i++)
ddl[i] += dd2[i]; /* the same as * (ddl+i) += x (dd2+i) =*/

Program 14.1: Passing one-dimensional arrays of variable length to a function.

/* ... source code to handle vector A2 */
for(i = 0; 1 < m; i++)
free (A2[1]);
free (A2);
/* ... source code no longer use A2 */

The major difference between the two methods for dynamical allocation of two-dimensional arrays de-
scribed in this section is that function malloc() is called for each row of the matrix in the latter.

14.3 Passing One and Multi-Dimensional Arrays of Fixed Length

14.3.1 One-Dimensional Arrays

When an array is passed to a function, what is actually passed is only the address of the first element of
the array. In the called function, this argument is a local variable of pointer type. Program adds
one-dimensional arrays d1 and d2, each 10 elements of double data type, and stores the result in array
d1l element-wise by the function oneDadd (). In the function definition of void oneDadd (double
dd1[], *dd2, int n) in Program [I4.]l dd1 is defined as a variable of double array type whereas
dd2 is a variable of pointer to double. One-dimensional arrays of variable length can be passed to this
function as shown in the program. The extent of both arrays d1 and d2 is 10 whereas the extent of arrays
d3 and d4 is 5. In general, the size of an array is not available to the called function, the sizes of arrays in
the function oneDadd () are passed in by the parameter n in the program. However, a string is a special
case. Strings are zero-terminated so that their sizes can be computed easily by the function strlen(). The
expressions of dd1 [-2] and dd2 [20] are equivalent to » (dd1-2) and » (dd2+20), respectively. If
they were used inside the function oneDadd () in Program [I4.1] they would refer to objects outside the
passed array bounds. Because no extents are specified in the declaration of formal arrays, the statement of
ddl1[-2] += dd2[20+n] would be syntactically legal if they were in the function oneDadd (), even
if they may be problematic. It is not possible to generate any warning or error message for this kind of
statement. It is the programmer’s responsibility to make sure that each element of the formal array in the
called function is within the array bounds of actual arrays in the calling function.

However, if the extents of arrays to be passed in the calling functions are known, the formal array ar-
guments in the function can be declared with specified extents. For example, in Program [14.2] both dd1

244

CHAPTER 14. POINTERS AND ARRAYS
14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH

int main () {
double d1[10], d2[10];
double d3[5], d4[5];
void oneDadd (double dd1[10], double dd2[10], int n);
oneDadd (d1, d2, 10); /* OK «/
oneDadd (d3, d4, 5); /* WARNING: incompatible dimensions x/

void oneDadd (double ddl1[10], double dd2[10], int n) {
int 1ij;
for(i = 0; i <=n-1; i++)
ddl[i] += dd2[i];

Program 14.2: Passing one-dimensional arrays of fixed length to a function.

and dd2 are defined as variables of array of 10 elements. When it is invoked by the function call of
oneDadd (d3, d4, 5),two warning messages may be produced by the system because the extents of
passed arrays d3 and d4 do not match with those of the formal definitions for dd1 and dd2. Furthermore,
because the extent has been specified in the formal argument, error messages would be generated in Ch at
the runtime due to the array boundary error if the statement of dd1 [-2] += dd2[20] were used in the
function oneDadd () . To avoid a likely crash of the system, if an array index is smaller than zero, the lower
bound of zero will be used as the array index in Ch. Similarly, if an index is greater than the upper bound of
the formal array, the upper bound of the formal array will be used as the index. The assignment statement
ddl[-2] += dd2[20] would be, therefore, handled as the statement dd1 [0] += dd2[9]. Although
dd1[10] and dd2 [10] inthe function definition oneDadd (double dd1[10], dd2[10], int n)
are declared with specific extents, what is passed to the called function are still only pointers.

14.3.2 Multi-Dimensional Arrays of Fixed Length

One-dimensional arrays can be passed to functions conveniently in C as described in the previous section.
In this section, we will describe how to pass multi-dimensional arrays of fixed shape to functions.

Let us examine the example of passing two-dimensional arrays to a function in Program [I4.3] when the
function twoDadd () is used to add two two-dimensional arrays. If a two-dimensional array of fixed length
is to be passed to a function, the parameters of the array definition in the arguments of the function should
include the number of columns, the second dimension of the array. We illustrate three different formats for
formal array arguments of a function by using the following declaration in Program

void twoDadd (double (*ddl) [5], double dd2[][5], double dd3[4][5],
int n, int m)

Although the declaration formats for dd1, dd2 and dd3 are different, all of them are defined as the pointer
to array of 5 elements of double data type. Unlike one-dimensional arrays, the internal data structures for
variables dd1 and dd2 are identical, they both ignore the number of rows of the actual arrays. However,
if the number of rows of the argument in the calling function corresponding to the variable dd3 is not
4, the system may generate a warning message. In general, in passing arrays to functions, the rank of
actual arrays shall match with the rank of the formal array argument in the function definition and function
prototypes. Otherwise, the system may produce a warning message. If the extent for a dimension of an

245

CHAPTER 14. POINTERS AND ARRAYS
14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH

int main ()

{
double d1[4]([5], d2[4]1[5], d3[411[51]1;
double d4([3][5], d5[31[5], d6[311[51;
double d7[4]([6];
void twoDadd (double (%xddl) [5], double dd2[][5], double dd3[4][5],

int n, int m);
twoDadd (d1l, d2, d3, 4, 5); /x OK x/
twoDadd (d4, d5, d6, 3, 5); /» WARNING: incompatible first dimension

d6[3][5] !'= dd3[4]1([5] =/
twoDadd (d7, d2, d3, 4, 5); /» WARNING: incompatible second dimension
d7[4]1[6] '= (xddl) [5] =%/

}

void twoDadd (double (*ddl) [5], double dd2[][5], double dd3[4][5],
int n, int m) {
/* ddl[n] [m] = dd2[n] [m] + dd3[n] [m] =%/
int i, 3;

for (i=0; i<=n-1; i++)
for (j=0; Jj<=m-1; Jj++)
ddlfi][3j] = dd2[1][J]+dd3[1][]];

Program 14.3: Passing two-dimensional arrays of fixed length to a function.

246

CHAPTER 14. POINTERS AND ARRAYS
14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH

int main () {
double d1[3][5]1[71, d2[3]1[5]1
void threeDadd (double (xddl) [
double dd3[3][
threeDadd (dl, d2, d3, 3, 5, 7

71, d3[31[5]1[7];

5]1[7], double dd2[]I[511[71,
5]1[7], int n, int m, int r);
)i /x dl = d2 + d3 */

void threeDadd (double (xddl

double dd3[3

/* ddl[n][m] [r] = dd2[n]
int i, j, k;

) [5]1[7], double dd2[][511[7],
1I[5]1[7], int n, int m, int r) {
m] [r] + dd3[n] [m][r] x/

for (i=0; i<=n-1; 1i++)
for (j=0; Jj<=m-1; Jj++)
for (k=0; k<=r-1; k++)
ddl[i] [J][k] = dd2[1][]] [k]+dd3[i][]][k];

Program 14.4: Passing three-dimensional arrays of fixed length to a function.

array is given in the function definition or function prototypes, the extent of the actual array shall match
with the corresponding extent of the array in the formal definition. Otherwise, the system may also produce
a warning message. The shapes of the array in the function definition and its function prototypes shall be the
same. Otherwise, it is a syntax error. The exception is declaring a one-dimensional array of variable length.
For example, the following two function prototypes

void funct (double =d);
voilid funct (double d[]);

are considered to be compatible. The function call of twoDadd (d4, d5, dé, 3, 5) inProgram[14.3]
may get a warning message for array d6 [3] [5] which has a different extent for the first row dimension
from the formal argument dd3. A warning message may also be generated for array d7 [4] [6] because
the number of columns is different from the formal definition. Arrays dl1, d2, d4 and d5 with different
numbers of rows can be passed to the function twoDadd () correctly without any warning message.

Multi-dimensional arrays higher than two-dimension can be handled in the same manner. In general,
only the size of the first dimension of an array can vary; all others shall be specified in the function def-
inition and function prototypes. Program [14.4] demonstrates how to pass three-dimensional arrays to a
function in three different syntactical forms for array arguments. In Program [14.4] the function call of
threeDadd (dl, d2, d3, 4, 5, 6) storesthe sum of each elements of arrays d2 and d3 to the
corresponding element of array dd1.

Because an array parameter in a function is handled as a pointer to array, a pointer to array can also
be used as an actual argument of a function. This can be illustrated by Program In Program
the variable dp is a pointer to array of 7 elements and d[1] is an array of 5x7 elements. The assignment
statement dp = d[1] points dp at the starting address of the 5x7 array so that expressions dp [1] [J] and
d[1][i][3] will refer to the same object. In Program[14.3] statement dp = d[1] can be substituted by
one of the following assignment statements

247

CHAPTER 14. POINTERS AND ARRAYS
14.3. PASSING ONE AND MULTI-DIMENSIONAL ARRAYS OF FIXED LENGTH

void funct (double dd[]1[7]){ }

int main () {
double d[3][5]1[7], (xdp)[7], (xdp2)I[7];
dp = d[1l]; /* dp = &d[1][0]1[0]; dp = d+1; dp = = (d+1); =/
funct (dp) ; /% funct (&d[1]1[0]1[0]); funct(d[1l]); =/

/* funct (d+1); funct (x(d+1)); =*/
dp[2]1[3] = dp[3][5]+6; /x treat dp as an array =/

dp2 = malloc(sizeof (double)*x5%7);

funct (dp2) ;

Program 14.5: Using pointer and pointer to array as actual arguments in passing arrays to a function.

dp = &d[1][0][0];
dp = d+1;
dp * (d+1) ;

where §d[1] [0] [0] is the address of the firstelement d[1] [0] [0] of array d, d+1 is a pointer to array
of 5x7 elements, and * (d+1) is an array of 5x7 elements fromd[1] [0] [0]tod[1] [4] [6]. Similarly,
if the statement funct (dp) is replaced by any one of the following programming statements

funct [11[0]1[01);
funct 11);
funct 1);
d+

(&d
(dl
(d+
(% (

funct

1))i

the result will be the same as long as the element dd [1] [j] referenced inside function funct () is within
the valid range of array d in the main routine.

An array consists of a continuous segment of memory in C. The memory pointed at by a pointer to array
can be allocated dynamically by memory allocation functions malloc(), calloc(), and realloc(). Using the
indirection of pointers, a pointer to array of n dimensions can be treated as an array of (n+1) dimensions.
This can be illustrated by variable dp2 in Program[14.5l The variable dp?2 is a pointer to array of 7 elements
of double data type. The memory for dp2 is allocated dynamically and it is passed to the function funct ()
in the same manner as dp.

Similarly, arrays of different data type can be passed to functions. For example, the following code
fragment shows how arrays of pointers of different data type are passed to the function funct ().

char »c[]={"strings", "with different", "length", ""};;

int *x1[2]11471;

float »*x*f[3][5]1([7];

int funct (char *cc[], int **1ii[2][4], float **xf£[3][5][7]);
funct (¢, i, f);

where c is an array of pointer to char, 1 is an array of double pointer to 2x4 int elements, and f is an array of

triple pointer to 3x5x7 float elements. Note that arrays of pointer to char are useful for system programming
because it can store strings of variable length.

248

Chapter 15

Variable Length Arrays

Arrays in C are intimately tied with pointers. Treating array variables as pointers in C is very elegant
for system programming; it is one of C’s major strengths. Because C was not designed for numerical
computing, handling multi-dimensional arrays in C is cumbersome in many situations. For example, in
contrary to the fame of C for its conciseness and clarity, passing arrays of variable length to functions
in C90 is neither intuitive nor easy to understand; it is very complicated. Arrays of variable length were
available in FORTRAN since its earlist days [[1]. Scientific programmers with prior FORTRAN experiences
are often disappointed at C’s inability to handle arrays of variable length. Adding variable length arrays
(VLA) to C is a critical step in evolving C as a leading programming language for applications in science
and engineering. Arrays of variable length whose size is known only at program execution time are added
in C99 and Ch. Details about variable length arrays are described in this chapter.

Four different types of variable length arrays called deferred-shape arrays, assumed-shape arrays, pointer
to assumed-shape arrays, and array of reference in Ch can be illustrated by the following code fragment.

int funct (int al[&][&], int (*b)[:], int c[:]1[:], int n, int m) {
int (xd) [:] = a;
int e[n] [m];

}

where a is an array of reference; b and c are assumed-shape array; d is a pointer to assumed-shape array;
and e is a deferred-shape array. Ch extends C with arrays of explicit lower and upper bounds for numerical
computing. Arrays of explicit lower and upper bounds can be illustrated by the following code fragment.

int funct (int al[l:5], int b[1l:][1:], int n, int m) {
int c[3]1[1:3];
int d[n:m];

}

where a is a fixed-length array with the subscript range from 1 to 5, b is a pointer to two-dimensional
assumed-shape array with unit-offset. The subscript range of the first dimension of two-dimensional array c
with fixed subscript range is from O to 2 while the subscript range of the second dimension of array c is from
1 to 3. The variable d is an array with deferred subscript range and it is also a deferred-shape array. The
first element of an array in C starts with index zero such as a [0]. In contrast to C, the first element of an
array in FORTRAN 77 starts with index one such as a [1]. An array with explicit lower and upper bounds
allows an array element to start with any index number. Arrays with explicit lower and upper bounds have
many applications. For example, the coefficients a; of a polynomial ag + a1 + asa? + ... + a,z™ can be
appropriately handled using a zero-offset array a [0 : n] whereas a vector of N data points x; for i = 1 to
N calls for a unit-offset array x [1 :N].

249

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.1. STORAGE DURATION AND DECLARATION OF ARRAYS

15.1 Storage Duration and Declaration of Arrays

15.1.1 Storage Duration of Objects

Storage duration determines the lifetime of an object. An array declared with external or internal linkage,
or with the storage-class specifier static has static storage duration. For such an array, its storage is
reserved and its stored value for each element is initialized once only. Each element of the array exists and
retains its last-stored value throughout the execution of the entire program. The shape of the array with static
storage duration has to be resolved before the execution of the function main (). Therefore, each extent of
an array definition with static storage duration shall be an integral constant expression with a value greater
than zero as shown in the following sample program.

int n = 5;
int a[4][5], aal[3] = {1,2,3};
extern int b[6][7], c[8], d[]1[9], el[]l; /* d and e are incomplete =/
/* complete shape for d and e in the following definition =/
int b[6][7], c[8], d[411[9], e[10], ee[2]11[3] = {1,2,3,4,5,6};
int main () {

static int s[4], ss[2+3] ={1,2,3,4,5};

extern int af4]] ;

extern int b[6]]

}

An array declared with no linkage and without the storage class specifier stat ic within a function or
nested function has automatic storage duration. Storage is guaranteed to be reserved for a new instance of
such an array on each normal entry into the block with which it is associated. If an initialization is specified
for the array with automatic storage duration, it is performed on each normal entry. Storage for the array
is no longer guaranteed to be reserved when execution of the enlosing block ends in any way including by
means of goto, continue, break, and return statements. For example, arrays in the following
code fragment have automatic storage duration.

int n = 5;
void functl () {
int m = 6;
int a[4]1[5], aal3] = {1,n,m}; /* n==5, m==6 */
void funct2 () {
int s[4], ss[2+3] ={1,2,3,n,m}; /* n==5, m==6 */

}

In this sample code, the shape of an array is completely specified by constant integral expressions for each
extent. Since memory space for an array of automatic storage duration is allocated at execution time upon
the entry to the block within which it is declared, it is desirable that the length of the array can be different
when the block or function is invoked each time. An array whose size is determined at program execution
time is called a variable length array (VLA).

15.1.2 Declaration of Arrays
Variables can be declared in the form of

T D1 (15.1)

250

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.1. STORAGE DURATION AND DECLARATION OF ARRAYS

where T contains the declaration specifiers that specify a type T such as int and D1 is a declarator that
contains an identifier ident. The delimiters [and | may delimit an expression or : for declaration of arrays.
If D1 has the form

Dlexpressionept) (15.2)

and the type specified for identifier in the declaration “T D1” is “derived-declarator-type-list T, then the
type specified for ident is “derived-declarator-type-list array of T.” If the size expression is not present, the
array type is an incomplete type. If delimiters [and] delimit an expression that specifies the size of an array,
it shall be an integral type. If it is a constant integral expression, it shall have a value greater than zero. If the
size expression of an array is not a constant expression, it is evaluated at program execution time and shall
evaluate to a value greater than zero. The array type is a deferred-shape array type. If the size expression is
an integral constant expression and the element type has a fixed size, the array type is a fixed-length array

type.
If D1 has the form

D[(153)

and the type specified for identifier in the declaration “T D1” is “derived-declarator-type-list T,” then the
type specified for ident is “derived-declarator-type-list assumed-shape array of T.” The array is called
assumed-shape array type. The shape of the array is assumed at program execution time.

An array with specified lower bounds shall be declared in one of the following two forms:

T D[lower:upper] (15.4)
T D[lower:] (15.5)
(15.6)

where T contains the declaration specifiers that specify a type such as int, D is a declarator that contains
an identifier ident, 1 ower is the lower bound of the array, and upper is the upper bound. The expressions
lower and upper shall be of integral type.

A pointer to array of fixed-length shall be declared as

T (*D) [expr] (15.7)

where T contains the declaration specifiers that specify a type and D is a declarator that contains an identifier
ident. The expression expr shall be constant integral type. A pointer to array of assumed-shape shall be
declared in one of the following two forms:

T (*#D) [:] (15.8)
T (xD) [lower:] (15.9)

The expression 1ower for the lower bound of the array shall be constant integral type.
Array of reference shall be declared in the form of

T D[&] (15.10)

Array of reference can be used to pass arrays of different data types to functions. It shall be declared at the
function parameter scope or in a typedef declaration only.

The variable length array type includes assumed-shape array, pointer to array of assumed-shape, deferred-
shape array, and array of reference. The following example will clarify the concepts of these various array
definitions.

251

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.2. DEFERRED-SHAPE ARRAYS

void funct (int al:][:], (*b)[:]1, cl&], d[], e[l:]1, n, m){
/* a: assumed-shape array =/

/* b: pointer to array of assumed-shape =/

/* c: array of reference =/

/+ d: incomplete array completed by function call =/

/* e: assumed-shape array with explicit lower bound =/

/* n, m: int «*/

int £[4]11[571; // f: fixed-length array

int g[n] [m]; // g: deferred-shape array

int (xh) [4]; // h: pointer to array of 4 elements.

int (*i) [:]1; // i: pointer to array of assumed-shape

extern int j[]; // J: incomplete array completed by external linkage
int k[] = {1,2};// k: incomplete array completed by initialization

}

For two array types to be compatible, both shall have compatible element types. In addition, if both
size specifiers are present and they are integral constant expressions, then both size specifiers shall have the
same constant value. If either size specifier is variable, the two sizes shall evaluate to the same value at
program execution time. If the two array types are used in a context which requires them to be compatible,
the behavior is undefined if the two size specifiers evaluate to unequal values at execution time.

15.2 Deferred-Shape Arrays

15.2.1 Constraints and Semantics

The size of a deferred-shape array type is obtained at program execution time and the value of the size shall
be greater than zero. The size of a deferred-shape array type shall not change until the execution of the
block containing the declaration has ended. Therefore, at least one of the size expressions is a non-constant
integral expression for deferred-shape arrays. The variables used in the size expression must be declared
beforehand. For example, arrays a, b, ¢, d, and e in the following code fragment are valid declaration of
deferred-shape arrays whereas arrays f, g, and h are not.

int N1;
extern int N;
void functl (int n, m) {

int i = 8%n;

int 3 = 0, k = -9;

int al[il[471; /* OK x/

int b[3] [m]; /* OK: mix fixed-extent with deferred-extent =*/
int c[n#*m][n]; /* OK x/

int d[funct2 (n)] [3*xfunct2(i)]; /* OK =*/

int e[N][N1l*n]; /* OK %/

int f£[M]; /+* ERROR: M has not been defined yet =/

int gl[jl, ggl0]; /* ERROR: zero size =%/

int h[k], hh[-9]; /* ERROR: negative size =*/

}

int funct2 (int 1)

{ return ixi;}

int N, M; /* define N and M =/

252

15.2. DEFERRED-SHAPE ARRAYS

CHAPTER 15. VARIABLE LENGTH ARRAYS

As an application example, a plot with different number of elements for deferred-shape arrays can be

generated as follows:

int nj;
scanf ("%d", &n);
double x[n], yIn];

plotxy(X, y, n, "title", "X", "y");

where the variable n contains the number of elements for the deferred-shale arrays x and y. The value for
the variable n is obtained from the user input.

Deferred-shape arrays shall be declared in block scope such as variables inside functions and nested
functions. Arrays declared with the static storage class specifier in block scope shall not be declared as
deferred-shape arrays. The behavior for declarations of deferred-shape arrays with file or program scope is

undefined. For example,

#include <stdio.h>
void functl (int n, m) {
int funct2 (int n, 1) {
int al[n][i];
int b[n];
return n+m;

}

/ *
/ *

OK «/
OK =«/

int b[funct2(n,m)] [printf ("%$d\n",n)]; /* OK =/

}

extern int n;

int al[n] [n];

static int b[n][n];

extern int c[n][n];

int d[2+3][90];

void funct3(int 1)
extern int al[n]|
static int b[n] |
int c[i+3] [abs (i

}

{

nl;
nl;
)17

]

/ *
/ *
/ *
/ *

/ *
/ *
/ *

UNDEFINED: not block scope =*/
UNDEFINED: not block scope =*/
UNDEFINED: not block scope =*/
OK «/

UNDEFINED: a has linkage */
ERROR: b is static identifier =/
OK «/

The initializers of objects that have static storage duration are evaluated and the results are stored to ob-
jects at compilation time. But, the initializers of objects with automatic storage duration and size expression
of deferred-shape arrays are evaluated and values are stored in the object at program execution time. For

example,

#include <stdio.h>

int n = 4;
int main () {
int m = 5;
int al[n++] [n++];
int b[n++], c[n++];
int d[n++]; int e[n++];

printf ("%d %d %4d", n-—-,

/ *

/ *
/ *
/ *
/ *
bl

compile time n==4 */

runtime m == 5 «/

order of evaluation is undefined =/

order of evaluation is undefined =/

order of evaluation is defined */

n—--], c[n--1); /* order of evaluation
is undefined x/

253

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.2. DEFERRED-SHAPE ARRAYS

Since the size of a deferred-shape array is unknown until the execution time. The size of the deferred-
shape array often time is different at each invocation. Therefore, the deferred-shape array shall not be
initialized. For example,

void functl (int n) {

int a[3] = {1,2,3}; /*x OK =/
int b[] = {1,2,3}; /x OK =/
int c[2]11[3] = {{1,2,3},1{4,5,6}}; /*x OK =*/
int df 1[(3] = {{1,2,3},{4,5,6}}; /x OK =/
int e[n] = {1,2}; /* ERROR: initialization =/
int f[n][n] = {1,2,4,5}; /* ERROR: initialization =/

}
Pointers to deferred-shape array shall not be declared. For example,

void funct (int n) {

int (*pl) [3]; /* OK: pointer to fixed-length array =/

int (*p2) [n]; /+ ERROR: pointer to deferred-shape array =*/
int (*p3) [n][3]; /* ERROR: pointer to deferred-shape array =*/
int (*p3) [3][n]; /+ ERROR: pointer to deferred-shape array =*/

}

Deferred-shape arrays can be declared at the function prototype scope if its array index is also declared
at the same function prototype scope beforehand as an integral type. In function prototype, the array index
can be subsitituted by symbol =. For example,

void functl (int n, alnl); // OK

void functl (int n, alx]); // OK

void functl (int n, al[nl){ } // OK

void funct2 (double n, int a[n]); // ERROR: n is not integral
void funct3(int aln], n); // ERROR: n in a[n] not declared

Deferred-shape shall not mix with the incomplete array type. For example,

int nj;

int a[]l[n] = {{1,2},1{3,4}}; /* ERROR: initialization x/

void funct (int n, b[][n]); /+ ERROR: function prototype scope */
extern c[][n]; /+ ERROR: static storage duration =/

For two array types to be compatible, both shall have compatible element types and the same shape. For
example,

void functl (int (*xp
{int 1 = sizeof(p
void funct2 (int p
{int 1 = sizeof(p
void funct3(int p
{int 1 = sizeof (p
void functd (int n

{

(4]1)

14

*P)

)i}

(3]

)i} /x 1 == 4 %/
(]

)i}

)

int 1 = 3, j = 4;

254

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.2. DEFERRED-SHAPE ARRAYS

int (
int a
int b
int c
= a; functl(a); funct2(a); funct3(a); /* compatible x/

= b; functl(b); funct2(b); funct3(b); /* compatible x/

= ¢; functl(c); funct2(c); funct3(c); /* incompatible */

T 'O O
I

15.2.2 Deferred-Shape Arrays Related to Switch Statement

The controlling expression for a switch statement shall not cause a block to be entered by a jump from
outside the block to a statement that follows a case or default label in the block if it contains the
declaration of a deferred-shape array. Otherwise, the memory for the deferred-shape array within the block
will not be allocated. For example,

int 1i;
int main () {
int n = 10;
switch (n) {
int a[n]; /* ERROR: bypass declaration of a[n] =*/
case 10:
al0] = 1;
break;
case 20:
alll = 2;
break;
case 30:
{
int b[n]; /* OK */
b[1] = 90;
}

break;

15.2.3 Deferred-Shape Arrays Related to Goto Statement

Similarly, the identifier in a got o statement shall name a label located somewhere in the enclosing block
or its calling function. A goto statement shall not cause a block to be entered by a jump from outside the
block to a labeled statement in the block if it contains the declaration of a deferred-shape array. For example,

void funct (int n) {
int 1i;
labell:
if (n>10)
goto label2; /* ERROR: bypass declaration of aln] x/

int al[n];

255

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.2. DEFERRED-SHAPE ARRAYS

ali] = 8;
label2:

alil = 9;

goto labell; /* OK %/
label3:

alil = 10;

goto label2: /* OK */

void functl (int m) {
void funct2 (int r) {
if (r)
goto labeld; /* OK %/
else
goto labelb; /+ ERROR: bypass declaration of b[m] */
}
labeld:
{
int b[m];
labelb:
al0] = 9;
goto labelb5; /* OK */

}

When a got o statement transfers the program execution flow from a nested function to its parent func-
tion, it shall terminate execution of the active function invocation. All dynamically allocated memory in-
cluding those for deferred-shape arrays shall be deallocated and the previous calling environment shall be
restored. The function that called the function containing the got o statement once again becomes the active
function. If the label named in the got o statement is not in the now-active function, the deactivation of the
current function and activation of its parent function continue. Eventually, the function containing the label
of the got o statement will be active, and control flow will be transferred to the statement with the proper
label. For example,

void functl (int n) {
local void funct2 (int n);
local void funct3 (int n);
int al[n];
label:
funct2 (n);
void funct2 (int n) {
int b[n];
funct3(n);
}
void funct3 (int n) {
int c[n];
goto label; /% b[n] and c[n] will be deallocated=*/

256

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.2. DEFERRED-SHAPE ARRAYS

In this example, memory allocated for deferred-shape arrays b [n] and c [n] will be deallocated when the
control flow is transferred from function funct3 () to function funct1 () through function funct2 ().
If label and goto label statements in the above example were replaced by functions set jmp (buf) and
longjmp (buf), respectively, the memory of deferred-shape arrays may not be deallocated. With nested
functions, functions set jmp (buf) and longjmp (buf) may become good candidates for obsolete fea-
tures.

15.2.4 Deferred-Shape Arrays as Members of Structures and Unions

Not only ordinary identifiers, but also members of structures and unions, can be declared as deferred-shape
arrays. But, structures and unions with members of deferred-shape arrays shall be declared with automatic
storage duration. The behavior for declaring structures and unions with members of deferred-shape array at
file or program scope is undefined. Structures declared with the static storage specifier in block scope
shall not be declared with members of deferred-shape arrays.

Like sizeof, of fsetof is also a built-in operator. If a structure has no member of deferred-shape
array, the operation of fsetof(type, member-designator) evaluates to an integral constant value that has
type size_t, the value of which is the offset in bytes, to the structure member (designated by member-
designator), from the beginning of the structure (designated by #ype). If the structure contains a member
of deferred-shape array, the result is not a constant expression and is computed at program execution time.
Because of the variable length of deferred-shape arrays, given

static typet;
the expression & (t . member-designator) will not evaluate to an address constant if the structure contains a
deferred-shape array.

Structures and unions shall not be defined at the function prototype scope. Structures and unions with
members of deferred-shape array can be declared at the function prototype scope of nested functions. For
example,

int n;

struct tag{
int m;
int al[n]; /+ UNDEFINED: not block scope for tagl =*/
int bm]; /* UNDEFINED: not block scope for tagl x/

bi
void functl (int m) {

int 1;
static struct tagf{
int m;
int al[n]; /+* ERROR: static block scope for tagl =/
int b[m]; /+ ERROR: static block scope for tagl =*/
bi
struct tagl{ /* structure shared by
functl (), funct2 (), and funct3() =/
int r=2*m; /* initialization of member r =*/
int al[n] [m][1]; /* OK %/
int g=2+1, g2; /* initialization of member g */
int blr][gq]l; /* OK x/

}i
void funct2 () {

257

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.2. DEFERRED-SHAPE ARRAYS

struct tagl sl; /* OK «/

int 1i;

i offsetof (struct tagl, r); /* OK: runtime offsetof () */
i = offsetof(struct tagl, a); /* OK: runtime offsetof () =/
i = offsetof(struct tagl, b); /* OK: runtime offsetof () =/

}
/* structure with deferred-shape array as function arg x/
void funct3 (struct tagl s) {

int i, J;

struct tagl sl; /* OK =/

for (i=0; i<s.r; i++)

for (3=0; Jj<s.qg; J++)
sl.b[i][3] = s.b[i][J];

}
struct tag2{

int al[2][3];

int b[4]1[5];

/* OK: runtime offsetof () */
/* OK: runtime offsetof () =*/
/* OK: runtime offsetof () =*/
/* OK: compile time offsetof () =/
/* OK: compile time offsetof () =/

= offsetof (struct tagl,
= offsetof (struct tagl,
= offsetof (struct tagl,
(
(

~e

.~

= offsetof (struct tag2,
= offsetof (struct tag2,

~.

e el e
I
O 0 O o B

~.

15.2.5 Sizeof

When the built-in sizeof operator is applied to an operand that has array type, the result is the total number
of bytes allocated for storing the elements of the array. For deferred-shape arrays, the result is not a constant
expression and is computed at program execution time. For example,

int funct (int n, m) {
int 1i;
int a[3]1[4];
int b[n] [m];

int c[sizeof (a)]l; /* ¢ is fixed-length array =/

int d[sizeof (b)]; /+* d is deferred-shape array =/

i = sizeof (a); /* compile time sizeof(a) is 48 «/
j = sizeof (b); /* runtime sizeof (b) is nxmx4 */

return j;

}

When the sizeof operand is applied to an operand that has structure or union type, the result is the
total number of bytes in such an object, including internal and trailing padding. If any member of a structure
or union is a deferred-shape array, the result is not a constant expression and it is computed at program
execution time. For example,

int nj;
int functl (int m) {

258

15.2. DEFERRED-SHAPE ARRAYS

int 1;

struct tagl/{
int a[2][3];

bi

struct tag2{

int r;

int af4][5];

int b[n][m][1][r];
bi
int i;

struct tagl sl;
struct tag2 s2;
void funct2 (struct tagl sl1,

int 1ij;

i = sizeof(sl); / *

i = sizeof(sl.a); / *

i = sizeof(s2.a); / *

i = sizeof(s2); / *

i = sizeof(s2.b); / *
}
i = sizeof (struct tagl); /=
i = sizeof(sl); / *
i = sizeof(sl.a); / *
i = sizeof(s2.a); / *
i = sizeof (struct tag2); /«*
i = sizeof(s2); / *
i = sizeof(s2.b); / %

15.2.6 Typedef

CHAPTER 15. VARIABLE LENGTH ARRAYS

struct tag2 s2){

compile time sizeof () =*/
compile time sizeof () */
compile time sizeof () =*/
runtime sizeof () =/
runtime sizeof () =/
compile time sizeof () =*/
compile time sizeof () */
compile time sizeof () */
compile time sizeof () =*/
runtime sizeof () =/
runtime sizeof () =/
runtime sizeof () =/

Typedef declarations that specify an aggregate type with a deferred-shape array shall have block scope.
The behavior for typedef declaration with deferred-shape arrays in file or program scope is undefined. The
deferred-shape of the array shall be evaluated whenever it is used as a type specifier in an actual declarator,
not when the type definition is declared. For example,

int n = 5;
typedef int A[n];
typedef struct tag{int aaln
int main () {
int nj;
typedef int B[n];
B bb;
B xcc;
}
void funct (int m) {
typedef int A[m];
typedef struct tag {

1}

/ *
TAGL; /*

UNDEFINED:
UNDEFINED:

not block scope */
not block scope */

/ *
/ *
/ *

OK */
OK: int bb[n
ERROR:

1 =/

(xcc) [n] «/

int

/* m 1s not stored in A x/

259

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.3. ASSUMED-SHAPE ARRAYS

int b[m]; /* store m in b[m] */
struct tag xprev;
Struct tag xnext;

} TAGI;

A d; /* store m in d */

m++; /* increment m =*/

{
A a; /+* al] has one more element than d[] =*/
TAGl s; /* s.b[] has one more element than d[] =*/
int c[m]; /* c[] has one more element than d[] =/

}

}

funct (6) ; /* ==> d[6], al[7], s.b[7], c[7] =/

15.2.7 Other Data Types and Pointer Arithmetic

Deferred-shape arrays of different data type can be declared in the same manner as fixed-length arrays. For
example,

void funct (int n) {

char c[n], =*cpln];

int *ip[n][n];

float f[n], *xfp[n][n];

double d[n], *dp[n][n];

complex z[n], xzpln][n];

}

The pointer arithmetic related to fixed-length arrays is still valid for deferred-shape arrays. For example,

void funct (int n, m) {
int i=0, 3j=0;

int al[n] [m];

alil[3] = 90;

*(a[i]l+3) = 90; /x alil[j] = 90 =/
* (x (a+i)+3J) = 90; /x alil[j] = 90 =/
*(&a[0] [0]+ixm+3) = 90; /+ a[i]l[J] = 90 =/
*((int *)al[i]l+]J) = 90; /x al[i]l[J] = 90 =/
*((int *) (a+i)+]) = 90; /x al[i]l[j] = 90 =/
* ((int *)at+ism+j) = 90; /x al[i]l[J] = 90 =/
i = aln-1] - a[n-21; /*x i == m *x/

15.3 Assumed-Shape Arrays

15.3.1 Constraints and Semantics

Assumed-shape arrays shall be declared at the function prototype scope or in a typedef declaration. The
assumed-shape array is a formal argument that takes the shape of the actual argument passed to it. That is,
the arrays for actual and formal arguments have the same rank and the same extent in each dimension. The

260

15.3. ASSUMED-SHAPE ARRAYS

void bxc (double aa[:][:], double bb[:][:],
int main () {
int i, n =2, m = 4, r =6;

double af[2]1[6], bl[2]114]1, cl41(6]; // double alnllrl,

/*x oo %/
bxc(a,b,c,n,m, r);

}

void bxc (double aa[:][:], double bb[:][:],
/+ array multiplication a = b[n] [m]*c[m]
int i, 3j, k;

for (1i=0; i<=n-1; 1i++)
for (j=0; j<=r-1; j++) {
aali]l[J] = 0;
for (k=0; k<=m-1; k++)
aal[i]l[J] += bb[i] [k]l*cc[k][]];

CHAPTER 15. VARIABLE LENGTH ARRAYS

double cc[:][:], int n, int m,

double cc([:][:], int n, int m,

[r] =/

Program 15.1: Passing two-dimensional arrays to a function using assumed-shape arrays.

int r);

int r)

shape of assumed-shape arrays cannot be determined until execution time. The rank of an assumed-shape
array is equal to the number of colons in the assumed-shape specification. For example,

void funct (int [:], [:]1[:]) //
void funct (int dummyl[:], dummy2[:][:
void funct (int al:], bl[:1[:]1) //
int A[:]; //
static int B[:1[:]; //
extern C[:]1[:]; //
void funct (int al:], bl[:1[:1){ //
int cl[:1[:1; //
extern int A[:]; //
void funct2 (int al:], bl:][:1){//
int c[:1[:1; //
}
funct2 (a, b); //

}

OK

1) // OK
OK
ERROR: not
ERROR: not
ERROR: not
OK
ERROR: not
ERROR: not
OK
ERROR: not
OK

function
function
function

function
function

function

prototype
prototype
prototype

prototype
prototype

prototype

scope
scope
scope

scope
scope

scope

Application of assumed-shape arrays can be illustrated by Program [I5.1l In this program, the function
bxc () will multiply two two-dimensional arrays b and c. The product is passed back to the calling function
by argument a The dimensions of arrays in the calling function are passed to the function bxc () by three

parameters n, mand r.

Assumed-shape arrays may also appear in a typedef declaration. For example,

typedef int A[:];

ay * . no unction roto e sScCope «
A /* ERROR t f t] prototyp p /

void funct (A a); /x OK x/

Only variables of fixed-length, deferred-shape, or assumed-shape array type can be used as an actual
argument of a formal argument of assumed-shape array type in function parameters. A pointer or pointer

261

{

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.3. ASSUMED-SHAPE ARRAYS

to array, which does not have the complete shape information, shall not be used as an actual argument of a
formal argument of assumed-shape array type. For example,

functl (int al[:][:]) {
int n=a[l][1l], m = a[l]l[2];
int b[3][4];
int c[n] [m];
int xpl, (xp2) [4], (*p3)1[:1;
void funct3(int al[:]1[:1);
void funct2 (int al[:][:])
{1}
funct2 (a); funct3(a); // OK a is assumed-shape array
funct2 (b); funct3(b); // OK b is fixed-length array
funct2 (c); funct3(c); // OK ¢ is deferred-shape array
funct2 (pl); funct3(pl);// ERROR: pl is pointer
funct2 (p2); funct3(p2);// ERROR: p2 is pointer to fixed-length array
funct2 (p3); funct3(p3);// ERROR: p3 is pointer to assumed-shape array

}

void funct3(int al:

{1}

11:1)

Although complete arrays can be extracted from a pointer to array, they shall not be used as actual
arguments of an assumed-shape array. For example,

void functl (int al[3]);

void funct2 (int al[5]1[71);

void functll (int al:]);

void funct22 (int al:1[:1);

void funct3(int p2[][5][7]) {
int a[5]1[3];
int (*pl) [3];
pl = a;
functl (pl[0]); // OK: passed a[0][0], ..., al0][2]
functl (pl[1]1); // OK: passed a[l]I[0], ., alll[2]
functl (# (pl+1)); // OK: passed a[l][0], ., alll[2]
functl(al4]); // OK: passed a[4][0], ..., al4][2]
functl (pl+1); // OK: pl+l is a pointer to array of 3 ints
funct2 (p2[1]); // OK: passed p2[1][0][0], ..., p2[1][4][6]
functll (p1[0]); // ERROR: passing array a[0][0], ..., al[0][2]
functll(pl[1]); // ERROR: passing array al[l][0], ., alll[2]
functll (x (pl+1));// ERROR: passing array al[l][0], ..., al[l]l[2]
functll (a[4]); // ERROR: passing array al[4][0] ., al41[2]
functll (pl+1); // ERROR: pl+l is a pointer to array of 3 floats
funct22(p2[1]); // ERROR: passing array p2[1][0][0],...,p2[1][4][6]

}
where p1 [0], pl[1],

* (pl+l),anda[4

] are arrays with size of 12 bytes, p2 [1

] is an array of 140

bytes, and p+1 is a pointer to array with size of 4 bytes.
Assumed-shape array shall not mix with fixed-length or incomplete array type. For example,

262

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.3. ASSUMED-SHAPE ARRAYS

void funct (int ;// ERROR: mix assumed-shape with fixed-length
;// ERROR: mix assumed-shape with fixed-length

1)

int 1)
:1);// ERROR: mix assumed-shape with deferred-shape

1)

1)

(al
void funct (al
void funct (int al
void funct (int a] ;// ERROR: mix assumed-shape with deferred-shape
(al

void funct (int ;// ERROR: mix assumed-shape with incomplete

If the operand of a polymorphic operation or function is an element of an assumed-shape array, the data
type of the result and operation depend on the data type of the formal argument. However, if the formal
and actual data types of an argument are different but compatible, the operand will be cast to an operand
with data type of the formal argument before operation takes place. If an element is used as an Ivalue, the
rvalue is cast to the data type of the actual argument if they are different. In other words, elements of the
actual array are coerced to the data type of the assumed-shape array at program execution time when they

are fetched whereas they are coerced to data type of the actual argument when they are stored. For example,

float A[3] = {1, 2};
complex Z[3] = {complex(1l,0), complex(2,0)};
void funct (float al[:], complex z[:]) {
al2] = al[0] + a[l]; /* addition of floats x/
z[2] = z[0] + z[1]; /+ addition of complexs =*/
}
funct (z, A); /* A[2]1==3.0, 72[2]=3.04+410.0 =/

If the formal argument is an assumed shape, the actual argument can also be an assumed-shape array.
For example,

void funct2 (complex aal:], bl[:]1[:], (*xc)I[6], dA[]1[6], el[4][6]){
aall] = b[l][2];
}

void functl (complex al[:], b[:]1[:]1){
if(real(afl]) == 0)
funct2 (a,b,b,b,b); /+* a and b are assumed-shape arrays */

}
int main () {

complex A[2], B[4][6];

functl (A, B); /+ A and B are fixed-length arrays */
}

When the function funct?2 () is invoked by the function call of funct2 (a,b, b, b, b), the memory
allocated for array 2 in the main routine is used by the assumed-shape array a in the function functi1 (),
and subsequently it is passed to the assumed-shape array aa in the function funct2 (). An assumed-shape
array can also be used as the actual argument of a pointer to fixed-length array in a function. In the above
example, the memory allocated for array B in the main routine is used as b in the function funct1l () and
asb, c, d, einthe function funct?2 (). Different identifiers a and aa are used for the same array
object allocated at the declaration of array A. But, the same identifier b has been used in both functions
functl () and funct2 () for the array object B. This shows that the names of identifiers are irrelevant to
argument association of functions.

15.3.2 Sizeof

When the operand of sizeof() operation is an assumed-shape array type, the result is the total number of
bytes used to store elements of the array computed at program execution time. Furthermore, since arrays

263

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.3. ASSUMED-SHAPE ARRAYS

of different data types can be passed to assumed-shape arrays, the size of an element of an assumed-shape
array will also be computed at program execution time. For example,

int funct (complex z[:]) {

int i, numOfElement;

numOfElement = sizeof (z)/sizeof(z[0]);

return numOfElement; /* sizeof (z)=80, sizeof(z[0])=4 x/
}
int main () {

int num;

float a[20];

num = funct (a); /* num == 20 =/

15.3.3 Other Data Types and Pointer Arithmetic

Assumed-shape arrays of other data types are handled in the same manner as assumed-shape arrays of ints.
For example, the following statement declares that variables a, b, and c are assumed-shape complex arrays
of rank one, two, and three, respectively.

int funct (complex al[:], bl[:1[:1, cl:]1[:1[:1);

Assumed-shape arrays of different data types can be handled in the same manner. For example, in the
following code fragment

char xcc[10]; float *»+ff[2][4]; double x*+dd[3][5][7];
int funct (char *c[:]; float *xf[:]1[:], double **xd[:1[:11[:1);
funct (cc, f££, dd);

the function prototype
int funct (char xc[:], float xxf[:][:], double x*+xd[:]1[:1[:1);

defines variables ¢, f, and d as the rank-one assumed-shape array of pointer to char, rank-two assumed-
shape array of double pointer to float, and rank-three assumed-shape array of triple pointer to double, re-
spectively. Arrays cc, ff, and dd are passed to the formal assumed-shape arrays ¢, £, and d in the
function funct (), respectively. The assumed-shape arrays in a function are handled in the same manner
as fixed-length arrays. For example,

void funct (complex z1l[:], z2[:]1[:]1){
complex z, *zp, **zpP2;
zptr = z1; /* the address of the array x/
zptr = &z1[2]; /* the address of the third element x/
/* z2[2]1[1] —= 1; z1[1] = z2[2][1] + z1[2]; zl[2] += 1; =«/
z1[1] = ——z2[2]1[1]1+z1[2]++;
z = xzl; /x z = z1[0] */
z = x(zl1l+5); /*x z = z1[5] */
Z = xx22; /* z = z2[0]1[0] */
zp = z2[2]; /x zp = &z2[2][0] «/
zp2 = (complex *x%)z2;

264

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE

/% z2[1]1[1] = 2z2[1][3] + z2[2])[3] — z2[2][4]; x/
zp2 [1]1[1] = z2[1][3]+ *(*x(z2+2)+3) — *(4+%(z2+2));
/* z2[2]1[3] = 2z2[1]11[3] + z2[2]11[3] =/

* (% (2242)+3) = z2[1]1[31+ *(3+x(z24+2));

15.4 Pointers to Array of Assumed-Shape

15.4.1 Declaration

A pointer type may be derived from a function type, and object type, or an incomplete type, called the
reference type. A pointer type describes an object whose value provides a reference to an entity of the
reference type. A pointer type derived from the reference type T is sometimes called “pointer to 7.” The
construction of a pointer type from a referenced type is called “pointer type construction.”

If, in the declaration “T D1” described in section [13.1.2] D1 has the form

* type-qualifier-list,,; D
and the type specified for ident in the declaration “T D” is “derived-declarator-type-list T, then the type
specified for ident is “derived-declarator-type-list pointer to T.” For each type qualifier in the list, ident is a
so-qualified pointer.

Pointers to array of fixed-length is declared as

T (xD)[assignment-expression]
where T contains the declaration specifiers that specify a type and the assignment expression is an integral
constant expression. For example,

int (*pl) [3]; /* pl is pointer to array of 3 ints =/

int * (*p2) [3]; /* p2 is pointer to array of 3 pointer to int =/
int (*p3)[3][4]; /* p3 is pointer to 3x4 array of ints x/

int % (*p4)[3][4]; /* p4 is pointer to 3x4 array of pointer to int */

Pointers to array of assumed-shape are declared as
TGD)[:]
where T contains the declaration specifiers that specify a type. For example,

int (xpl) [:]; /* OK =%/

int (xp2)[:]1[:1; /% OK =/

int *(*p3)[:]1[:]; /* OK =/

int n = §;

int (*p4)[3][:]; /* ERROR: mix fixed-length with assumed-shape x/

int (*p5)[:]1[3]; /* ERROR: mix fixed-length with assumed-shape x/

int (*p6)[n][:]; /* ERROR: mix deferred-shape with assumed-shape */
int (xp7)[:]1I[nl; /+* ERROR: mix deferred-shape with assumed-shape x/
int (xp8)[1[:1; /+ ERROR: mix deferred-shape with incomplete type =/

where p1 is pointer to array of assumed-shape of rank 1 with int type, p2 is pointer to array of assumed-
shape of rank 2 with int type, and p3 is pointer to array of assumed-shape of rank 2 with pointer to int
type.

The shape of the array pointed to by a pointer to assumed-shape array is determined at program execution
time. A pointer to assumed-shape array is sometimes called a fat pointer since it can store more information
than a pointer to object of scalar type or a pointer to array of fixed-length at program execution time.

265

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE

15.4.2 Constraints and Semantics

Except for pointer to assumed-shape array type, a pointer to void may be converted to or from a pointer to
any incomplete or object type. A pointer to any incomplete or object type, except pointer to assumed-shape
array type, may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier ¢, a pointer to non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integral constant expression with the value 0, or such an expression cast to type void =, is called
a null pointer. If a null pointer constant is assigned to or compared for equality to a pointer, the constant is
converted to a pointer of that type. Such a pointer, called a null pointer, is guaranteed to compare unequal
to a pointer to any object or function.

Two null pointers, converted through possibly different sequences of casts to pointer types, shall compare
equal.

When a null pointer is converted to a pointer to array of assumed-shape, a null pointer is installed at the
base pointer of the assumed-shape array and the bounds of the assumed-shape array are undefined.

An array, including fixed-length array, deferred-shape array, and assumed-shape array, may be converted
to a pointer to assumed-shape array. A pointer to array of fixed-length or pointer to array of assumed-shape
may also be converted to a pointer to assumed-shape array. The base pointer to array and all bounds are
stored in the pointer to assumed-shape array. All other pointer types that do not have the array shape
information shall not be converted to a pointer to array of assumed-shape. For example,

void funct(int al:][:1, pl[2][4], (*p2)[4], p3[1[4], n, m){
int *p;
int b[3]1[4];
int c[n] [m];
int (xp4) [4];
int (xp5) [:];
int (xp6) [:];
p6 = NULL;
p6 = a; /+* OK: a 1s an assumed-shape array */
p6 = b; /* OK: b is a fixed-length array =/
p6 = C; /* OK: c 1s a deferred-shape array =*/
p6 = pl; /+* OK: pl is a pointer to array of fixed-length =/
p6 = p2; /x OK: p2 is a pointer to array of fixed-length «/
P6 = pP3; /* OK: p3 1is a pointer to array of fixed-length =/
P6 = p4; /+* OK: p4 is a pointer to array of fixed-length =/
p6 = p5; /+* OK: pb5 1s a pointer to array of assumed-shape x/
r4 = p; /* WARNING: array bounds do not match x/
p6 = p; /+* ERROR: p is not array type */

}

For two pointer types to be compatible, both shall be identically qualified and both shall be pointers to
compatible types. For two pointers to fixed-length array to be compatible, both shapes of array pointed to by
the pointer shall be the same. For two pointers to assumed-shape array to be compatible, both ranks of the
array pointed to by the pointer shall be the same and the shapes shall evaluate to the same value at program
execution time. For example,

void funct (int afl:], bl:]1[:1[:]1, (xpl)[41[5]1, p2[3], n, m){

266

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE

int c[3]1[4]11[5];

int d[n] [m] [m];

int (*p3) [4]1[5];

int (xp4)[:];

rd = a; /* ERROR: incompatible, wrong rank «/
r4 = b; /+ ERROR: incompatible, wrong rank =/
r4 = pl; /* ERROR: incompatible, wrong rank «/
P4 = p2; /* ERROR: incompatible, wrong rank =/
rd = c; /* ERROR: incompatible, wrong rank =/
rd4 = d; /+ ERROR: incompatible, wrong rank =*/
p3 = p4; /* WARNING: incompatible, wrong rank =/

}

When a pointer to array of assumed-shape is converted to any other pointer to object or to a scalar value,
only the base pointer to assumed-shape array is used.

char c, =*cp;
int i, *ip;
float £, *fp;
int (xap) [4];

int (xp) [:];

¢ = (char) p; /* OK %/
cp = (char *) p; /* OK */
i = (int) p; /* OK %/
ip = (intx) p; /* OK */
ip = p; /* OK =/
f = (float) p; /* OK =/
fp = (float=*) p; /* OK =/
ap = p; /* OK «/

15.4.3 Function Prototype Scope

A pointer to assumed-shape array can be used as an argument parameter of a function to pass arrays of
different size to the function. For example,

void funct (int (%) [:]);

void funct (int (xdummy) [:]);

void funct (int (*p)[:1);

int a[3][4], b[4][3];

int (*pl)[17

funct (a, 3,4); /* passing fixed-length array a[3][4] */
funct(b 3 4); /* passing fixed-length array b[4][3] */
pl = a;

funct (pl, 3,4); /* passing fixed-length array a[3][4] */
funct (NULL, 0, 0) ; /* passing NULL */

void funct (int (*p)[:], n, m) {

int i, 3j;
int al[n] [m];
if (p == NULL)

267

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE

return;
for (i=0; i<n; i++)
for (1i=0; i<m; i++)
alil[3j] = plilI[31;
}

Arrays of deferred-shape and assumed-shape can also be passed to a pointer to array of assumed-shape.
For example,

void functl (int al[:][:], n, m){
int b[n] [m];
void funct2 (int (xp) [:])
{
int i, J;
int c[n] [m];
f(p == NULL)
return;
for (i=0; i<n; 1i++)
for (i=0; i<m; i++)
clil [J] = plil([31;
}
funct2(a); /* a is an assumed-shape array =*/
funct2(b); /» b i1s a deferred-shape array =*/

15.4.4 Typedef

The assumed-shape array and pointer to assumed-shape array are handled in the same manner as the fixed-
length array and pointer to fixed-length array in typedef declarations. For example,

typedef int A[S5];
typedef int BJ[:];

A a; // OK: int al[5]

A xap; // OK: int (*ap) [5]

B b; // ERROR: not function prototype scope for ’"int b[:]’
B xbp; // OK: int (xbp) [:]

/* void funct (int al[5], (xap)[5], int bl[:], (*bp)[:]1); =/

void funct (A a, *ap, B b, *bp); // OK

where a is an assumed-shape array and ap is a pointer to assumed-shape array.

15.4.5 Arrays Allocated by Dynamic Memory Allocation Functions

Arrays can be dynamically allocated as shown in the following example.

funct (int n, int m) {
double al[n] [m];
double (xpl) [:
double (xp2) [:
double (xp3) [:

i1 03] = alil[3]
m])malloc (sizeof (double) xn*m);// OK
])malloc (sizeof (double) xnxm);// OK

(double [n]
(double []

] = a; // OK pl
] [
] [m

268

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE

double (*pd4)[:] = (double [][m])malloc(sizeof (double)xnxm); // OK
/* ERROR: pointer to deferred-shape array is not allowed x/
double (*p5)[:] = (double(x) [m])malloc(sizeof (double)*n=*m);// ERROR

}

where a is a deferred-shape array, and p1, p2, and p3 are pointers to assumed-shape array of double data
type. All memories pointed to by p1, p2, p3, and p4 are dynamically allocated. But, memories for
P2, p3, and p4 are obtained explicitly by the memory allocation function malloc ().

15.4.6 Similarities between Pointers to Fixed-Length Array and Pointers to Assumed-Shape
Array

A pointer to array of assumed-shape behaves very much like a pointer to array of fixed-length. For example,
as a pointer, it should be pointed to an object before its elements can be referenced. Some other points that
may be not so straightforward at the first sight will be clarified in this section.

Static and Automatic Storage Duration

Unlike deferred-shape arrays, there is no restriction on the scope where a pointer to array of assumed-shape
can be declared. It can be declared with either static storage duration or automatic storage duration. For
example,

int (xpl) [:];
extern int (*p2)[:];
static int (*p3)[:];
int main () {
int (*pd)[:];
static (*p5)[:];
extern int (xpl) [:1;

Initialization

A pointer to array of assumed-shape can be initialized at both compilation and program execution time. For
example,

int a[3]11[47];

int (xpl)[:] = NULL; /* runtime initialization =/

extern int (*p2)[:1;

static int (=* p y[:] = NULL; /* runtime initialization =/

int main () {
int b[3][4];
int (xp4)[:] = NULL; /+ compile time initialization =/
int (*p5)[:] = b; /+ compile time initialization =/
int (xp6)[:] = pl; /+ compile time initialization =/
static (xp7)[:]1 = a; /* runtime initialization %/
static (xp8)[:]1 = pl; /* runtime initialization =/
static (xp8)[:] = b; /* ERROR: b is variable of auto class */

269

CHAPTER 15. VARIABLE LENGTH ARRAYS

15.4. POINTERS TO ARRAY OF ASSUMED-SHAPE

Members of Structures and Unions

Not only ordinary identifiers, but also members of classes, structures and unions, can be declared as pointer

to array of assumed-shape. For example,

struct tagl{
int (*pl) [3]; /+ pointer to fixed-length array =/
int (*p2)[:]; /* pointer to assumed-shape array =/
bi
int main () {
struct tag2{
int (*pl)[3]; /* pointer to fixed-length array =*/
int (*p2)[:]; /* pointer to assumed-shape array =*/
}os;

}

where the structure t agl has static storage duration and structure t ag2 has automatic storage duration. In
the interactive commands executed in a Ch shell below, member s.a first shares the same memory as array

al, then shares the memory of array a2.

> struct tag{ int (xa)[:];} s
> int alf2]1([3] = {1,2, 3, 4, 5, 6}, az2[3]11[4]
> s.a = al; // s.a and al share the memory
> al[l][1]
5
> s.all][1]
5
> s.a = a2; // s.a and a2 share the memory
s.a[l][1l] = 10
> a2[1]1[1]
10
> al[l][1]
5
Sizeof

The size of a pointer to array of assumed-shape is the same as the size of a pointer to array of fixed-length.
The size of a pointer to array of assumed-shape is the same as the size of the pointer to the data type of the

array, which is evaluated at compile time. For example,

int (xpl)[:1;

int main () {
int (*b) [5];
int (xp2)[:];

int (*a) [5];
[
)

void funct (int (*p3)[:], (*p4)[:11[:1)
{

int 1i;

i = sizeof(a); /* i == 4 %/

i = sizeof(b); /* 1 == 4 «/

270

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS

i = sizeof(pl); /*» 1 == 4 «/
i = sizeof(p2); /+ 1 == 4 «/
i = sizeof(p3); /* 1 == 4 «/
i = sizeof(p4d); /+ 1 == 4 «/

Other Data Types and Pointer Arithmetic

Pointers to array of assumed-shape of different data type can be declared in the same manner as pointers to
array of assumed-shape of int. For example,

void funct (int n) {
char (xcpl) [:], *(xcp2) [:], *x(xcp3)I[:];
int (»ipl) [:], *(*ip2) [:], *x(xip3)[:];
float (xfpl) [:], *x(xfp2)[:1, **x(*xfp3)[:];
double (*dpl) [:], *x(xdp2)[:]1, **x(xdp3)[:];
complex (xzpl) [:], *(xzp2) [:], **(xzp3)[:];

}

The pointer arithmetic related to pointers to array of fixed-length is still valid for pointers to array of
assumed-shape. For example,

int main () {

int i=2, J=3;

int n=4, m=5;

int al[4][5];

int (*p) [:]

p = a;

plil [J] = 90; /* ali]l[j] = 90 =/
*(p[i]1+3) = 90; /x> alil[j] = 90 =/
* (x (p+1) +3) = 90; /x alil[j] = 90 =/
* (&p[0] [0]+ixm+]) = 90; /x a[i]l[J] = 90 =/
* ((int *)pl[i]+3) = 90; /x al[il[J] = 90 =/
* ((int *) (p+i)+3) = 90; /x al[il[J] = 90 =/
* ((int *)p+ixm+j) = 90; /x alil[]j] = 90 =/
i =pln-1] - p[n-21; /* 1 == m =/

15.5 Arrays with Explicit Lower and Upper Bounds

As one can see from the previous sections, it is painful to handle arrays of variable subscript range in C, espe-
cially for high dimensional arrays. For arrays of different data type or different dimension, different memory
allocation and deallocation functions equivalent to mallocMatrix () and freeMatrix () have to be
used. Evidently, in order to evolve C as a major player in the numerical computing world, simple mech-
anisms must be designed to handle variable length arrays with variable subscript ranges. In this section,
such simple mechanisms for handling variable length arrays with explicit lower and upper bounds as they
are currently implemented in the Ch programming language will be described. It should be emphasized that
new features presented here will not break the C standard and existing C code.

271

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS

15.5.1 Arrays of Fixed Subscript Range

An array with specified lower bounds shall be declared in one of the following forms:

T D[lower:upper] (15.11)
T D[expr] (15.12)

T D[lower:] (15.13)
(15.14)

where T contains the declaration specifiers that specify a type such as int, D is a declarator that contains
an identifier ident, lower is the lower bound of the array, upper is the upper bound, and expr is the
number of the elements of the array. The expressions Lower, upper and expr shall be of integral type.
For example,

int a[l:3], b[0:2][1:5], *c[1:3][1:4]1[0:5];

where the lower and upper bounds of array a are 1 and 3, respectively. Elements a[0] and a[4] are out
of the array boundary.

If the lower bound is not present in declaration (I3.12)), zero is used as the default value for the lower
bound of the array. The upper bound is the value inside delimiters [and | minus 1, which is expr-1. For
example,

int b[0:2][5]; /* equivalent to int b[0:2][0:4] «/
int al[3]; /* equivalent to int al[0:2] x/
int *c[1:3][4][0:57; /* equivalent to int *c[1:3][0:3][0:5]; =/

where the lower and upper bounds of array a are 0 and 2, respectively. Elements a [-1] and a [3] are out
of the array boundary.
Both lower and upper bounds may be negative integral values. For example,

int a[-5:5], b[-5:0], c[-10:-5];

For arrays of fixed subscript range, both lower and upper expressions are constant integral values. The upper
bound shall evaluate to a value greater than the lower bound. For example,

#define N 0
float ff = 5;

int a[5.01]; /+ ERROR: expression double typex/

int b[£ff]; /* ERROR: expression float type =/

int c[0]; /+ ERROR: lower and upper bounds are equal =/
int d[N]; /+* ERROR: lower and upper bounds are equal =/
int e[5:5]; /+ ERROR: lower and upper bounds are equal =/
int £[5:07; /* ERROR: upper 1s not greater than lower =*/
int g[5:-5]; /+ ERROR: upper is not greater than lower =*/

When the upper bound is not present such as in declarations (15.13)) the array type is an incomplete type.
If there is no expression inside delimiters [and], the lower bound is the default value 0. For example,

/* incomplete array completed by external linkage
same as extern int al[0:], b[0:][5]; =/

272

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS

extern int al[]l, Dbl

]
extern int c[1:], b[1l:]1[1:5]; /* completed by external linkage =/
void functl (int el[]); /+ completed by function call */
void funct2 (int £[][5]); /+ completed by function call */
void funct3(int gl[l:]); /+ completed by function call */
void functéd (int h[1:][1:5]); /» completed by function call */
void funct5(int 1[1:]1([51]); /+ completed by function call */
int j[1 = {1,2,3}; /+ completed by initialization =/
int k[]1[2] = {{1,2}, {3,4}}; /+ completed by initialization x/
int 1[1:] = {1,2,3}; /+ completed by initialization =/
int m[1:1([2] = {{1,2}, {3,4}};/* completed by initialization =/
int a[3], bl[4][5]; /* external linkage =/
int ¢[1:3], b[1l:4][1:57; /* external linkage =/

Details about passing arrays with specified lower bounds in functions funct3 (), funct4 () and funct5 ()
will be described in the next section.
Arrays shall not be declared with an upper bound alone without a lower bound. For example,

int a[:5]; /* ERROR: without lower bound =/
int funct (int b[:5]); /+ ERROR: without lower bound =*/

There is a strong relation between pointers and arrays in C. The variable name of an array in an expres-
sion is also a pointer to the memory for the first element of the array. This strong tie between pointer and
array is retained. If the lower bound of an array is zero, all semantics about the array name as a pointer
remain the same. For example, a subscript is equivalent to an offset from a pointer.

int a[5], b[0:4], =*p;

p = &b[0]; / * p =D */

«(a+0) = % (b+0); /* al0] = bl0] =/
*(a+d) = *(b+d); /* al4] = Dbl4] «/
«(p1) = pll1]#2; /* b[1] = b[1]%2 =/

But, when the lower bound of an array is not zero, there is a difference between the array subscripting and
pointer arithmetic. A subscript is equivalent to an offset from a pointer minus the lower bound of the array.
For example,

#define 1 1
int b[i:5], *p, 3=3;

p = &b[i]; /* p=Db %/
(b+3) = bl[]l; /x D[I+i] = x (b+j-1i) =/
(p+J) = blJl; / plJ] = x (b+j-1) =*/

The same principle can be applied to multi-dimensional arrays, For example,

#define n 1

#define m 2

int a[n:8][m:9], i=3, j=4;

alil (3] = 90;

(&ali]l[J]) = 90; / alil[j] = 90 =/

273

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS

(a[i]+J-m) = 90; / alill[j] = 90 =/

* (x (a+i-n)+j-m) = 90; /+ alil[j] = 90 =/

* ((int *)a[i]l+J-m) = 90; /x alil[J] = 90 =/

* ((int =) (a+i- n)+j -m) = 90; /x al[il[3j] = 90 «/
* ((int x)a+(i-n)*» (9-m+l)+3j-m) = 90; /* al[i]l[j] = 90 «/
(&a[n] [(m]+(i-n)(9-m+1)+J-m) = 90; /* al[i]l[3j] = 90 =/
i = ali+l] - af[il; /* 1 = 9-m+1 d1is 8 «/

Pointers to array with explicit lower and upper bounds can be handled in the same manner. For example,

int a[3][1:5], b[0:5][1:5];

int (*p)[1:5]1;

p = a; /x> plil (3] = alil[J] =/
p = b; /x> plil[J] = b[11[J] =/

where p is a pointer to array of 10 elements with lower bound 1. In the next section, we will describe how
to use a pointer to assumed-shape array so that elements p[1] [J] and a[1] [j] refer to the same object
when the pointer p points to array a. And elements p[1] [j] and b [i] [j] also refer to the same object
when the same pointer p points to array b.

Arrays with explicit lower and upper bounds can be used in casting operations. For example,

int a[3][1:5], b[l:5][2:6];

int (*p)[1:5];

p = (int (x)[1:5])a; /x pl[i1[3] == alillj] */
p = (int (x)[1:5])b; /% pl[i][J] == b[1i][J+1] */
p = (int (%) [1l:5])malloc(3*«5xsizeof(int)); free(p);

p = (int []1[1:5])malloc(3x5*sizeof(int)); free(p);

p = (int [0:][1l:5])malloc(3«5xsizeof (int));

Arrays with explicit lower and upper bounds can be used in typedef declaration. For example,

typedef int A[1:5];
A a; /* int a[l:5] =%/

For two array types to be compatible, both shall have compatible element types and the same shape. Only if
both lower and upper bounds of the subscript for each dimension of two arrays are the same, the shapes of
these two arrays are said to be the same. For example,

extern int al[3], c[0:2], b[1l:5];

int af[0:2]1, c[3]; // OK

int b[5]; // ERROR

int funct (int aal[l:31);

int funct (int aa[0:2]); // ERROR: change array bounds

int e[3]1[1:5], £[10][1:5], g[31[5], h[1:3][1:5], i[3][0:5];
int (*p)[1:5];

p = e; // OK: compatible

p = f; // OK: compatible

p = g; /* incompatible second dimension p[i] [j+1] == gl[il[]j],

3
[

274

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS

no warning or error message x/

p = h; /x incompatible first dimension p[i][]J] == h[i+1][3],
no warning or error message */
p = i; // WARNING: incompatible second dimension p[i] [j+1] != i[i][3]]

Note that elements p[1] [j+1] and g[i] [j] refer to the same object because the extent of value 5 for
the second dimension of the arrays is the same. But, elements p[1] [J+1] and 1 [i] [j] do not refer to
the same object.

15.5.2 Arrays of Variable Subscript Range

Arrays of variable length whose size is known only at program execution time have been presented in the
previous sections. The variable length array type includes deferred-shape array, assumed-shape array, and
pointer to assumed-shape array. This variable length array type will be extended with explicit lower and
upper bounds in this section. All syntax and semantics of deferred-shape arrays and pointers to assumed-
shape arrays described in the previous sections are still valid. The semantics of assumed-shape arrays remain
the same whereas its syntax has been modified, which will be described in the next section.

Arrays of Deferred Subscript Range

If the lower or upper bound of the array subscript is a nonconstant integral expression, it is evaluated at
program execution time and the array type is array of deferred subscript range. For example,

int funct (int n, int m) {
int 1 = n;
int al[n:m], b[i:m], c[-n:2+m] [i:n+m];
int d[l:n], e[n:10], £[1:5][0:n];

}

where a, b, c, d, e, and f are arrays of deferred subscript range. The upper bound of an array of
deferred subscript range shall evaluate to a value greater than the value of lower bound at runtime. For
example,

int funct (int n, int m) {
int aln:m];

}

funct (1, 5); // OK: int al[l:5]
funct (5,1); // ERROR: int a[5:1]
funct (5,5); // ERROR: int a[5:5]

Because arrays of deferred subscript range are also arrays of deferred-shape, all constraints and semantics
about deferred-shape arrays described in the previous sections can be applied to arrays of deferred subscript
range. For example, pointers to arrays of deferred subscript range shall not be declared.

/* ERROR: pointer to deferred-shape array =/

int funct (int n, int m, int a[n:m], int (*b) [n:m]) {
int (xpl) [n:m]; // ERROR: pointer to deferred-shape array
int (*p2)[1:m]; // ERROR: pointer to deferred-shape array
int (*p3) [n][l:m]; // ERROR: pointer to deferred-shape array

275

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.5. ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS

Arrays of deferred subscript range shall not mix with incomplete array type. For example,

int n=4, m=5;

int al[lln:ml={{1,2}, {3,4}}; // ERROR: initialization

int b[l:][n:m]={{1,2}, {3,4}}; // ERROR: i1nitialization

int funct (int n, int m, c[][n:m]); // ERROR: func parameter scope
int funct (int n, int m, d[l:][n:m]);// ERROR: func parameter scope
int funct (int n, int m, e[n:][n:m]);// ERROR: func parameter scope
extern int f[][n:m]; // ERROR: static storage duration
extern int g[l:][n:m]; // ERROR: static storage duration

Pointers to Assumed-Shape Array
A pointer to array of fixed-length shall be declared as
T (*D) [expr] (15.15)

where T contains the declaration specifiers that specify a type and D is a declarator that contains an identifier
ident. The expression expr shall be constant integral type. A pointer to array of assumed-shape shall be
declared in one of the following two forms:

T (*D) [:] (15.16)
T (%xD) [lower:] (15.17)

The expression 1ower for the lower bound of the array shall be constant integral type. For example,

int n=10;

int (xpl) [:]; /* OK =/

int (*p2) [:1[:1; /* OK =/

int x(*p3) [:]1[:1]; /* OK x/

int (*p4) [310[:1; /+* ERROR: mix with fixed-length =/
int (*p5) [n]ll:]1; /+* ERROR: mix with deferred-shape =/
int (*p5) [n:]; /+* ERROR: mix with deferred-shape */
int (xp6) [1[:]1; /+* ERROR: mix with incomplete x/

When the shape of an array is assumed by a pointer to assumed-shape array, both lower and upper bounds
of the subscript of the assumed array will be assumed. For example,

int n=3, m=4;

int a[3][4], b[l:n][1l:m], c[3][1:4];

int (*p)[:1;

p = a; /x plil[]j] == alil[j] =/
p = b; /x plil[]J] == bli1[J] =/
p =c; /* pli][3J] == cli]1[]] =/

The declaration (15.17)) with a specified lower bound shall be used only at the function parameter scope, and
nowhere else. For example,

276

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS

int a[l:3][1:4];

int (*pl)[1:4]; /* OK: pointer to fixed-length array =*/
int (xp2)[1:1; /* ERROR: pointer to incomplete array
not at function parameter scope */
pl = a; /* OK */
p2 = a; /* ERROR */

In this example, variable pl is a pointer to array of 3 elements of int type with unit-offset. Declaration
of variable p2 is invalid. Since p2 were invalid, no consistent grammar can be composed for assignment
statement p2 = a for the lower bounds of the array. The problem is that, for a variable of pointer such
as p2, the lower bound for the subscript through an indirection operation of the pointer cannot be provided
explicitly in declaration of the variable according to its declaration specification. Therefore, for consistency,
no lower bound of the subscript shall be specified in a pointer to assumed-shape array except when a pointer
to assumed-shape array is declared at the function parameter scope, which will be described in the next
section. All other constraints and semantics about a pointer to assumed-shape array described in the previous
sections are still valid. For example, pointers to assumed-shape array can be used to access arrays allocated
dynamically.

int funct (int n, int m) {
double a[l:n][1l:m];
/* OK =%/

double (*xpl)[:] = a;

double (xp2)[:] (double [1:n][l:m])a;

double (*p3)[:] = (double [l:n][l:m])malloc(nxmxsizeof (double));
double (xp4)[:] = (double [l:][l:m])malloc(n*mxsizeof (double));
double (*xp5)[:] = (double [J[l:m])malloc(n*mxsizeof (double));
/* ERROR =*/

double (xp6)[:] = (double (%) [l:m])malloc(n*mrxsizeof (double));

}

In this example, the casting operation (double [] [1:m]) isthe same as (double [0][1l:m]) or
(double [0:][1:m]). A pointer to deferred-shape array is erroneously used in the last programming
statement of funct ().

15.6 Passing Arrays with Explicit Lower and Upper Bounds to Functions

In this section, we will describe the linguistic features of passing arrays with explicit lower and upper bounds
to functions. All syntax and semantics presented in this section will not break the C standard and existing C
code.

15.6.1 Passing Arrays of Fixed Subscript Range

When passing arrays of fixed subscript range to a function, the actual passed array argument in the called
function shall be compatible with the array argument declared at the function parameter scope. Both shall
have compatible element types and the same shape. For example,

int a[l:3][1:5], b[0:3][1:5], c[31[1:5], d[1:31[1:6], e[1l:3];
float £[1:3]([1:5];

277

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS

int funct (int aal[l:3]1[1:5]);

funct (a) ; /* OK %/

funct (b) ; /* WARNING: incompatible first dimension =/

funct (c) ; /* incompatible first dimension c[i][]J] == aali+1][7]
no warning or error message */

funct (d) ; /* WARNING: incompatible second dimension */

funct (e) ; /* WARNING: incompatible shape x/

funct (f) ; /* WARNING: incompatible data type =*/

When the lower bound of the subscript of an array is not present, the default value is 0. Although the first
dimension of the array is incompatible in the function call func (c), no warning message will be produced
because a meaningful relation between arrays in the calling function and called function can be established
if the extents of the associated arrays are the same. If the extents are different, a warning message will be
generated for incompatibility. For example,

int a[3]1[1:5], b[0:2]]

int functl (int aa[3][1

int funct2 (int (*xbb) [1

functl(a); /+ OK x/

functl(b); /* OK =/

functl (c); /* incompatible first dimension c[i+1][]J] == aali]l[7]
no warning or error message */

funct2(a); /x OK x/

funct2(b); /* OK %/

funct2 (c); /* incompatible first dimension c[i+1][]J] == bb[i][7]
no warning or error message */

1:5]

:5],
51);
51);

cl[1l:31[1:5];

An array name in the declaration of a function parameter is treated as a pointer to the first element of the
array. However, an array name can be used to specify the lower bound of an array in the function parameter.
The incomplete array type can be used at the function parameter scope. The incomplete array will be
completed at the time of function call. For example,

int a[l:5], b[1:10], c[0:5], d[3];
int funct (int aall:]);

funct (a) ; /* OK =%/

funct (b) ; /* OK */
funct (c) ; /* Ok x/
funct (d) ; /* OK */

It will be discussed in the next section that an incomplete one-dimensional array in the function parameter
scope is treated as a pointer to assumed-shape array. Therefore, it is compatible to pass arrays of differ-
ent subscript range to an incomplete one-dimensional array. The incomplete array type can be used for
multi-dimensional arrays as well. The extents of the first dimension of the associated incomplete multi-
dimensional arrays will not be checked for compatibility. For example,

int a[l1:3]([1:5], b[1:2][1:5], c[0:3][1:5], d[1:3]1[5], e[1:311[0:57];
int funct (int aal[l:]1[1:5]);

funct (a) ; /* OK */

funct (b) ; /* OK =%/

278

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS

funct (c) ; /* incompatible first dimension c[i][]] == aali+1][7]
no warning or error message */

funct (d) ; /* incompatible second dimension d[i][]J] == aali]l[]j+1]
no warning or error message */

funct (e) ; /* WARNING: incompatible second dimension */

When arrays of variable length are passed to arrays of fixed subscript range, the compatibility about shape
could be checked at runtime. For example,

int n = 3, m = 4;

int al[l:n][1l:m], b[n][l:m],

int funct (int aal[l:3]1[1:4]);

funct (a) ; /* OK %/

funct (b) ; /* incompatible first dimension b[i][]] == aali+1][7]
no warning or error message */

funct (c) ; /* WARNING: incompatible first dimension =/

funct (d) ; /* WARNING: incompatible second dimension */

funct (e) ; /* WARNING: incompatible second dimension */

cl[0:n][1l:m], d[1l:n][0:m], e[l:n][l:m+1];

At the current implementation, the runtime checking is disabled. Therefore, the warning messages shown in
the above program will not be produced. Because the shape of a pointer to assumed-shape array is assumed
at execution time, the compatibility could also be checked at runtime. For the same reason, the warning
messages are suppressed in the following sample code.

int n = 3, m = 4;

int a[l:3][1:4], b[3][1:4], c[0:3][1:4], d[l:n][l:m], e[l:n][0:m];
int (xp) [:];

int funct (int aal[l:3]1[1:4]);

p = a;

funct (p) ; /* OK %/

p = b;

funct (p) ; /* incompatible first dimension p[i][]Jj] == aali+1][7]
no warning or error message */

p = b;

funct (p) ; /* WARNING: incompatible first dimension =/

p = d;

funct (p) ; /* OK %/

p =¢€;

funct (p) ; /* WARNING: incompatible second dimension */

15.6.2 Passing Arrays of Variable Subscript Range Using Pointers to Assumed-Shape Ar-
ray

In the previous section, array shapes passed to a function are fixed except for the upper bound of the first
dimension of the array passed to an incomplete array type. In this section, linkages for passing variable
length arrays with explicit lower and upper bounds will be described.

To pass variable length arrays with variable subscript range to a function, a pointer to assumed-shape
array can be used. At the function parameter scope, the following declaration, for a pointer to assumed-shape

279

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS

array can be used:

T (xD) [lower:] (15.18)
T (*D) [:] (15.19)

T D[lower:] (15.20)
T D[:] (15.21)

where T contains the declaration specifiers that specify a type, D is a declarator that contains an identifier
ident, and 1lower of constant integral type is the lower bound of the array. Declaration (I5.20) allows
specification of the lower bound of the first dimension of the array parameter in the function argument. If
the lower bound is not present such as in declarations and (13.21)), the default value O is used. That
is, T (D) [:] is equivalent to T (*D) [0O:] and T D[:] is equivalent to T D[0:]. All linguistic
features about pointers to assumed-shape array described in the previous sections can be applied to pointers
to assumed-shape array with explicit array bounds as if the lower bound were zero. Therefore, we only
highlight new features related to explicit array bounds in the following presentation. An array name in the
declaration of a function parameter is treated as a pointer to the first element of the array. In declaration
(I5.20), the lower bound of an array parameter of a function argument is specified. For example,

int functl (int a[l:]); // OK: pointer to assume-shape (pass)
int funct2(int af[l:1[1:]); // OK:

int funct3(int al[l:1[:1); // OK: pass a[l:][0:]
int funct4 (int al[:1[1:1); // OK: pass a[0:][1:]
int functb5(int al:]1[:]); // OK: pass a[0:]1[0:]
int functé(int al[ll[:1); // OK: pass a[0:][0:]
int funct7(int all[l:]); // OK: pass a[0:][1:]
int funct8(int (xa)[1l:1); // OK: pass a[0:][1:]
int funct9(int (*a)[:]); // OK: pass a[0:][0:]
int functll (int a[0:]); // OK:

[]

int functl2(int all); // OK: incomplete array type as pass
// the same as int functll (int a[0:]);

; // OK: incomplete array type a[0:][5]

) ; // OK: incomplete array type

5]); // OK: incomplete array type

int functl6(int al 5]); // OK: incomplete array type

int functl3(int a [5
10
Il
Il
/+ ERROR: fixed-length array no upper bound =/
5]
[1:
Il

([:]
int functl4 (int al
([

1)
1: 5]
int functl5(int all: 1:
1: 1:
int functl7(int a| [1]);

1:

int functl8(int al[5]

int functl9(int all: 1:][5]);

int funct20 (int a[:5]); // ERROR: upper bound only

int funct2l (int n, int m, int a[n:m]);// ERROR: deferred-shape array
bl:

int afl:], 10:15 // ERROR: not in function prototype scope

A one-dimensional incomplete array in a function parameter is treated as a pointer to assumed-shape array
internally as shown in functl12 () in the above example. But, one-dimensional incomplete arrays in
external linkage and initialization are treated as fixed-length arrays.

Passing arrays of different lower bounds to a pointer to assumed-shape array is not considered to be
incompatible. The upper bound of a pointer to assumed-shape array inside a called function will be adjusted
at function call. The upper bound is the sum of the extent of the passed array and the lower bound of

280

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS

the declared pointer to assumed-shape array at the function parameter. For example, in the following code
fragment,

#define low 1

int n = 3, m = 5;

int al[n:m], b[n:2*m];
int funct (int aal[low:]);
funct (a); /* OK */

funct (b); /* OK */

the lower bound of array aa inside function funct () is 1 and the upper bound is 4, equal to 1 ow+m-n+1
for the function call of funct (a) . For the function call of funct (b), the lower bound of array aa inside
function is still 1, but the upper bound becomes 9, equal to 1ow+2+m-n+1.

The dynamic adjustment of the upper bound allows arrays of different subscript range to be passed to
a function, which is not feasible using arrays of fixed subscript range described in the previous section.
Using a pointer to assumed-shape array, only the upper bounds need to be explicitly passed to a function
as additional parameters. This dynamic feature is useful for numerical computing. For example, when a
FORTRAN function with arrays of unit-offset parameters are ported, the function can be called by passing
both traditional C arrays with zero-offset and FORTRAN-style arrays with unit-offset. For example,

int n=3, m=4;
int a[n][m], b[l:2xn][1l:2*m];
int funct (int aafll:][1:], int n, int m) {

int i, J;

for (i=1; i<=n; i++)

for (j=1; j<=m; J++)
aali]l [J] += 2;

}
funct (a, n, m); /* passing a[0:2][0:3] «/
funct (b, 2*n, 2*m); /* passing b[1l:6][1:8] =/

Similarly, a function with parameters of zero-offset array can be called with arguments of unit-offset array.
For example,

int n=3, m=4;

int a[n] [m], b[l:2xn][1l:2*m];
int (xp) [:] = a;
int funct (int aal:][:], int n, int m);
int funct (int [:1[:], int, int); /* OK x/
int funct (int bb[:][:], int 1, int r); /* OK %/
int funct (int aal:][:], int n, int m) {

int i, J;

for (i=0; i<=n-1; i++)

for (j=0; Jj<=m-1; Jj++)
aalil[Jj] += 2;

}
funct (a, n, m); /* passing a[0:2][0:3] =/
funct (p, n, m); /* passing a[0:2][0:3] =/
funct (b, 2*n, 2*m); /* passing b[1l:6][1:8] =/

281

CHAPTER 15. VARIABLE LENGTH ARRAYS
15.6. PASSING ARRAYS WITH EXPLICIT LOWER AND UPPER BOUNDS TO FUNCTIONS

#include <stdio.h>

int main () {
int oldrlow = 0, oldrup = 3, oldclow = 0, oldcup = 5;
int newrlow = 1, newrup = 4, newclow = 1, newcup = 6, i, J;
double a[oldrlow:oldrup] [oldclow:oldcup], (*pa)[:];
void funct (double aall:][1:], int rup, int cup);
pa = (double [newrlow:newrup] [newclow:newcup])a;

for (i=oldrlow; i<=oldrup; i++)
for (j=oldclow; j<=oldcup; j++)
alil (3] = 2;
funct (pa, newrup, newcup) ;
for (i=newrlow; i<=newrup; i+t++)
for (j=newclow; Jj<=newcup; Jj++)

printf ("palil[j] = %f \n", palil[]j]);
}
void funct (double aa[l:][1:], int rup, int cup) {
int i, J;

for (i=1; i<=rup; i++)
for(j=1; j<=cup; J++)
aalil[J] += 2;

Program 15.2: Changing the array subscript ranges.

The above program also shows that variable length arrays such as deferred-shape arrays a and b and pointer
to assumed-shape array p can be passed to pointer to assumed-shape array aa in the function argument.
Different syntactic forms for function prototypes are used in the above example.

One common programming style in FORTRAN is to pass a segment of an array to a function by calling
the function with an element of the array as an actual argument through call by reference. This type of
FORTRAN code can be ported as shown in the following example.

int n=10;

double X[1:n];

void funct (double A[l:], int n);
funct (&X[5], n);

Elements pa[i+1] [j+1] and a[i] [j] refer to the same object in Program [13.2] The function call
of

funct (pa, newrup, newcup) ;
in Program [15.2] can be replaced by either

funct (a, newrup, newcup) ;
or

funct ((int [newrlow:newrup] [newclow:newcup])a, newrup, newcup) ;

282

Chapter 16

Computational Arrays and Matrix
Computations

Arrays in C are intimately tied with pointers. For the comparison purpose, these arrays are called C arrays.
For numerical computing and data analysis, computational arrays which are first-class objects with more
information are introduced in Ch. Many operators including arithmetic operators are overloaded to handle
computational arrays.

If Ay and A5 wto two arrays, in general, array expression A1/A is undefined mathematically in linear
algebra. However, A;/Aj is defined as an element-wise division in Fortran 90 whereas in MATLAB it is
defined as the product of A; and the inverse matrix of Ag, that is, Aj/A, is the same as Aj A L This
kind of operator overloading for division is quite confusing for learners of linear algebra. This may lead
leaners to use the expression x = b/A as a solution to the system of linear equations Ax = b. To avoid
such a mistake, one of the guiding principles in designing Ch is to follow the mathematical conventions.
For example, the element-wise division of two matrices A; and A, with the same rank is programmed in
Chas Al. /A2 and the product of A; and the inverse of matrix Ao is written as Al xinverse (A2). The
expression s = vl Av is translated into t ran spose (v) *A*vin Ch.

The notations used in this chapter are listed in Table A digital number may follow a symbol for
multiple variables. For example, symbols V, V1 and V2 are used for vectors; symbols A, Al and A2 stand
for vectors, matrices, or high-dimension arrays.

16.1 Declaration and Initialization of Computational Arrays

The extent and range of subscripts for each dimension are fully specified for a fully-specified-shape array.
The computational arrays are declared with type qualifier array. The computational arrays below are fully
specified.

array int al[10]; // allo01], , all[9]
array int a2[0:9]; // a2[0], r 22[9]
array int a3[1:10]; // a3[1], ..., a3[10]
array double a4[10][10]; // a4[0:9]1[0:9]
array complex a5[1:10]1[1:10]1; // a5[1:10][1:10]

where symbol ‘:’ is used to specify the range of the subscripts of arrays. By default, it is from O to n-1,
where n is the number in the operator [] to specify the size of the array.

283

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.1. DECLARATION AND INITIALIZATION OF COMPUTATIONAL ARRAYS

Table 16.1: Shape and data type notations.

Symbol ‘ Meaning
Shape

A vector, matrix, or high-dimension arrays
of char, int, float, double, complex, or double complex
vector, matrix, or high-dimension arrays of char, int, float, double
vector, matrix, or high-dimension arrays with integral data types of char, int
two-dimension matrix of char, int, float, double, complex, or double complex
ond-dimension vector of char, int, float, double, complex, or double complex
scalar of char, int, float, double, complex, or double complex

» 42 -

Data type

bool

char

short

int

float

double

complex

higher order data type of

operands in operations or arguments in functions

the same data type of the original operand or argument
the same data type of the original operand or argument,
double if the data type of the original operand or argument is char or int

TN Q= O O

5 =

Data type modifier

u unsigned
1 long

284

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.2. ARRAY REFERENCE

If two computational arrays have the same number of elements in each dimension, the assignment oper-
ator ’=" can be used to assign arrays element-wise as shown in the execution of the commands below.

> array double a[0:3]

> array int b[4] = { 0, 1, 2, 3}
>a =>b

0.00 1.00 2.00 3.00

>

Computational arrays can be initialized when they are declared in the same manner as C arrays. By
default, computational arrays are initialized to zeros. For example,

array int al[3] = {1, 2, 3};
array int a2[3]= 2.3e3d, 2.2F, 3.D }; // a2

{1,2,3}, data cast

{
array int a3[] = {0.0, -0.0, -0.0}; // a3 = {0.0, -0.0, -0.0}
array double a4[]I[3] = {{1, 2, 3}, {1, 2, 3}};
array double a5[3][3] = {1, 2, 3, 1, 2, 3};

16.2 Array Reference

16.2.1 Whole Arrays

The name of a computational array can be used to access a whole array. For example, the following code
fragment

array int a[20], b[20];
b = a+t+b;

adds each element of a to the corresponding element of b. Arrays a and b are treated as vectors, just like
in linear algebra. This feature makes programs much simpler compared to programs using normal C arrays.
As an example, Programs [16.1]and [16.2] perform the same task of adding array a element-wise and multiply
it by 3, and print out the results. Program [16.1] uses computational arrays whereas Program [16.2] doesn’t.
Clearly, Program [16.2] contains less lines of code and is more readable and easier to maintain. Note that
the array qualifier is defined as a macro in header file array.h. In order to use the computational array, the
program should include this header file. The output for these programs are the same and given below.

b
2
8
b
3
1

16.2.2 Array Elements

Similar to C arrays, the operator [n] can be used to access elements of computational arrays, where n is a
valid subscript. For example, the following code fragment

array int a[20], b[20];
b[1l] = al2]1+b[2];

285

CHAPTER I6.

16.2. ARRAY REFERENCE

/+x File: declare.ch x/
#include <stdio.h>
#include <array.h>
#define N 2

#define M 3

int main () |
array int al[N][M] = {1,2,3,
4,5,6};
array int Db[N] [M];
b = a+ta;
printf ("b = \n%d", b);
b = 3xa;
printf ("b = \n%d", b);

return 0;

COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

Program 16.1: Declaring and using computational arrays.

/% File: declare.c x/
#include <stdio.h>
#define N 2

#define M 3

int main () |
int a[N] [M] = {1,2,3,
4,5,6};
int b[N] [M];
int i, 3j;

printf("b = \n",);
for (i=0; i<N; i++) {
for (3=0; J<M; J++) {

b[i][3] = alil[jl+alill]];

printf("sd ", bli]l[3j]);
}
printf ("\n",);
}
printf("b = \n",);
for (i=0; 1i<N; i++) {
for (3j=0; j<M; Jj++) {
b[i][J] = 3*xali]l[]l;
printf("sd ", bl[i]l[3]);
}
printf ("\n",);
}

return 0;

Program 16.2: Implementing program declare.ch in C.

286

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.3. FORMATTED INPUT AND OUTPUT FOR COMPUTATIONAL ARRAYS

B[O][0] | B[OI[Y] [B[O][2]

B[O [B[Y[1] | B2

Figure 16.1: Computational array B.

0x10000

B[O][O]
0x10004

B[O][1]
0x10008

B[O][2]
0x1000C

B[1][0]
0x10010

B[1][1]
0x10014

B[1][2]
0x10018

Figure 16.2: Memory layout of two-dimension computational array B.

adds the third element of a to the third of b, and saves the result to the second element of b.
Like C arrays, computational arrays are also row-wise. For example, for computational array B declared
below,

array int B[2][3];

assume the address of computational array B of dimension 2x3 shown in Figure [16.1]is 0x10000, the
internal memory layout of array B is shown in Figure [16.2

16.3 Formatted Input and Output for Computational Arrays

Like C arrays, the input of computational arrays can be handled by the function scanf() element by element.
For example,

> array int af[2]

> gscanf ("%d", &al[0])
10

> a

10 0

The computational array can also be conveniently handled by the function scanf() for the entire array.
If the data type of the array is not char or unsigned char type, input numbers can be separated by one or

59 99 9,5 9.3

multiple of white space, chararacters , 737’7 or a newline character. For example,

287

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

16.3. FORMATTED INPUT AND OUTPUT FOR COMPUTATIONAL ARRAYS

> array int Db[6]
> scanf ("%d", &b)
10 11, 12

13; 14: 15

> Db

10 11 12 13 14 15

The family of output functions fprintf(), sprintf(), printf(), etc. can be used to print out all elements of a
computational array once. The format specifier will be applied to each element of the array. For example,

S =2 O VYOV VYV

array int al[3] = {1,2,3}

array int b[2][3] = {1,2,3,4,5,6}
printf ("a = %d", a);

=123

printf ("b = \n%d", Db);

2 3

56

For computational arrays with large extents, 74 characters including elements of arrays and delimiting
spaces at each line will be printed out. For example, each element of array a below has the same value of
90. The output is wrapped in the subsequent line beyond 74 characters.

> array int af[2][50] = 90
> a

90
90
90
90
>

90 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 S0 90 90 90 90 90 90 90
90 S0 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 S0 90 90 90 90 90 90 90
90 S0 S0 90 90 90 90 90 90 90 90 90 90 90 90 90 S0 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 S0 90 90 90 90 90 90 90

A multi-dimensional array will be printed out in multiple two-dimensional arrays with the rows and
columns of the last two extents of the array as shown below.

>
>
1
4

7

array int a(2][2]1(3] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

o N W

3
6

8 9

10 11 12

By default, a one-dimensional array is a column vector in Ch. For a one-dimensional array of a column or
row vector, the output will be printed out as a row vector even if it is a column vector. For example,

>
>
1
>
1

array int al[3] = {1,2,3}

a // column vector
2 3

transpose (a) // row vector

2 3

The vector a is a column vector, the transpose of a, t ranspose (a) is arow vector. When they are printed
out, both are displayed as row vectors.

288

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.4. IMPLICIT DATA TYPE CONVERSION FOR COMPUTATIONAL ARRAYS

Data Type Order

double complex
complex

double

float

unsigned long long int
long long int
unsigned long int
long int
unsigned int

int

unsigned short
short

unsigned char
char

high

low

Figure 16.3: Data type hierarchy.

16.4 Implicit Data Type Conversion for Computational Arrays

In computational array operations, the data types of operands will be checked for compatibility. If data
types do not match, Ch will signal an error and print out some informative messages for the convenience
of program debugging. However, some data type conversion rules have been built into Ch so that they can
be invoked whenever necessary. This will save many explicit type conversion commands for a program.
The order of the data type for computational array is arranged as shown in Figure with char being the
lowest data type and double complex the highest data type. The default conversion rules are summerized as
follows.

1. Arrays of char, int, float, and double can be converted according to data conversion rules of the
corresponding scalar types.

2. Arrays of char, int, float, and double can be converted to arrays of complex with the imaginary part of
each element being zero. When casting an array of real number to an array of complex number, the
values of elements of Inf and —Inf become ComplexInf, and the values of elements of NaN become
ComplexNaN. Conversion from array of double to array of complex may lose information.

3. In binary operations such as addition, subtraction, multiplication, and division with arrays of mixed
data types, the result of the operation will carry the higher data type of two operands. For example,
the result of addition of an array of int and an array of double will result in an array of double.

The following code segment will illustrate how arrays with different data types are automatically con-
verted.

> array int i[2] = {1, 2}

> array float f[2]

> array double d [2]

> f = 1 // float = int
1.00 2.00

289

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.5. ARRAY OPERATIONS

>d=f + i // double = float + int
2.0000 4.0000
>

For operation d = f + i, elements of arrays f and i of float and int types, respectively, are added
with the result of a computational array of float type. The resultant computational array of float type is then
cast to a computational array of double type and assigned to variable d of computational array of double
type. Data type conversion for various array operations are discussed in detail in Section

16.5 Array Operations

16.5.1 Arithmetic Operations

The arithmetic operations for computational arrays are listed in Table The symbol A /k in the third
column of Table [16.2]indicates that the results are arrays with the same shape and data type of the operand.
For the symbol A /p, the result is the same shape and higher order of data type of two operands. These
symbols are described in Table [[6.1l The arithmetic operations include unary plus operator ‘+’, unary
minus operator ‘—’, addition operator ‘+’, subtraction operator ‘-’, multiplication operator ‘+’, division
operator ‘/’, array multiplication operator ‘.’ and array division operator ‘. /’. The operator ‘*’ is for
multiplication of two arrays of one-dimensional vectors or two-dimensional matrices. The multiplication of
two arrays follows the rule of linear algebra. For element-wise array multiplication operator ‘. »’ and array
division operator ‘. /’, the operation is performed on each corresponding element of two array operands,
which shall be of the same shape (dimension and extent).

The data type of the result of the operation of unary plus operator or unary minus operator is the same
as that of the operand. The resulting data types of other operations in Table will have the higher order
data type of the operands in operations. If one of the operands of addition or subtraction operator is a
scalar and the other is a computational array, the scalar will be promoted to a computational array for the
corresponding array operation. If the numerator of the array division operator ‘. /’ is a scalar, it will be
promoted to a computational array.

Applications of these operations are illustrated in the commands below. For example,

> array int alf2]([2] = {1, 0, 2, 3}
> array int a2f[2]1[2] = {0, 5, 2, 2}
> float s = 2.0

> al x a2

0 5

6 16

> al .* a2

00

4 6

> al/s

0.50 0.00

1.00 1.50

> al +2

32

4 5

For multiplication of two arrays, the dimensions of the arrays have to follow the rule of linear algebra as
shown below.

290

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.5. ARRAY OPERATIONS

Table 16.2: Array arithmetic operation.

Definition Operation Result

unary plus +A A/k
unary minus —A A/k
addition Al + A2 Alp
addition A + [s] Alp
addition [s] + A Alp
subtraction Al - A2 Alp
subtraction A — s Alp
subtraction [s] — A Alp
multiplication A1xA2 | A/poralp
multiplication Axs Alp
multiplication sx A Alp
division A/s Alp
array multiplication | Al.x A2 Alp
array division Al./A2 Alp
array division [s]./A2 Alp

> array int alf[2]I[3] = {1, 2, 3, 4, 5, 6}

> array int a2[3]1[2] = {1, 2, 3, 4, 5, 6}

> array int b[3] = {1, 2, 3}

> al=*a2

22 28

49 64

> alxb

14 32

> alxal

ERROR: array dimensions do not match for matrix operations

As a special case, the result from multiplication of two arrays is a scalar instead of an array, if the shapes
of Al and A2 are (1 x n) and (n x 1), where n is 1, 2, 3, ... For example,

> int i

> array int a[l] = {10}

> array int b[1l] = {20}

> array int c[2] = {1, 2}

>1=ax*xb // (1xl) * (1x1l), the result is a scalar

200

>b =a+ b // it’s an array

30

> transpose(c) = ¢ // (1x2) * (2x1), the result is a scalar
5

> ¢ * transpose(c) // (2x1) * (1x2), the result is an array
12

2 4

291

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.5. ARRAY OPERATIONS

25

20

15 |

10»‘\

Figure 16.4: Function y(z) = 2/x + sin(z?).

The result of a * b is an integer, so is transpose (c) * c. The one-dimensional array by default is
a column vector with the shape of (n x 1) at declaration and calculation. For example, c has the shape of
(2 x 1) instead of (1 x 2).

Array multiplication operator ‘. ’ and array division operator ‘. /’ are useful to handle formulas with-
out loops such as for-loop and while-loop. For example, the plot of function y(z) = 2/z + sin(2?) in the
range of 0.1 < x < 6.2 with 100 points can be created as follows.

> array double x[100], y[100]

> lindata (0.1, 6.2, X)

>y = 2.0./x +sin(x.xx)

> plotxy(x, vy)

The output of a plot is displayed in Figure [16.4l Function call of lindata(0.1, 6.2, x) assigns linearly spaced
values starting with 0.1 and ending with 6.2 for elements of array x. Details about function lindata() and
generic mathematical function sin() for handling arguments of array type will be described later. Note
that for computational array x, expression 2. /x is interpreted as 2.0/x, not array operation 2 ./ x.
Therefore, 2 . /x is invalid because of unmatched array dimensions.

16.5.2 Assignment Operations

The assignment operations for computational arrays are listed in Table[16.3] They include simple assignment
‘=" and compound assignments which include assign sum operator ‘+=’, assign difference operator ‘—=’,
assign product operator ‘x=", and assign quotient operator ‘/=". The data types of the results of operations
of these operators are the same as those of the left operands.

Applications of these operations are illustrated in the commands below.

> array int alf4] = {1, 0, 2, 3}
> array int a2f[4] = {0, 5, 2, 2}
> al += a2z

1545

292

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.5. ARRAY OPERATIONS

Table 16.3: Array assignment operation.

Definition Operation | Result
assignment Al1=A2 A/k
assign A=[s] A/k
assign sum Al+=A2 | Ak

assign difference | A1-=A2 | A/k
assign product Alx=A2 | Ak
assign product Alx=s A/k
assign quotient Al/=s A/k

Table 16.4: Array increment and decrement operation.

Definition | Operation | Result
plus A++ A/k
plus ++A A/k
minus A—- A/k
minus --A A/k

16.5.3 Increment and Decrement Operations

The increment and decrement operations for computational arrays are listed in Table [[6.4l They include
increment operator ‘++’ and decrement operator ‘~-’, which add 1 to and subtract 1 from each element
of the array, respectively. The resulting data type of these operations are the same as those of the original
operands.

Applications of these operations are illustrated in the commands below.

array int al[4] = {1, 0, 2, 3}
array int az2[4] = {0, 5, 2, 2}
al++

02 3

al

1 34

-—a2

-1 411

vV NV L V V V

In most cases, a computational array has a rank of 1 or higher. In some situations, a computational array
can have value of NULL. Before it is allocated memory, a pointer to computational array has a value of
NULL. A value of NULL can also be passed to an argument of array of reference type in a function. A

computational array with value of NULL can be used as an operand of equal operator ‘==" or not equal
operator ‘!=’. They cannot be used as an operand for other operations. If one of two operands for equal
operator ‘==’ or not equal operator ‘! =’ is pointer to computational array or array of reference, the other

operand can be NULL. The result of the operation in this case is a boolean type of either true or false. This
can be used to test if NULL has been passed to array of reference or if a pointer to computational array
points to a valid object. Details about pointer to computational array and computational array of reference
will described later.

293

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.5. ARRAY OPERATIONS

In Programs [[6.11] NULL is passed to the argument a of array of reference in function func (). In
Program[16.12] variable a of pointer to computational array has a default value of NULL before it is pointed
to an array. The output of these two programs are the same as shown below.

==NULL 1is true
a!=NULL is false

16.5.4 Relational Operations

The relational operations for computational arrays are listed in Table They include the less than
operator ‘<’, less than equal operator ‘<=’, equal operator ‘==, greater than equal operator ‘>=’, greater
than operator ‘>’, and not equal operator ‘!=". Using these operators results in an array of int type, with
values of either 0 or 1, depending on how each element of the array compares. For these binary operators,
if one of operands is a computational array and the other is a scalar, the scalar will be promoted to a
computational array with the shape of the array operand. Applications of these operations are illustrated in
the commands below.

array int al[4] = {1, 0, 2, 3}
array int az2[4] = {0, 5, 2, 2}
al < a2

100

al >= a2

011

= VvV OV V V

In most cases, a computational array has a rank of 1 or higher. In some situations, a computational array
can have value of NULL. Before it is allocated memory, a pointer to computational array has a value of
NULL. A value of NULL can also be passed to an argument of array of reference type in a function. A

computational array with value of NULL can be used as an operand of equal operator ‘==" or not equal
operator ‘!=’. They cannot be used as an operand for other operations. If one of two operands for equal
operator ‘==’ or not equal operator ‘! =’ is pointer to computational array or array of reference, the other

operand can be NULL. The result of the operation in this case is a boolean type of either true or false, which
can be used as a controlling expression of if-statement to test if NULL has been passed to array of reference
or if a pointer to computational array points to a valid object. Details about pointer to computational array
and array of reference will be described later.

16.5.5 Logic Operations

The logic operations for computational arrays are listed in Table They include the AND operator‘s &’
XOR operator *~ “’, OR operator ‘| |’, and NOT operator ‘!’. The results of evaluating with these operators
are arrays of int type, with values of either O or 1. For these binary operators, if one of operands is a
computational array and the other is a scalar, the scalar will be promoted to a computational array with the
shape of the array operand.

Applications of these operations are illustrated in the commands below.

array int al[4] = {1, 0, 2, 3}
array int az2[4] = {0, 5, 2, 2}
al && a2

011

al || a2

111

= VvV OV V V

294

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.5. ARRAY OPERATIONS

Table 16.5: Array relational operation.

Definition Operation Result
less than B1 < B2 Ii
less than B1 < 4] I/
less than [s] < B2 Iii
less equal Bl <= B2 14
less equal Bl <= [s] Ii
less equal [s] <= B2 Ii
equal Al == A2 Ii
equal Al == [§] I/i
equal [s] == A2 Ii
equal NULL == Al b
equal Al == NULL b
greater equal | B1 >= B2 14
greater equal | B1 >= [s] I/
greater equal | [s] >= B2 I/i
greater than | B1 > B2 Ii
greater than | B1 > [s] Ii
greater than | [s] > B2 Ii
not equal Al !'=A2 Ii
not equal Al '=[g] I/i
not equal [s]!'= A2 I/
not equal Al '= NULL b
not equal NULL!'= A1l b

Table 16.6: Array logic operation.

Definition | Operation | Result
AND Al ss A2 14
AND Al ss& [s] Ii
AND [s]as A2 1
XOR Al "~ A2 I
XOR Al ~" [¢] Ii
XOR [s]"" A2 Ii
OR Al || A2 Ii
OR Al || [s] Ii
OR [s]I| A2 Ii
NOT 1A Ii

295

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.5. ARRAY OPERATIONS

16.5.6 Conditional Operation

>

The conditional operator ‘?:’ can be applied to computational arrays in Ch. If this is the case, the first

operand of a conditional expression shall have scalar type, and the other two operands are computational

array of the same shape. The result is a computational array with the higher order type of these two operands.
Applications of the conditional operation are illustrated in the commands below.

> array int a[2][3] = 1, b[2][3]=2
> array float £[2][3] = 3.0

1 ? a:b // operands of array
111

111

>0 ? f:b // operands of array

3

3

\Y

.00 3.00 3.00
.00 3.00 3.00

In these two examples, both the second and third operands have the same shape, which are (2 x 3) and
(2 x 2), respectively. The result of the latter example is a computational array of type float, since the type of
the second operand is float, which has higher order than int type of the third operand.

16.5.7 Address Operations

The address operator ‘&’ can also be used to get the address of a computational array or the address of an
element of a computational array. The commands below illustrate how the address operator works.

array int af[0:9], b[2][3];

int *ptr;

ptr = &a; // the address of a

ptr = &al2] // the address of third element of a
ptr = &b; // the address of b

ptr = &b[1][2]; // the address of an element of b

The address operator ’&’ applied to a computational array gives the address of the first element of the
array. For the sample commands below, &a gives the address of a[0] [0] and &b gives the address of
b[0][0]. So, if the memory for a pointer to computational array, which will be described later, has not
been allocated, the address operation gives NULL. Furthermore, the address operator ‘&’ before an element
of a computational array gives the address of this element. For example, &b [1] [0] [0] gives the address
of b[1][0] [0] as shown below.

> array int al[2][2] = {1, 2, 3, 4}
> array int b[2]1[2]([2] = {1, 2, 3, 4, 5, 6, 7, 8}
> &a

4005e3e0

> &al[0][0] // same as &a
4005e3e0

> &b

4005e4e0

> &b [0][0][0] // same as &b
4005e4e0

> &b[1][0][0]

4005e4f0

296

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.6. PROMOTION OF SCALARS TO COMPUTATIONAL ARRAYS IN OPERATIONS

16.5.8 Cast Operations

Because Ch allows array operations of computational arrays with different types or even operations with
computational arrays and C arrays, the cast operation is sometimes important to prevent confusion.
Below are some examples of cast operations for computational arrays.

array double a[3][1], b[3], cl[4][3];
array int d[3]1[1];

a = (array double [3][1])b; // cast [3] to [3]I[1]

b = (array double [3])a; // cast [3]1[1] to [3]

b = (array double [3])&c[1]1[0]; // cast 2nd row of ¢ to vector b
b = (array double [3])&c[2][0]; // cast 3rd row of ¢ to vector b
c = (array double [4]([3])4; // cast scalar to array

d = (array int [3][1])a; // cast double to int

Through cast operations, the assignment operations can be performed for two computational arrays. For
example, the extent of the last dimension of array c is the same as array b. Although a has the different
extent in the last dimension, it also has the same amount of memory of array b. Note that scalars may be
cast as computational arrays. The statement ¢ = (array double [4][3]) 4 above will set all the
elements of array c to 4. It is also possible to cast computational arrays of one data type to another, such as
in the last operation above.

If the number of array elements the cast operation is smaller than the number of array elements of the
operand, the extra elements of the operand are ignored. If the number of array elements the cast operation
is larger than the number of array elements of the operand, the remaining elements of the resulting array are
filled with 0’s. For example,

> array double a[3] = {1,2,3}
> (array int [2])a

12

> (array int [4])a

1230

The casting operator preceding an array can give the address or value of the first element of the array. If
the type is a pointer, it gives the address of the first element of the array. Otherwise, it gives the value of the
first element. For example

> array int al[2][2] = {1, 2, 3, 4}
> (int *)a

4005ef10

> &a

4005ef10

> (int)a

1

16.6 Promotion of Scalars to Computational Arrays in Operations

A scalar value can be cast to a computational array explicitly. But, the scalar operand will be promoted to
a computational array implicitly for addition, subtraction, array division, assignment, logic and relational
operations, if the other operand is a computational array. An array promotion is used for operations with
two arrays operands, i.e. the operand of a scalar in the operation internally is treated as an array in which

297

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

Table 16.7: Array promotions.

Definition | Operation | Promotion | Result
assignment | A = s | A = [g] A/k
addition A+ s | A+ |9 Alp
addition s + A [s] + A Alp
subtraction | A — s A — [4] Alp
subtraction | s — A [s] — A Alp
division s./ A [s] ./ A Alp
less than B < s B < [s] Ii
less than s < B [s] < B Iii
less equal B <= s | B <= |[4] 1
less equal s<=B|[s] <=B| i
equal A=s|A==17[s]| Ii
equal s ==A|[s] == A| Ii
greaterequal | B >= s | B >= [s] Iii
greaterequal | s >= B | [s] >= B Ii
greaterthan | B > s | B > [s] Iii
greater than | s > B [s] > B Ti
not equal Al=s A 1=5] Ii
not equal s!=A [s] 1= A Ti
XOR B " s B " [s] 1
XOR s"B |[s "B Li
OR Bls B || [s] 1/
OR sl B [s] 11 B 1/
AND Bss s B ss [s] Ii
AND s&s B [s] «& B 1

the value of each element equals this scalar value. In some cases, array promotions make the programming
easier. Consider the following statements, where 2 is added to each element of computational array a with
a single statement. If a were a regular C array, the process would require some sort of loop.

> array int al[2][2] = {1, O, 2, 3}

> al + 2 // 2 is promoted to array
32

4 5

Table [16.7] provides a list of operations with implicit array promotion.

16.7 Passing Computational Arrays to Functions

There are four different methods to passing computational arrays to functions. These methods are listed
in Table along with brief descriptions about their characteristics. A fixed dimension means that only
arrays of a specified dimension may be passed into a function. For the sample codes shown in the table,
only two dimensional array arguments are allowed unless the fourth method, array of reference, is used.
Using this method, arrays of any dimensions may be passed to an argument of a function. The extent of an

298

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

Table 16.8: Methods for passing computational arrays to functions.

Method Sample Code Dimension Extent Data Type
Fully-specified arrays array double a[2][3] fixed fixed fixed
Assumed-shape arrays array double a[:][:] fixed variable fixed
Variable number argument typel func(type?2 a, ...) variable variable variable
Array of reference of fixed dimension array double af&][&] fixed variable variable
Array of reference array double &a variable variable variable

array argument refers to the number of elements in a dimension. Aside from the fully-specified arrays, all
other array argument types have variable extents. Thus the number of elements may vary for these types
of arguments. For fully-specified and assumed-shape arrays, the data types have to be fixed when passing
computational arrays to functions, whereas the other two does not.

16.7.1 Fully-Specified-Shape Arrays

Program demonstrates how fully-specified-shape arrays are used as arguments of a function. In Pro-
gram the function suml () with arguments of fully-specified-shape arrays is called to calculate the
matrix expression of dimension 2x3

b=a-+2xa, (16.1)

and returns the sum of values for each element of array a. If the argument of a function is defined as a
fully-specified-shape array, addresses of arrays are passed to this function. The output of Program is
displayed in Figure

16.7.2 Assumed-Shape Arrays

The arguments of the function suml () in the previous example are declared as fully-specified-shape arrays.

This is not flexible to handle arrays with different extents in each dimension. Ch provides assumed-shape

arrays to deal with arrays of variable length. If arguments are declared as assumed-shape arrays, they can

take arrays which have the same dimension but different number of elements in each dimension.
Assumed-shape arrays declared with a colon as array subscripts are shown below.

int functl (array int afl:1[:1, bl[:]1);
int func?2 (array double c[:]);

We can rewrite Program[16.3to use functions with arguments of assumed-shape arrays. In Program[16.4]
the function sum?2 () which takes two arguments of assumed-shape array is called to calculate the same
matrix expression

b=a-+2xa, (16.2)

and also returns the sum of value for each element of array a. The output of Program [[6.4]is displayed in
Figure [16.6]

If the argument of a function is defined as as an assumed-shape array, not only addresses but also
boundaries of arrays are passed to this function. So, arrays with different numbers of elements in each
dimension can be passed to the same function. For example, in Program [16.4] arrays al and a2 have
the same dimension, but the extents are different. They can be passed to the same argument of function
sum?2 () . Similarly, arrays b1 and b2 of different extents are also passed to the same argument. The output

299

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

/* File: suml.ch =*/
#include <array.h>
#define N 2
#define M 3

double suml (array double a[N] [M], array double b[N] [M]) {
double sum = 0;
int i, 7j;

b=a+ 2+ a; // b= 3xa
for (1=0; 1i<N; i++)
for (§=0; Jj<M; J++)
sum += al[i]l[]j];
return sum;

}

double main () {
double sum;
array double bl[N][M], al[N][M] = {1, 2, 3,
4, 5, 6};

sum = suml (al, bl);

printf ("bl = \n%g", bl);
printf ("sum = %$g\n", sum);
return 0;

Program 16.3: Passing computational arrays of fixed shape and data type.

bl =
369
12 15 18
sum = 21

Figure 16.5: Output of Program [16.3]

300

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

/* File: sum2.ch */
#include <array.h>

double sum2 (array double a[:][:], array double b[:]1[:]){
int n = shape(a, 0), m = shape(a, 1);
/* or array int dim[2] = shape (a);

int n = dim[0], m = dim[1]; =*/
double sum = 0;
int i, J;

printf("n = %4, m = %d\n", n, m);
b=a+2 *a; // b= 3xa
for (1i=0; i<n; i++)
for (3=0; j<m; J++)
sum += alil[]j];
return sum;

}

double main() {
double sum;

array double bl[2][3], al[2][3] = {1, 2, 3,
4, 5, 6};

array double b2[3]1[4], a2[3][4] = {1, 2, 3, 4,
5 6, 7, 8,
9, 10, 11, 12};

sum = sum2 (al, bl);

printf ("bl = \n%g", bl);
printf ("sum = %$g\n\n", sum);
sum = sum2 (a2, b2);

printf ("b2 = \n%g", b2);
printf ("sum = %$g\n", sum);
return 0;

Program 16.4: Passing computational arrays of different shapes and fixed data type.

n=2, m= 3
bl =

369

12 15 18

sum = 21
n=23, m=4
b2 =

369 12

15 18 21 24
27 30 33 36
sum = 78

Figure 16.6: Output of Program [16.4

301

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

of Program [16.4] is displayed in Figure [16.6l The generic function shape() can be used to obtain the extent
of each dimension of the assumed-shape array. If a single argument of function shape() is of array type, it
returns its shape as a computational array of int type as if the function was prototype as

array int shape(array type [:]...[:]1)[:1;

where type can be any valid type for computational array. If the argument of function shape() is a one-
dimensional array, the return value is a computational array of size 1x1. Thus the return value may be cast
to a scalar. Function shape() can also also be used to obtain the extent of a specified dimension for an array.
In this case, it acts as if the function was prototyped as

int shape(array type [:]...[:], int index);
For example,
array int al[3][4], b[5]
shape (a)
4
shape (a, 0)
shape(a, 1)
shape (b)

(int) shape (b) // cast 1x1 array to scalar

(int) shape (shape (a))

NV oV oV bV WYV WV YV

Function call shape (b) in the above function returns a computational array of size 1x1. It can be cast
to a scalar by expression (int) shape (b). Similarly, a scalar value can be obtained from the expression
(int) shape (shape(a)).

16.7.3 Deferred-Shape Arrays

Ch supports deferred-shape computational arrays, which is another way to handle arrays with different
numbers of elements in each dimension at run time. For a deferred-shape array, the array subscript of
integral expression is evaluated at run time. Examples of declaration of deferred-shape arrays are shown
below,

array int A[n] [m], B[m];
array double C[m];

where n and m are variables of int type.

Program demonstrates how to use a deferred-shape array within a function. Array b in function
defshape () is deferred. The shape of array b is derived from the shape of array a. The output of
Program is the same as that of Program [16.3]shown in Figure

302

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

/* File: defshape.ch x/
#include <array.h>
#define N 2

#define M 3

double defshape (array double afl:][:], int n, int m) {
array double b[n] [m]; // b is deferred-shape array
double sum = 0;
int i, 7j;

b=a+2+*a; // b= 3xa
for (1i=0; i<n; i++)
for (3=0; Jj<m; Jj++)
sum += al[i][]];
printf ("b = \n%g", b);
return sum;

}

double main () {
double sum;
array double al[N][M] = {1, 2, 3,
4, 5, 6};

sum = defshape(al, N, M);
printf ("sum = %$g\n", sum);
return 0;

Program 16.5: Using computational arrays of deferred-shape.

303

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

16.7.4 Arrays in Variable Number Arguments

Arrays of different shapes and types can be passed to a function using variable number arguments and
macros defined in header file stdarg. In section10.7] of Chapter [I0} we illustrate how to change the arrays
of different types in a calling function illustrated by function lindata() in Program [10.30l

Program with output in Figure illustrates how arrays a and b of of different shapes and types
are passed to function func () through variable number arguments. The contents of these arrays are copied
into temporary arrays a and b inside function func () using function arraycopy(). The memory fo passed
arrays in a calling function can also be used inside the called function can also be used directly using pointer
to array. More information about handling of polymorphic functions using variable number arguments and
pointer to array can be found in section [19.9.3]in Chapter [19]

16.7.5 Arrays of Reference

It is recommended to pass arrays of different shapes and types using variable number arguments
described in section0.7 in Chapter [10] instead of using arrays of reference. Arrays of reference is
obsolete and will be phased out in the future.

We have described how assumed-shape arrays can be used to handle arrays of variable length. Arrays of
reference are introduced in Ch to deal with arrays of not only different length, but also different data type. It
can be used effectively for function overloading. Arrays of reference are declared with ampersand signs, ‘&,
as array subscripts. Furthermore, an array of reference without the subscript can be used to handle arrays
of different dimension, different length, and different data type. For arrays of reference a, b and c declared
below,

int fun(array int al[&], array int b[&][&], array int &c);

a and b are arrays of reference with fixed dimension whereas c is an array of reference without constraint
of dimension. For arguments with reference type, a function shall be defined or prototyped with arguments
first before it is called.

If the argument of a function is defined as an array of reference, not only addresses and boundaries, but
also data types of arrays are passed to this function. So, arrays with different data type can be handled by the
same function. To use arrays of reference, an array with data type of the largest memory requirement and
highest order shall be declared in the function argument list. For example, to handle arrays of double, float,
and integral type, an array of reference with double type shall be declared. The values of the passed array
will be typically assigned to a temporary computational array of double type. This temporary array will be
used for computations inside the function. To pass the result back to the calling function, the temporary
array shall be assigned to the array variable declared in the function argument list.

Program [16.7lillustrates how an array of reference can be used to handle arrays of different data type. In
Program[16.7] the function sum3 (), which takes two arguments of arrays of reference, is called to calculate
the same matrix expression

b=a-+2xa, (16.3)

and returns the sum of value for each element of array a. To handle arrays of double, float, and integral
type, arrays a and b of reference type are declared as type double in Program Arrays al and a2
in function main () have the same dimensions, but the extents and data types are different. They can be
passed to the same argument of function sum3 () . Similarly, arrays b1 and b2 of different extents and data
types are also passed to the same argument. Array a in function sum3 () is assigned to array aa first, so
that internally the addition of each element of the passed array is performed in double data type. The output
of Program [16.7]is the same as that of Program [16.4] shown in Figure

304

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

#include <stdarg.h>
#include <array.h>

void func(int k, ...) {
int i, m, n, vacount, num;
ChType_t dtype;
void *vptr;
va_list ap;

va_start (ap, k);

vacount = va_count (ap);
printf ("va_count (ap) = %d\n", vacount);
for(i = 0; i<vacount; i++) {

if (va_arraytype (ap) ==CH_CARRAYTYPE ||

va_arraytype (ap)==CH_CHARRAYTYPE) {
printf ("va_arraydim(ap)= %$d\n", va_arraydim(ap));
num = va_arraynum(ap);
printf ("va_arraynum(ap)= $d\n", num);

m = va_arrayextent (ap, 0);

printf ("va_arrayextent (ap, 0)= %d\n", m);
if(va_arraydim(ap) > 1) {

n = va_arrayextent (ap, 1);

printf ("va_arrayextent (ap, 1)= %d\n", n);
}
if (va_datatype (ap) == CH_INTTYPE) {

int al[num], =*p;

dtype = va_datatype(ap);

vptr = va_arg(ap, void x);

printf ("array element is int\n");

p = vptr;

printf ("p[0] = %d\n", p[01);

arraycopy (a, CH_INTTYPE, vptr, dtype, num);

printf("a[0] = %d\n", al[0]);
}
else if (va_datatype (ap) == CH_DOUBLETYPE) {

array double b[m] [n];

dtype = va_datatype (ap);

vptr = va_arg(ap, void x);

printf ("array element is double\n");
arraycopy (&b [0] [0], CH_DOUBLETYPE, vptr, dtype, num);
printf ("b = \n%f", b);

}
else if(va_datatype(ap) == CH_INTPTRTYPE)
printf ("data type is pointer to int\n");
}

va_end(ap) ;

int main () {
int i, al4]={10, 20, 30}, x*p;
array double b[2][3]1={1, 2, 3, 4, 5, 6};

p = &i;
func (i, a);
func (i, b,a);
func (i, p);

Program 16.6: Pass arrays of different shapes and types to a function.
305

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

va_count (ap) =1
va_arraydim(ap)= 1
va_arraynum(ap)= 4
va_arrayextent (ap, 0)= 4
array element is int

pl0] = 10

al[0] = 10

va_count (ap) = 2
va_arraydim(ap)= 2
va_arraynum(ap)= 6
va_arrayextent (ap, 0)= 2
va_arrayextent (ap, 1)= 3
array element is double

b =

1.000000 2.000000 3.000000
4.000000 5.000000 6.000000
va_arraydim(ap)= 1
va_arraynum(ap)= 4

va_arrayextent (ap, 0)= 4
array element is int
pl0] = 10

al[0] = 10

va_count (ap) =1

data type is pointer to int

Figure 16.7: Output of Program [16.6

Program illustrates how to handle arrays of different dimensions and data types using arrays of
reference. The function sum4 () in Program [16.8] takes two arguments of arrays of reference and one
argument of int type for the number of elements of array a.

Arrays al and a2 of different dimension and type are passed to the same argument. Similarly, array b1
and b2 of different dimension and type are used to pass back the result of a matrix expression calculated
inside function sum4 () . The output of Program [16.8]is displayed in Figure [16.8]

Elements of array of reference without subscripts can not be accessed directly with subscripts. For
example, elements of array of reference of a and b in function sum4 () of Program[16.8]can not be followed
by subscripts suchas a[2] ora[l] [2].

In Program [16.8] the third argument of function sum4 () contains the number of elements of the array
passed to the array a of the function. The number of dimensions, extends of each dimension, and total num-
ber of elements of of the array passed can be obtained by expression n = (int) shape (shape (a)),
dim = shape(a), totnum %= dim[i],respectively, inside the function as shown in Program[16.91
The output of Program is shown in in Figure Should the printing statements for dimensions and
total number of elements in Program be commented out, the ouput of Program shall be the same
as that of Program [16.8]

The generic function elementtype() can be used to obtain the data type of its argument. The argument of
the function elementtype() can be a type declarator, C array, computational array, or an array of reference.
For example, given

array double a[3][4];
int b[3][4];

the following two equations hold.

elementtype (double) == elementtype(a);

306

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

#include <array.h>

double sum3 (array double a[&][&], array double b[&][&]) {
int n = shape(a, 0), m = shape(a, 1);
double sum = 0;
int i, 7j;
array double aal[n] [m];

printf("n = %d, m = %d\n", n, m);
b=a+ 2 xa; // b= 3*%a
aa = a;

for (1i=0; i<n; i++)
for (j=0; J<m; J++)
sum += aali]l[j];
return sum;

int main () {
double sum;
array double bl[2][3], al[2][3] = {1, 2, 3,
4, 5, 6};
array float b2[3]1[4]1, a2([(31[4] = {1, 2, 3, 4,
5,6, 7, 8,

sum = sum3(al, bl);

printf ("bl = \n%g", bl);
printf ("sum = %g\n\n", sum);
sum = sum3 (a2, b2);

printf ("b2 = \n%g", b2);
printf ("sum = %$g\n", sum);
return 0;

Program 16.7: Passing computational arrays of different shapes and data types.

307

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

/* File: sumé4.ch */
#include <array.h>
#define N 2
#define M 3

double sum4 (array double &a, array double &b, int total_num) {
int 1i;
double sum;
array double aal[total_num];

b=a+2xa; // b= 3*a

aa = a;

for (1i=0; i<total_num; i++)
sum += aal[il]l;

return sum;

}

int main() {
double sum;
array double bl[N][M], al[N][M] = {1, 2, 3,
4, 5, 6};
array float b2[M], a2[M] = {10, 20, 30};

sum = sumé (al, bl, N=xM);
printf ("bl = \n%g", bl);
printf ("sum = %g\n\n", sum);
sum = sumé (a2, b2, M);

printf ("b2 = \n%g", b2);
printf ("sum = %$g\n", sum);
return 0;

Program 16.8: Passing computational arrays of different ranks and data types.

bl =
369
12 15 18
sum = 21
b2 =
30 60 90
sum = 60

Figure 16.8: Output of Program [16.8]

308

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

/* File: sumb5.ch */
#include <array.h>
#define N 2
#define M 3

double sumb (array double &a, array double &b) {
int n, i, total_num;
double sum;

b=a+2 *a; // b= 3xa

total_num = 1;

n = (int)shape (shape(a)); // number of dimensions
array int dim[n];

dim = shape(a); // extent of each dimension
printf("n = %d\n", n);
for(i = 0; 1 < n; 1i++) {
printf ("dim[%d] = %d\n", i, dim[i]);
]

total_num x= dim[i]; // total number of elements

}
printf ("total _num = %d\n", total_num);
array double aal[total_num];
aa = aj;
for (1i=0; i<total_num; i++)
sum += aal[i];

return sum;

int main () |
double sum;
array double bl[N][M], al[N][M] = {1, 2, 3,
4, 5, 6};
array float b2[3], a2[3] = {10, 20, 30};

sum = sumb (al, bl);

printf ("bl = \n%g", bl);
printf ("sum = %g\n\n", sum);
sum = sumb (a2, b2);

printf ("b2 = \n%g", b2);
printf ("sum = %$g\n", sum);
return 0;

Program 16.9: Passing computational arrays of different ranks and data types and using function shape().

309

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

n =2

dim[0] 2
dim[1l] = 3
total_num = 6
bl =

369

12 15 18

sum = 21

n =1

dim[0] = 3
total_num = 3
b2 =

30 60 90

sum = 60

Figure 16.9: Output of Program [16.9

elementtype (int) == elementtype (b);

In most cases, mathematical algorithms for arrays of complex and arrays of real number are different. In
Program[16.10] function arrayfunc () can handle both arrays of complex and arrays of real number using
function elementtype(). Depending on the data type of array argument a, the real function realfunc ()
or complex function complexfunc () will be called inside function arrayfunc () to calculate the array
expression a + 2sin(a). The output of Program is displayed in Figure

If the pointer NULL is passed into a function as an argument of array of reference, the argument is
also equal to NULL inside the function, and the function shape() returns an array of zero dimension. For
example, if functions funcl () and func?2 () are defined below.

int funcl (array double al[&]) {
if(((int)shape(a)) == 0) {
printf ("shape is zero dimension\n");
}
if (a == NULL) {
printf ("a is NULL \n");
}

return 0;

int func?2 (array double &a) {
if ((int) shape (shape(a)) == 0) {
printf ("shape is zero dimension\n");
}
if (a == NULL) {
printf("a is NULL \n");
}

return 0;

}
both function calls of funcl (NULL) and func2 (NULL) will print out

shape is zero dimension

310

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.7. PASSING COMPUTATIONAL ARRAYS TO FUNCTIONS

#include <array.h>

void complexfunc(array double complex al[:][:], array double complex b[:][:]){
b=a+ 2 % sin(a);
}
void realfunc(array double a[:][:], array double b[:][:1]){
b =a+ 2 %« sin(a);
}
void arrayfunc(array double complex al[&][&], array double complex b[&][&]) {
int n = shape(a, 0), m = shape(a, 1);
// or array int dim[2] = shape(a);
// int n = dim[0], m = dim[1];

if (elementtype (a) == elementtype (complex) ||
elementtype (a) == elementtype (double complex)) {
array double complex aaln][m], bb[n][m];
aa = (array double complex [n][m])a;
complexfunc(aa, bb);
b = bb;
}
else {
array double aal[n][m], bb[n][m];
aa = (array double [n][m])a;
realfunc (aa, bb);
b = bb;
}
}
int main () {
array double complex b1[3][4], al[3][4] = {1, complex(l,2), 2, 5,
7, complex(3,4), 9, 3,
5, 7, 3, 2};
array double Db2[2][3], a2[2][3] = {1, 5, 3,
5, 6, T7};

arrayfunc(al, bl);

printf ("bl = \n%.1f", bl);
arrayfunc (a2, b2);

printf ("\nb2 = \n%.1f", b2);
return 0;

Program 16.10: Passing arrays of different data type to a function.

bl =

complex(2.7,0.0) complex(7.3,5.9) complex(3.8,0.0) complex(3.1,0.0)
complex (8.3,0.0) complex(10.7,-50.0) complex(9.8,0.0) complex(3.3,0.0)
complex(3.1,0.0) complex(8.3,0.0) complex(3.3,0.0) complex(3.8,0.0)

2 =

w N o

.7 3.1 3.3
1 5.4 8.3

Figure 16.10: Output of Program [16.10

311

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.8. COMPUTATIONAL ARRAYS WITH VALUE NULL

/* File: arrayrefnull.ch =/
#include <array.h>

void func (array double &a) {
if (a==NULL) {
printf ("a==NULL is true\n");
}
else {
printf ("a==NULL is false\n");
}
if (a!=NULL) {
printf ("a!=NULL is true \n");
}
else {
printf ("a!=NULL is false\n");
}
}

int main () |
func (NULL) ;
return 0;

Program 16.11: Passing NULL to computational array of reference.

a is NULL

16.8 Computational Arrays with Value NULL

In most cases, a computational array has a rank of 1 or higher. In some situations, a computational array can
have value of NULL. Before it is allocated memory, a pointer to computational array has a value of NULL. A
value of NULL can also be passed to an argument of array of reference type in a function. A computational
array with value of NULL can be used as an operand of equal operator ‘==" or not equal operator ‘!=" as
well as a controlling expression of if-statement and loops. They cannot be used as an operand for other
operations.

If one of two operands for equal operator ‘==" or not equal operator ‘!="is pointer to computational
array or array of reference, the other operand can be NULL. The result of the operation in this case is a
boolean type of either true or false. This can be used to test if NULL has been passed to array of reference
or if a pointer to computational array points to a valid object.

A computational array can be used as a controlling expression for if-statement, while-loop, do-while-
loop, or for-statement. When an array of reference or a pointer to computational array with a value of NULL
is used as a controlling expression, it evaluates to false. Otherwise, the controlling expression evaluates to
true, even if all elements of the array are zero.

In Programs [16.11] NULL is passed to the argument a of array of reference in function func (). In
Program[16.12] variable a of pointer to computational array has a default value of NULL before it is pointed
to an array. The output of these two programs are the same as shown below.

==NULL 1is true
a!=NULL is false

312

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.9. FUNCTIONS RETURN COMPUTATIONAL ARRAYS

/* File: arrayptrnull.ch =/
#include <array.h>

int main() {
array double xa;

if (a==NULL) {

printf ("a==NULL is true\n");
}
else {

printf ("a==NULL is false\n");
}
if (a!=NULL) {

printf ("a!=NULL is true \n");
}
else {

printf ("a!=NULL is false\n");
}

return 0;

Program 16.12: Pointer to computational array with value NULL.

16.9 Functions Return Computational Arrays

A function can return computational arrays as first-class objects. For a function that returns a computational
array, the rank of the returned array in the function definition and that of an array expression following a
return statement inside the function must be the same.

16.9.1 Functions Return Computational Arrays of Fixed Length

The prototype of functions returning computational arrays of fixed length is as follows.

array datatype funcname (argument_list) [nl]...[nm];

where n1 and nm are constant integers, such as 2 and 3, for the lengths of the corresponding dimensions.
The number of symbol [] following the closing parenthesis of the function argument list indicates the rank
of the returned computational array.

Program [16.13is an example to demonstrate how a function returns a computational array to the calling
function. Function funct () of this program returns the result of matrix expression of dimension 2x3.

b=2xa, (16.4)
which is shown in Figure [16.111

16.9.2 Functions Return Computational Arrays of Variable Length

The prototype of functions returning computational arrays of variable length is as follows.
array datatype funcname (argument_list) [:]...[:]

The number of symbol [:] following the closing parenthesis of the function argument list indicates the
rank of the returned computational array.

313

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.9. FUNCTIONS RETURN COMPUTATIONAL ARRAYS

/* File: retfix.ch =/
#include <array.h>

int main() {
array int a(2][3] = {1, 2, 3, 4, 5, 6};
array int funct (array int a[2][3]) [2][3];
a = funct(a);
printf("a[l][2] = %d\n", alll[2]);
printf("a = \n%d", a);
return 0;

}

array int funct (array int a[2][3]) [2][3] {
array int b[2][3];

b = 2xa;
return b;

Program 16.13: Function returning computational array of fixed length.

Figure 16.11: Output of Program [16.13]

314

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.10. TYPE GENERIC ARRAY FUNCTIONS

/* File: retvla.ch =/
#include<array.h>

array int func2(array int al[:])[:] {
int n = (int)shape(a);
array int xI[n];

printf ("n = %d\n", n);
X = 2+*a;
return x;

}

int main() {
array int af[2]
array int b[5]

{1, 2};
{10, 20, 30, 40, 50};

a = func2(a);
printf("a = %d\n", a);
b = func2(b);
printf("b = %d", b);
return 0;

Program 16.14: Function returning computational array of variable length.

n = 2
a =24
n =25

b = 20 40 60 80 100

Figure 16.12: Output of Program [16.14]

Program provides an example of a function that returns a computational array of variable length.
The dimensions of the returned arrays in function calls of func2 (a) and func2 (b) are different. The
output is shown in Figure [16.12]

16.10 Type Generic Array Functions

Function shape() presented in section is a generic function related to arrays. In addition, commonly
used generic mathematical functions are overloaded to handle computational arrays. They are overloaded to
handle arguments of different dimensions, lengths, and data types.

For an argument of computational array type, function abs() returns an array with the absolute value for
each element. For an argument of complex type, each element contains the magnitude of the corresponding
complex number. The function is handled as if it was prototyped as

array int abs(array int afl:]...[:1)[:]...1[:]
array float abs(array float afl:]...[:])[:]...[:]
array float abs(array float complex al P - I T - R

1]

array double abs(array double afl:]...[:])[:]...1[:]

315

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.10. TYPE GENERIC ARRAY FUNCTIONS

array double abs(array double complex al[:]...[:])[:]...[:]
For example,

array int al2][3] = (-1, 2, 3, -4, -5, 6}
abs (a)

2 3

56

array complex b[3] = {complex (3, 4), 4, -5}
abs (b)

.0000 4.0000 5.0000

UV V. > PV V

Mathematical functions acos, acosh, asin, asinh, atan, atanh, ceil, cos, cosh, exp, floor, log, log10,
sin, sinh, sqrt, tan, tanh have one argument only. They are overloaded to handle arguments of different
dimensions, lengths, and data types. If the data type of the input argument is an integral type, it will be
promoted to float for computation. For array arguments, they behave as if they were prototyped as

array float func(array float al:]...[:]1)[:]...1[:]

array double func(array double al:]...[:])[:]...[:]

array float complex func(array float complex al[:]...[:]1)[:]1...[:]
array double complex func(array double complex al[:]...[:])[:]...[:]

where func is one of the above mathematical functions. If the data type of the input argument is integral
type, it will be promoted to float for computation. For example,

> array int a([2]([3] = {-1, 2, 3, -4, -5, 6}

> sin (a)

-0.84 0.91 0.14

0.76 0.96 -0.28

> array complex b[3] = {complex (3, 4), 4, -5}

> sin (b)

complex (3.8537,-27.0168) complex(-0.7568,-0.0000) complex(0.9589,0.0000)

For array arguments, function atan2() acts as if it was prototyped as

array float atan2 (array float y[:]...[:],
array float x[:]...[:])[:] L[e]
array double atan2 (array double y[:]...[:],
array double x[:]...[:1)1[:]. [:]
array float complex atan2(array float complex y[:]...[:]
]

array float complex x[:
array double complex atan?2 (array double complex y[:]...[:
array double complex x[:]...[:

4

I I I

L ~— N

Function atan2() has two arguments. The data type of both computational arrays shall be the same. If data
types of both arguments are integral type, they will be promoted to float for computation. For example,

array int y[41={1,-2, 3, -4}
array float x[4]={5, 6, -7, -8}
atan2 (y, x)

.20 -0.32 2.74 -2.68

oS VvV VoV

316

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.10. TYPE GENERIC ARRAY FUNCTIONS

If the first argument of function pow(a, x) is a computational array with shape of NxN and the second
is an integral type, it will return a computational array of the same type and dimension as the first argument
as if the function was prototyped as

array int pow(array int afl:][:], int x)[:]11[:]

array float pow(array float afl:][:], int x)[:]1[:]

array double pow (array double a[:][:], int x)[:][:]

array float complex pow(array float complex al[:][:], int x)[:][:]
array double complex pow(array double complex af[:][:], int x)[:]11[:]

In this case, array function pow(a, x) behaves like matrix multiplication. For example,

> array int al2][2] = {-1, 2, 3, -4}
> pow (a, 2)

7 =10

-15 22

> axa

7 =10

-15 22

If both arguments of array function pow() are computational array type, it will return an array with the value
of each element calculated by scalar function pow() with corresponding elements of the two input arrays. In
this case, data types of two input arrays shall be the same as if the function was prototyped as

array int pow (array int y[:]1...[:1,
array int x[:]...[:1)[:]...[:]
array float pow (array float y/[:] L1,
array float x[.]...[:])[:]. [:]
array double pow (array double y[:]...[:]
]

array double x[:]...[:1])
array float complex pow(array float complex y[:]...[:],
array float complex x[:])
array double complex pow(array double complex y[:]...[:]
array double complex x[:]...[:]

For example,

> array int a[3] = {-1, 2, 3}
> pow(a, a)
-1 4 27

Functions real() and and imag() will give the real and imaginary parts of the input argument. For array
arguments, They behave as if they were prototyped as

Jooo[:]
) [:] <o 0]

array float func(array float al:]...[:])[:
array double func(array double afl:]. 0]
array float func(array float complex af:]. I
array double func(array double complex afl:] [: 1)[:1...0:1]

where func is either real or imag. If the data type of the input argument is integral type, it will be promoted
to float for computation. For example,

317

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.11. SOME COMMONLY USED ARRAY FUNCTIONS

> array int a[3] = {-1, 2, 3}
> real (a)
-1.00 2.00 3.00

> array complex z[3] = {complex(1l,2), complex (-3, —-4), complex (0, -6)}
> real(z)

1.0000 -3.0000 0.0000

> imag(z)

2.0000 -4.0000 -6.0000

Array function transpose() returns a transpose of the input array of one or two dimensions. If the input
array is of size NxM, the size of the returned array is MxN. By default, a one-dimensional array is a column
vector. If the input array is a column vector of size Nx1, the return array is a row vector of 1xN, and vice
versa. The data type of the returned array is the same as the input array as if the function was prototyped as

array type transpose (array data_type al:]) [:]
array type transpose (array data_type al:][:]1)[:]11[:]

where data_t ype can be any valid type for computational array. For example,

array float al[2]1[31={1,2,3,4,5,6}
.00 2.00 3.00

.00 5.00 6.00

transpose(a)

.00 4.00

.00 5.00

.00 6.00

array int b[3] = {1, 2, 3}
> ax*b

14.00 32.00

> transpose (b) b

14

> bxtranspose (b)

1 2 3

vV W NP V &PV

2 46
369

16.11 Some Commonly Used Array Functions

Many advanced numerical functions are available in Ch. These functions are prototyped in header file
numeric.h. Some commonly used numerical functions are presented in this section.
Function lindata() introduced in section [10.7]is prototyped in header file numeric.h as follows.

int lindata (double first, double last, ... /* type al:]...[:] */);

The lindata() function generates linearly spaced data with initial and final values specified by input argu-
ments first and last, respectively. The result is passed back to the calling function in the third argument
of array type with different data types.

Given a square matrix A and its inverse A~!, then A=A = I and AA~! = I where I is an identity
matrix. Function inverse() calculates the inverse of a square matrix, provided that it is not singular. Function
inverse() is prototyped in header file numeric.h as follows.

318

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.11. SOME COMMONLY USED ARRAY FUNCTIONS

array double inverse (array double x[&][&], ... /* [int =xstatus */)[:]1[:]1;

The dimension of the returned matrix of function inverse() is the same as the input argument of matrix. This
function can be used to solve a linear system of equations. For example, a linear system of equations below,

3x1+6x3 = 2
200 +x3 = 12
r1+x3 = 25
or in the matrix form
3 0 6 T 2
0 21 To = 12
1 01 T3 25
can be written in the form of
Ax =Db.

The solution x = A~ 'b can be written in Ch as x = inverse (A) xb. The solutions for x1, z2, and z3
can be determined by the following statements.

[3]1={3, 0, 6, O, 2, 1, 1, 0, 1}

> array double a[3]
[31[3], x[3], b[3]= {2, 13, 25}

> array double ai
> ai = inverse(a)
-0.3333 -0.0000 2.0000
-0.1667 0.5000 0.5000
0.3333 0.0000 -1.0000

> x = aixb

49.3333 18.6667 —-24.3333

As another example, consider the following two matrix equations

(A + 5B 1)x 4 2a = (ab™)b, (16.5)
(5AB)x + ABy = Bb, (16.6)
where
12 2 78 9 1 5
A=|446|,B=|12 2|,a=|4|,andb=]6 |,
789 4 4 6 7 8

The two unknown vectors x and y can be computed by the following equations
x = (A +5B7 1) (ab™b — 2a), (16.7)
y = (AB)"}(Bb — 5ABx), (16.8)
The vectors x and y can be calculated using Program The output of Program is as follows.

= 51.048 15.170 37.020
= -544.617 -70.723 13.777

b
|

=
|

319

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.12. POINTER TO COMPUTATIONAL ARRAYS

/* File: matrixeqg.ch =/

#include <stdio.h>

#include <array.h> // for array qualifier
#include <numeric.h> // for inverse ()

int main() {
array double A[3][3] = {{1,2,2},{4,4,6},{7,8,9}};
array double B[3]1[3] = {{7,8,9},1{1,2,2},{4,4,6}};
array double a[3] = {1,4,7}, b[3] = {5,6,8}, x[3], vI[3];
x = inverse (A+5xinverse (B)) x (axtranspose (b) xb - 2xa);
y = inverse (AxB) * (Bxb — 5%AxBxx);
printf(" x = %.3f y = %.3f \n", x, y);

return 0;

Program 16.15: A program solving a system of linear equations.

Function sum() defined in header file numeric.h calculates the sum of all the elements in an array. Its
prototype is as follow.

double sum(array double &a, ... /* [array double v[:]1] */);

If the array is a two-dimensional matrix, the function can calculate the sum of each row with the result stored
in the optional second argument as a one-dimensional array. For example,

> double al3] = {10, 2, 3}

> sum(a)

15.0000

> array double v[3], b[3][2] = {1, 2, 3, 4, 5, 6}
> sum (b, V)

21.0000

> v

3.0000 7.0000 11.0000

Some useful array functions can be implemented using function sum(). For example, the array func-
tions all (), any (), and count () in Program are implemented using function sum() with array
promotions. For function all (), if all elements of the array argument are zero, it returns 1. Otherwise, it
returns 0. If all elements of the array argument a in function all () are zero, the resultant array of array
expression a ! =0 will be of values of zeros for all its elements. The summary of all elements of this array
from the function sum () will be zero. If there is any element of zero value in the array argument of of
function any (), it returns 1. Otherwise, it returns 0. Function count () calculates the number of zero in
an array. The output of Program [16.16]is shown in Figure [16.13]

16.12 Pointer to Computational Arrays

16.12.1 Pointer to Computational Arrays of Fixed Length

In some applications, using pointers to computational arrays is more convenient than using multi-dimensional
arrays. The same variable of pointer to computational arrays can be used to access different computational
arrays. Pointer to computational arrays can be declared similar to pointer to C arrays as shown below.

320

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS

16.12. POINTER TO COMPUTATIONAL ARRAYS

/* promotion.ch x/
#include<array.h>
#include<numeric.h>

array int a[2][3] = {1,
array double b[2][3] =
array int c[2][3];

int all(array double &a) {
return (int)sum(a

}
int any(array double &a) {
return (int)sum(a ==

count (array double &a)
return (int)sum(a ==

value
value
value
value
value
value

o
'—h(l."h%(l.i—h

0]

et

ot

[p]

]

Program 16.16: Functions with array promotions.

1.000000 2.000000 0.000000
4.000000 5.000000 0.000000
return value of all() is O

000
000
return value of all() 1is 1
123
4 5 6
return value of any() is 0
1.000000 2.000000 0.000000
4.000000 5.000000 0.000000

return value of any () is 1
123
4 5 6
return value of count () 1is

1.000000 2.000000 0.000000
4.000000 5.000000 0.000000

return value of count () 1is

{

0);

of all
of all
of any is
of any is
of count ()
of count ()

%d\n\n",
%$d\n\n",
$d\n\n", a,
%$d\n\n", b, any(b)
is %d\n\n", a,
is %d\n", b, count (b));

is
is

b,
cr

0
0
0
0

2
Figure 16.13: Output of Program[16.16l

321

count (a));

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.12. POINTER TO COMPUTATIONAL ARRAYS

array double (xp)[10];

which declares p as a pointer to two-dimensional computational arrays with 10 columns of double data
type. The following code fragment shows how to use pointer to computational arrays to handle multiple
dimension computational arrays.

> array int (xp) [3]1, b1[2][3] ={1, 2, 3, 4, 5, 6}
> int b2[3]11[3] = {7, 8, 9, 1, 2, 3, 4, 5, 6}, *t
> p == NULL

1

> p = (array int [:]1[:]1) (array int [2][3])malloc(2+x3xsizeof (int))
00O

00O

> p == NULL

0

> pl[1][1] = 40

40

> P

00O

0 40 O

> p = bl // array assignment
123

4 5 6

> delete p // free memory

> P

NULL

> p = (array int [:][:]1)bl // p and bl share the same memory
123

4 5 6

> b1[0][1] = 30;

30

> bl

1 30 3

4 5 6

> P

1 30 3

4 5 6

> p = (array int [:][:]1)b2 // p and b2 share the same memory
78 9

123

4 5 6

>t = &bl1[0][0]

> p = (array int [:][:]) (array int [2][3])t

123

4 5 6

322

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.12. POINTER TO COMPUTATIONAL ARRAYS

Before a pointer to computational arrays is used, it has to be allocated memory, or error messages will be
displayed. One it is allocated memory, it will be treated as a regular computational array. It can be used as an
operand in array operations and as an argument of functions. Using casting operator (array data-type
[:]...[:]1) or (array data_type (%) [:]...[:]) the following two methods can be used to
allocate memory for a pointer to computational arrays, where data_type is any valid type of computational
array.

1. Casting operator (array data_type [:]...[:]) (array data_type [nl]...[ni])
followed by a pointer to memory. Or casting operator
(array data_type [:]...[:])new data_type [nl]...[ni];

2. Casting operator (array data_type [:]...[:]) followed by the name of a C array.

For the first method, if the memory is allocated by function malloc(), calloc(), or realloc(), the memory
allocated for the pointer to computational array can be released by the function free() or delete later. If the
memory is allocated by operator new, it shall be released by operator delete. In the previous example, the
statements

array int (*p)[3], b1[2][3] ={1, 2, 3, 4, 5, 6}
p = (array int [:][:]) (array int [2][3])malloc(2x3*xsizeof (int))

allocate memory for p using function malloc(). The memory can also be allocated by operator new and
deleted by delete as follows.

p = (array int [:][:])new int [2][31]1;
delete p;

Details about operators new and delete are described in chapter[19 Statement

t = &bl1[0][0]

p = (array int [:][:]) (array int [2][3])t
or

p = (array int [:][:]) (array int [2][3])&b1[0][0]
or

p = (array int [:][:]) (int [2][3])&bl[0] [O]

enables computational array p to share the memory of array b1.
For the second method, both pointer to computational array and original array share the same memory.
In the previous example, the statement

p = (array int [:][:])Dbl
makes p point to computational array b1. Later, the statement
p = (array int [:][:])b2

will point p at the C array b2. Note that the extents of the second dimension for arrays p, b1 and b2 shall
be the same.
If p has been allocated memory, the assignment operation is allowed. For example, the statement

323

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.12. POINTER TO COMPUTATIONAL ARRAYS

p = (array int [2][3])bl

assigns the value of each element of array b1 to the corresponding element of array b. The memory for
array p and b1 can be of different.

Pointer to one-dimension computational array is declared without array index as shown in the commands
below.

> array int *xp, al[3] = {1, 2, 3}

> p = (array int [:])a // p and a share the memory
123

> p = (array int [:]) (array int [4])malloc(4+sizeof (int))
0 00O

>p = (array int [4])10

10 10 10 10

> delete (p)

The interactive execution of the code below illustrates how to using a pointer to one-dimensional com-
putational array to access rows of two-dimensional arrays.

> array int xp, b[2]1[3] = {1, 2, 3, 4, 5, 6}

> p = (array int [:]) (int[3])&b[0][0]

123

> &p // same as &b and &b[0][0]
1e8650

> p = (array int [:]) (int[3]) (int*)b

12 3

> &p // same as &a and &a[0][0]1[0]
1e8650

> p = 10

10 10 10

> Db

10 10 10

> p = (array int [:]) (int[3])&b[1][0]

> &p // same as &b[1]1[0]
le865c

As mentioned in section [16.3.8] the casting operator with a pointer type gives the address of the first element
of an array. Thus, the statement below

p = (array int [:]) (int[3]) (intx)b
is equivalent to
p = (array int [:]) (int[3])&b[0][0]

The command above may be used to have p refer to the first row of a two-dimensional array b, whereas
command

p = (array int [:]) (int [3])&b[1][O0]

324

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.12. POINTER TO COMPUTATIONAL ARRAYS

will have p point to the second row of the array b.
Note that pointers to computational arrays might be used incorrectly as illustrated below. Given the
following declarations,

array short h[2][3];
array int (xp) [3], al2]1[3], b[31[2], cl[6];
array float f£[2][3];
array double d[2][3];
int e[2][3], gl3]1I[2];

int *ptr;
the statement
p = aj

is incorrect because p has not been allocated memory yet. A pointer to computational array should be
allocated memory before it is used. The statement

p = (array int [:]1[:]) (a+a); // bad

is also incorrect because p will point to some intermediate memory instead of a. Similarly, for the statement
below.

p = (array int [:][:]) (array int [2][3])b; // bad

p will point to some intermediate memory instead of the array b. The statement below will point p to the
memory of array b.

p = (array int [:][:]) (array int [2][3]1)&b[0][0]; // ok
A pointer to computational array can also point to regular C arrays as shown below.

p = (array int [:][:1)e; // ok
P (array int [:][:]) (array int [2][31)g; // ok

The statement
p = (array int [:]1[3])a; // bad

is incorrect. It should use the casting operator (array int [:]1[:]) or (array int (x)[:]) to
make p share the memory with a. The statement

p = (int (%) [3])a; // bad

is missing the keyword array. Pointers of scalar types and pointers to computational arrays are incompati-
ble. The assignment operations below with incompatible lvalue and rvalue are not allowed.

p = ptr; // bad
ptr = p; // bad
p = (void *)malloc(100); // bad

In the statement
p = (array int [:][:]) c; // bad

the dimensions of p and ¢ do not match. So, it will get an error message. In the statement

325

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.12. POINTER TO COMPUTATIONAL ARRAYS

p = (array int [:][:]1)h; // bad

computational array h of short type does not have enough memory to share with p because p is of int type.
The statement

p = (array int [:]1[:1)f;

is correct from the memory space point of view, because f is of float type and has enough memory to share
with p.

After the pointer is allocated memory, or shares the memory with an array, the address operator gives
the address of the memory, or the first element of the array. In the example below, the commands

> p = (array int [:][:])a
> &p

give the address of the first element of a.
A pointer to computational array can be used to obtain a subarray or ’slice’ of a multi-dimensional array
as shown below.

> array int al2]1[2]12] = {1, 2, 3, 4, 5, 6, 7, 8}

> array int (xp) [2]

4005e3e0

> p = (array int [:][:]) (int[2][2])&al[0][0][0]

12

3 4

> &p // same as &a and &al[0][0][0]
4005e4e0

> p = (array int [:]1[:]1) (int[2][2]) (intx)a

12

3 4

> &p // same as &a and &al[0][0][0]
4005e4e0

> p = (array int [:]1[:]1) (int[2]1[2])&all][0]10]

56

7 8

> &p // same as &al[l][0][0]
4005e4£0

Similar to the one-dimensional array, the casting operator with a pointer type gives the address of the
first element of an array. Thus, the statement below

p = (array int [:1[:1) (int[2][2]) (int*)a
is equivalent to
p = (array int [:][:1) (int[2][2])&al[0][0][0]

The command above may be used to have p refer to one portion of the three dimensional array a, whereas
command

p = (array int [:][:]) (int [2][2])&a[l]1([0][0]

will have p point to the other portion.

326

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.12. POINTER TO COMPUTATIONAL ARRAYS

16.12.2 Pointer to Computational Arrays of Assumed Shape

Besides pointer to computational arrays, Ch also supports pointer to computational arrays of assumed shape.
Unlike pointer to computational arrays, pointer to computational array of assumed shape can be used to point
to arrays of variable length. So, users do not need to worry about the extents of the arrays to be pointed.
Pointers to computational array of assumed shape are declared with colon *:’ as the array’s subscripts.
Before a pointer to computational arrays of assumed-shape is used, it also has to be allocated memory in the
same manner as a pointer to computational arrays of fixed length described in the previous section.

For example, statement below

array float (*xfp) [:];

declares fp as a pointer to computational arrays of assumed shape with float type. It can be pointed to
two-dimensional arrays of variable length.

The following commands show how to use pointer to computational arrays of assumed shape to handle
multiple dimension arrays of different length.

array int (xp) [:]

array int b1[2][3] ={1, 2, 3, 4, 5, 6}
array int b2[2][2] ={5, 6, 7, 8}

= (array int [:][:])Dbl
3
6

(array int [:]1[:]1)Db2

< o1V S -V V V V
o oo oo N

In the above commands, arrays b1l and b2 are of the same dimension. But the extents of the second
dimension for b1 and b2 are different. Unlike pointer to computational array of fixed length, p, a pointer to
computational array of assumed-shape, can be used to point at either b1 or b2.

Furthermore, a pointer to computational array can also be used to represent a subspace (or subarray) of
a multiple dimension array. For example,

> array int al2]([2]1(3] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
> array int b[3]([2](2] = {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}
> array int (*p) [:]

> a

123

4 56

78 9

10 11 12

> p = (array int [:][:]) (int [2][3])&al0][0][O0]

123

4 56

> p = (array int [:][:]) (int [2]1([3])&all][0]1([0]

7 8 9

10 11 12

> p = (array int [:][:]) (int [2][2])&b[0][0][O]

12 11

10 9

327

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.12. POINTER TO COMPUTATIONAL ARRAYS

where p is used to represent the first and second “slices” of the array a, as well the first “slice” of the array
b which has different dimensions. The address operator ‘&’ gets the addresses of these array elements.

Not only ordinary identifiers, but also members of classes, structures, and unions, can be declared as
pointer to computational array of assumed-shape. This means a member of class/struct/union can be a
computational array of variable length. In the interactive command execution below, member s.a first
shares the same memory with array a1, and then shares the memory with array a2.

> struct tag{ array int (*xa)l[:]1;} s

> array int al[2][3] = {1, 2, 3, 4, 5, 6}, a2[3]11[4]

> s.a = (array int [:][:])al; // s.a and al share the memory
> s.a

123

4 56

> s.a = (array int [:][:])a2; // s.a and a2 share the memory
s.a[l][1] = 10

> a2 [1]1[1]

10

> al[l]l[1]

5

16.12.3 Using Pointer to Computational Arrays to Pass Arrays to Functions

Pointer to one-dimension computational array can be used to handle arrays of variable length. Like assumed-
shape arrays, pointers to computational arrays can also be used as arguments of functions. For example,

void funcl (array int *p) {printf ("%d", p);}
int array al[2] = {1,2}

int array b[3] = {3,4,5}

funcl (a)

2

funcl (b)

345

vV B V V V V

The function funcl () takes an argument of pointer to computational array. It can handle arrays, such as
a and b, with different length. The function definition in the above example is equivalent to the function
definition below which takes an argument of assumed-shape array.

void funcl (array int p[:]) { printf("%d", p); }

Like multi-dimensional assumed-shape arrays, pointers to arrays of assumed shape can also be used as
arguments of functions. For example,

> void func?2 (array int (*p2)[:1) { printf ("%d", p2); }
> int array a2[2][2] = {1,2,3,4}

> int array b2[3]1[3] = {1,2,3,4,5,6,7,8,9}

> func2 (a2)

12

3 4

> func2 (b2)

1 2 3

4 56

78 9

328

CHAPTER 16. COMPUTATIONAL ARRAYS AND MATRIX COMPUTATIONS
16.13. RELATIONSHIP BETWEEN COMPUTATIONAL ARRAYS AND C ARRAYS

The function func?2 () takes an argument of pointer to two-dimensional assumed-shape array. So, it can
handle two-dimensional computational arrays with different extents, such as a2 and b2. The definition of
function func2 () in the above example is equivalent to the definition below, which takes an argument of
two-dimensional assumed-shape array.

void func2 (array int p2[:]1[:]1) { printf ("%d", p2); }

16.13 Relationship between Computational Arrays and C Arrays

A C array is only an address or a pointer whereas a computational array in Ch is a first-class object that
contains more information. As mentioned before, a computational array is declared with the type qualifier
array. Computational arrays can support many operators while C arrays cannot. Given the same extents,
the value of each element of a C array can be assigned to a computational array. For example,

int a[3]11[4]; // C array, ’'a’ represents an address or a pointer
int b[4][3]; // C array, ’'b’ represents an address or a pointer
array int A[3]1[4]; // Ch computational array

array int (xp) [4]; // point to computational array

array int (*p2)[:];// point to computational array of assumed shape
A = (array int[3][4])a; // OK

p = (array intf[:][:]1)a; // OK

p = (array int[:][:]) (array int [3][4])b; // OK

p = (array int[:][:]) (int [3][4])Db; // OK

p2 = (array int[:][:])a;// OK

p2 = (array int[:][:]) (array int [3][4])b;// OK

p2 = (array int[:][:]) (int [3]1[4])b; // OK

A = a; // OK

a = A; // Error

In the above example, the memory of array b with dimension 4x3 is accessed by pointer to computational
arrays p and p2 as array of dimension 3x4. Because p2 is a pointer to computational array of assumed-
shape, it can point to array of different extent for its second dimension. For example, p2 can also point to
array b of dimension 4x3 as follows.

P2 = (array int[:][:])b; // OK

C arrays can be passed to functions that take computational arrays as arguments, and vice versa. For
example,

int fl(array int A[3][4]); // argument is computational array
int f2 (int a[311[41); // argument is C array

fl(a); // OK

f1(a); // OK

f2(a); // OK

f2(a); // OK

If the variable of a C array is used as an address of the memory for the array, the address of the computational
array shall be used for the equivalent code. Fro example,

int £3(int =*a); // argument 1is a pointer
f3(a); // OK
£3(&A[0][0]1); // OK

329

Chapter 17

Characters and Strings

Types char and wchar_t are used to define variables of characters and wide characters in Ch as shown
below.

char ch = "a’;
char ch2 = ’\0’; /x null character x/
wchar_t wch = L’a’;

The value of a variable of type char is a single character or escape sequence which is enclosed in single-
quotes, as in ’ x’ . A character constant has type int in C. Like C++, a character constant has type char in
Ch.

The value of wide characters is the same, except prefixed by the letter L, such as L.” x’ . A wide character
has the type wchar_t, an integer type defined in the stddef.h or stdlib.h header file. The value of a wide char-
acter containing a single multibyte character that maps to a member of the extended execution character set
is the wide character (code) corresponding to that multibyte character, as defined by the mbtowce function,
with a platform-dependent current locale.

In Ch, a string is a sequence of multibyte characters enclosed in double-quotes, as in "xyz". Like a C
compiler, Ch automatically supplies an extra null character after all strings. A wide string literal is the same,
except prefixed by the letter L.

Ch and C use array of character (or wide-character) to define a string (or wide-character string) variable.
For example,

char xstr = "this is a string.";
char str2[] = "this is also a string.";
char str3[6] = "abcde"; /* the last one is ’"\0’ */

wchar_t *wstr = L"this is a wide string.";

17.1 Using Functions in string.h Header File

The header string.h declares one type size_t and several functions useful for manipulating arrays of char-
acter type and other objects treated as arrays of character type. Various methods can be used to determine
the lengths of the arrays, but in all cases a char * or void * argument points to the initial (lowest addressed)
character of the array. If an array is accessed beyond the end of an object, the value of the last element is
used. Commonly used functions declared in header file string.h are categorized in this section.

330

CHAPTER 17. CHARACTERS AND STRINGS
17.1. USING FUNCTIONS IN STRING.H HEADER FILE

17.1.1 Copying Functions

Function name Description

memcpy() copies characters from one object to another.

memmove() moves characters form one object to another.

strepy() copies one string to another.

strnepy() copies specified number of characters of one string to another.

For example, in the code below

> char strl[80] = "abcdefghijk"
> strcpy(strl, "efghij")

efghij

> strl

efghij

> strncpy(strl, "klmnopgrs", 3)
klmhij

> strl

klmhij

> strncpy (strl, "tuv", 5)

tuv

> strl

tuv

>

the function call
strcpy (strl, "efghij")

copies the string “efghi j” (including the terminating null character) into the array pointed to by strl.
This function does not allocate any storage. The caller must insure that the buffer pointed to by str1l is
long enough to hold string s2 and its terminating null character. Similarly, the function call

strncpy (strl, "klmnopgrs", 3)

copies up to 3 characters from the string “k 1lmnopqgrs” into the buffer pointed to by st r1. Once strncpy()
has copied 3 characters to st r1, it does not append a terminating null character. So, the resultis “k1mhi j”,
rather than “k1m”. The function call

strncpy (strl, "tuv", 5)

copies up to 5 characters, including the terminating null character, from the string “tuv” into the buffer
pointed to by str1. Because the length of the string “tuv” is less than 5, the terminating null is added.
The function strnepy() does not allocate any storage either. The caller must insure that the buffer pointed to
by strl is long enough to hold the characters copied to it.

17.1.2 Concatenation Functions

Function name Description
strcat() appends a copy of a string to the end of another.
strncat() appends specified number of characters of a string to the end of another.

For example, in the code below

331

CHAPTER 17. CHARACTERS AND STRINGS

17.1. USING FUNCTIONS IN STRING.H HEADER FILE

> char strl[80] = "abcd"
> strcat (strl, "efg")

abcdefg
> strl
abcdefg
>

the function strcat() appends a copy of the string “efg” (including the terminating null character) to the
end of the string pointed to by str1, The initial character ‘e’ of the second argument overwrites the null
character at the end of str1. This function does not allocate any storage. The caller must insure that the
buffer pointed to by st r1 is long enough for appending the second string and its terminating null character.

17.1.3 Comparison Functions

Function name

Description

mememp()
stremp()
strcoll()
strncmp()
strxfrm()

compares n characters of the object to another.

compares two strings.

compares a string to another.

compares a specified number of characters of a string to another.
transforms a string to another.

For example, in the code below

> char strl[80] = "abcd"
> strcmp(strl, "aacd")

1

> strcmp(strl, "abcd")

0

> strcmp(strl, "efg")

-1

>

the function stremp() compares the string pointed to by st rl to the strings “aacd”, “abcd” and “efg”,
respectively. It returns 1, when the string strl is lexically greater than string “aacd”; zero, when the
strings strl and “abcd” are identical; and -1, when the string st r1 is lexically less than “e £g”.

17.1.4 Search Functions

Function name

Description

memchr()
strchr()
strespn()
strpbrk()
strrchr()
strspn()
strstr()
strtok()

locates the first occurrence of a character in the object.

locates the first occurrence of a character in a string.

computes the length of the maximum initial segment of a string.
locates a string in another.

locates the last occurrence of a character in a string.

computes the length of the maximum initial segment of a string.
locates the first occurrence of a string in another.

breaks the string into a sequence of tokens.

332

CHAPTER 17. CHARACTERS AND STRINGS
17.1. USING FUNCTIONS IN STRING.H HEADER FILE

For example, in the code below

> char strl[80] = "abcdefgdef"

> strchr(strl, 'd’)

defgdef

> strchr(strl, "w’)

00000000

> strstr(strl, "def")

defgdef

> strstr(strl, "dev")

00000000

> strtok(strl, "efg")

> char *str2 = "abcd;1234 ABCD"

> char xdelimiter=" ;", <*token

> token = strtok(str2, delimiter)
abcd

> token = strtok (NULL, delimiter)
1234

> token = strtok (NULL, delimiter)
ABCD

> token = strtok (NULL, delimiter)
(null)

>

the function call
strchr(strl, "d’)

locates the first occurrence of character ‘d’ in the string pointed to by str1, and returns a pointer to the
location. As the character ‘w’ does not occur in the string st r1, the function call

strchr (strl, "w')
returns a null pointer. Similarly, the function call
strstr(strl, "def")

finds the first occurrence of substring “de £ within string st r1, exclusive of the terminating null character,
and returns a pointer to this substring. Since the substring “de £” cannot be found in the string str1, the
function call

strstr(strl, "dev")

returns a null pointer. The function strtok() gets the next token from a string. The tokens are strings
separated by characters specified by the second argument. To get the first token from the string st r2, the
function call

token = strtok(str2, delimiter)
use str2 as its first parameter. The subsequent function calls
token = strtok (NULL, delimiter)

with null pointers for the first parameters return all other tokens from str1 one after another. The second
argument is the string of delimiters which can differ from call to call. The section introduces the fore-
ach loop to obtain tokens from a string.

333

CHAPTER 17. CHARACTERS AND STRINGS
17.1. USING FUNCTIONS IN STRING.H HEADER FILE

17.1.5 Miscellaneous Functions

Function name Description

memset() copies a value into each of the first specified number of characters of an object.
strerror() maps the number in the errnum to a message string.
strlen() computes the length of a string.

For example,

> strlen ("abcde")
5
>

where the function strlen() returns the length of the string “abcde”. The terminating null of the string is
not counted by the function strlen(), so that the result is 5, instead of 6, in this case. If this function is used
to calculate the size of the dynamically allocated memory for a string, the return value should be added 1.

17.1.6 String Functions Supported by Ch, but not in C Standard Library

Function name Description

strcasecmp() compare two strings, ignoring case.
strconcat() concatenates strings.
strjoin() combines strings to a string separated by the specified delimiter string.

strncasecmp() compare part of two strings, ignoring case.

For example, in the code below,

> char *buffer

> char test[90] = "abcd"
> buffer = strconcat (test, "efgh", "ijk")
abcdefghijk

> free (buffer)

> buffer = strjoin("+", test, "efgh", "ijk")
abcdt+efgh+ijk

> free (buffer)

>

assume the character array test has the value of string abcd, the function call
buffer = strconcat (test, "efgh", "ijk")

concatenates these three strings, and puts the result into the returned string with dynamically allocated
memory. The dynamically allocated memory need to be freed later by the user. The function call

buffer = strjoin("+", test, "efgh", "ijk")

also combines these three strings to the returned string with dynamically allocated memory. But, the returned
string is separated by a delimiter string “+” which is specified by the first argument of the function strjoin().

334

CHAPTER 17. CHARACTERS AND STRINGS
17.2. STRING TYPE STRING-T

Table 17.1: Functions for type string_t.

Function Name Description

str2ascii() get the ASCII value of a string.

str2mat() change strings to a matrix.

stradd() add the second string to the first one.

strgetc() get a character from a string.

strputc() put a character into a string.

strrep() replace a string within a string by another string.

17.2 String Type string_t

C has no string data type. As mentioned above, arrays of characters are handled as strings in C. In Ch, a
string data type string_t is added. It is seamlessly merged with pointer to char. All functions defined in the
standard C library header string.h are valid for both pointers to char and strings. String through the string
type string_t is a first-class object in Ch. For example, the following code fragment

string_t s, al[3];

s = "great string"
s = stradd("greater ", s)
strcpy (a0 s);

1,
printf("a[0] = %s\n", al0]);

will display greater great string. string_tisakeyword in Ch and the function stradd() is a built-in
generic function. Format specifier "%s" can be used to obtain input to a variable of string type as shown in
the commands below.

> string_t s
> scanf ("%s", &s)

123abc

> printf ("%$s", s)
123abc

>

For string functions strepy(), strnepy(), streat(), and strncat(), the memory will be automatically han-
dled if the first argument is of the type string_t. For example,

> string_t s

> strcpy (s, "abcd")
abcd

> strcat (s, "ABCD")
abcdABCD

> s

abcdABCD

>

In Ch, the header file string.h delares some additional functions, which are listed in Table for the
type string_t specifically. They mainly include str2ascii(), str2mat(), strgetc(), strputc(), and strrep().
For example, in the code below

335

CHAPTER 17. CHARACTERS AND STRINGS
17.2. STRING TYPE STRING-T

> str2ascii("a")

97

> str2ascii ("b")
98

> str2ascii("ab")
195

> array char mat[3][10]
> str2mat (mat, "abcd", "0123456789")
0
> mat
a b cd
01234567389
> str2mat (mat, "ABCD", "EFGH", "ab23456789", "too many strings")
-1
> mat
A B CD
EF GH
ab 23456789
> string_t sl = "abcd"
> stradd(sl, "efg") // add "efg" to sl
abcdefg
> strgetc(sl, 0) // get the first character of sl
a
strgetc(sl, 2) // get the third character of sl

>
c
> strputc(sl, 2, ’"z") // change the third character to 'z’
0
>

sl

> abzdefg

> strrep(sl, "def", "xyz") // replace "def" with "xyz" in sl
abzxyzg

>

the function call
str2ascii("ab")

calculates the ASCII value of the string “ab” by adding up the ASCII values of characters ‘a’ and ‘b’. The
function call

str2mat (mat, "abcd", "0123456789")

assigns two strings “abcd” and “0123456789” to the first two rows of array mat, and return O upon
successful completion. The rest rows of mat retain null. If strings in the argument list are more than the
rows in the array mat, such as

str2mat (mat, "ABCD", "EFGH", "ab23456789", "too many strings")

the function will return —1, and ignore the string “too many strings”. The function stradd() is a
generic function for adding a string to another. Ch will handle the memory for users. Assume the string s1
with value of “abcd” has type of string_t, the function call

336

CHAPTER 17. CHARACTERS AND STRINGS
17.3. HANDLING STRING TOKENS USING FOREACH LOOP

stradd(sl, "efg")
adds the string “e f£g” to the end of s1, and then returns s1. The function calls

strgetc(sl, 0)
strgetc(sl, 2)

return the first and the third characters, i.e. ‘a’ and ‘c’, of the string, respectively. Functions strgetc() and
strputc() are particularly useful for manipulating characters inside a string. The function call

strputc(sl, 2, ’"z'")
changes the third character in the string s1 to ‘z’. The function call
strrep(sl, "def", "xyz")

replaces the string “def£” in s1 with the string “xy z, and return s1.

As it is mentioned above, one of the advantages of type string_t is that Ch can handle the memory for
variables of type string_t automatically. For every operations on these variables, Ch will figure out the size
of the memory required, and then allocate enough memory for the variables. At the end of the lifetimes
of these variables, Ch will free their memory automatically. For example, in the following program, the
memory of the variable s1 in the function fun () is freed upon exit of the function, and the memory of
variable s2 is freed at the return of function, or at the assignment of the variable s in the main() function.
On the other hand, the memory for s is allocated automatically at its assignment.

string_t fun() {
string_t sl;
string_t s2;

return s2;

}

int main () {
string_t s;
fun () ;
s = fun();

17.3 Handling String Tokens Using foreach Loop

Besides the while loop, do-while loop and for loop, the foreach loop presented in section [8.4.4]is especially
convenient for handling of strings. It causes one piece of text to be used repeatedly, each time with a different
substitution performed on it. This gives an easy way to handle strings or to iterate over arrays.

For example, the function strtok() or strtok_r() can be used to retrieve tokens in a null-terminated
string. The following code fragment

char xs = "abcd; 1234 ABCD;56;xyz";
char xdelimiter=" ;", xtoken;
token = strtok (s, delimiter);
while (token) {
printf ("token = %s\n", token);
token = strtok (NULL, delimiter);

337

CHAPTER 17. CHARACTERS AND STRINGS
17.4. WIDE CHARACTERS

will output

abcd
1234
ABCD
56
XY Z

We can rewrite this example with a foreach loop as follows.

char xs = "abcd; 1234 ABCD;56;xyz";

char xdelimiter=" ;", xtoken;

foreach (token; s; NULL; delimiter)
printf ("token = %s\n", token);

If we replace NULL in the above code with the string ”ABCD” as a value for cond of foreach loop,
the code fragment becomes

char xs = "abcd; 1234 ABCD;56;xyz";

char xdelimiter=" ;", =xtoken;

foreach (token; s; "ABCD"; delimiter)
printf ("token = %s\n", token);

The output of the above code is

abcd
1234

17.4 Wide Characters

A wide character constant has type wchar_t, an integer type defined in the stddef.h header. It is a sequence
of one or more multibyte characters enclosed in single-quotes, as in ’ x’ or ’ ab’ prefixed by the letter L.
The value of a wide character constant containing a single multibyte character that maps to a member of the
extended execution character set is the wide character (code) corresponding to that multibyte character, as
defined by the mbtowc function, with platform-dependent current locale. The value of a wide character con-
stant containing more than one multibyte character, or containing a multibyte character or escape sequence
not represented in the extended execution character set, is platform-dependent.
For example, the definition of a wide character variable wc is shown below.

wchar_t wec = L’'a’;

To effectively use wide characters and strings in Ch command shell for multi-byte languages such as
Simplified Chinese, Russian, Japanese, etc. To use functions in the header files wchar.h and wetype.h, add
the statements

#include <locale.h>
#pragma exec setlocale (LC_ALL, "Chinese-Simplified");

for a specific Unicode, or

#include <locale.h>
#pragma exec setlocale (LC_ALL, "");

338

CHAPTER 17. CHARACTERS AND STRINGS
17.5. WIDE STRINGS

for the default Unicode of the system at the beginning of a program. Or add the statement
setlocale (0, "Chinese-Simplified");

for a specific Unicode, or
_setlocale = 1;

or
setlocale (LC_ALL, "");

for the default Unicode of the system in the individual user’s startup file _chre in the user’s home directory
or in the system startup file CHHOME/config/chre so that the setup will be effective for all programs.

17.5 Wide Strings

A wide-character string constant is a sequence of zero or more multibyte characters enclosed in double-
quotes prefixed by the letter L.
The following code

wchar_t xwstr = L"abcd";

defines a wide-character string wstr in Ch.

The function mbstowces() declared in the file stdlib.h can convert a multibyte string to a wide-character
string and the function westombs() does it contrarily.

The header file wchar.h declares some data types, tags, macros, and functions for wide characters.

339

Chapter 18

Structures, Unions, Bit Fields, and
Enumerations

18.1 Structures

The structure types in Ch are similar to those in C++. They are collections of members that can have different
types. For example, the type of complex in Ch is equivalent to the following definition of structure.

struct Complex{
float r;
float m;

}i

where two members r and m are used to hold the real and imaginary parts of a complex number. Complex
is called the tag of the structure.
The following code fragment can create an object of the type Complex.

Complex z;

z.r = 10;
z.m = 5;
where the selection operator “.” is used to access members of the structure. The member r is set to 10 and

m to 5. If the variable is defined as a pointer to a struct, the operator “—>" is used to access its members. For
example,

Complex xpz = &z;
pz->r = 10;
pz->m = 5;

There are two namespaces for structures in C, one for structures’ tags and one for variables. But there
are one and an half namespaces for structures in C++, one for tags and a half for variables. Ch handles
structures the same way as the latter. Tags and variables share the same namespace. Once a tag name is used
as a variable explicitly, it will not be treated as a typed name implicitly in Ch. For example,

struct tagl_t {
struct tag2_t;

i

340

CHAPTER 18. STRUCTURES, UNIONS, BIT FIELDS, AND ENUMERATIONS

18.2. UNIONS
tagl_t s; // ok
int tagl_t; // ok
struct tagl_t s2; // ok
tagl_t s3; // error, tagl_t is a variable of int

struct tag2_t s4; // Not valid in Ch and C++, OK in C

18.2 Unions

A union type describes an overlapping non-empty set of member objects, each of which has an optionally
specified name and possibly distinct type. Like structures, unions can have some members. Unlike struc-
tures, a union can only hold one of its members at a time. The members are conceptually overlaid in the
same memory. Each member of a union is located at the beginning of the union.

For example, below is a union with three members.

union Ul {
double d;
char c[12];
int i;

} obj, %P = &obij;

then the following equalities hold.
(union Ulx) & (P—>d) == (union Ul=*) (P—>c) == (union Ul*)&(P—->1) == P

The size of an instance of a union is the amount of memory necessary to represent the largest member,
plus the padding that raises the length up to an appropriate alignment boundary. In the previous example,
the following equalities hold.

sizeof Ul == 16

although the largest member ¢ occupies only 12 bytes memory.
Because a union only holds one member at a time, if two or more members are used without casting, the
result could be strange. For example, the following code fragment

obj.i = 10;
printf ("obj.d = $f\n", obj.d);

will print out zero or a tiny value instead of 10, because of the differences in representations of int variables
and float variables.

There are one and half namespaces for union in Ch and C++, one for struct tags and half for variables.
Like C++, a union tag, such as U1, is put into typedefed namespace by default in Ch.

18.3 Bit-fields

Like C, Ch offers bit-fields which have the capability of defining and accessing within a word directly.
In the following code fragment,

341

CHAPTER 18. STRUCTURES, UNIONS, BIT FIELDS, AND ENUMERATIONS
18.4. ENUMERATIONS

struct Bfl {
unsigned int a;
unsigned int b;
unsigned int c;

} o bfl = {1, 1, 1};

struct Bf2 {

unsigned int a : 4;
unsigned int b : 4;
unsigned int c : 4;

} bf2 = {11 2/ 3}1

bf2.c = 4;
printf ("sizeof Bfl is %d\n", sizeof (struct Bfl));
printf ("sizeof Bf2 is %d\n", sizeof (struct Bf2));

the size of Bf1 is 12 because there are three integers inside the structure. But, the size of Bf2 is 4 because

three members only take 12 bits memory, plus padding.
Consider the bit field below.

struct eeh_type {
uintl6 ul: 10; /* 10 bits =/
uintl6 u2: 6; /*x 6 bits x/
}i

This might actually be implemented as
<10-bits><6-bits>

or as
<6-bits><10-bits>

depending on the endian type of the machine and operating system.
The selection operator ““.” can be used to access the members of a bit-field. For example, the following
equalities hold.

18.4 Enumerations

An enumerated type is a set of integer values represented by enumeration constants.
For example, the declaration

enum datatypes {
inttype, // 0
floattype, /71
doubletype, // 2
} dl, d2;

342

CHAPTER 18. STRUCTURES, UNIONS, BIT FIELDS, AND ENUMERATIONS
18.4. ENUMERATIONS

creates a new enumerated type, enum datatypes, whose values are inttype, floattypeand doubletype.
It also declares two variables of the enumerated type d1 and d2, which can be assigned enumeration con-
stants with the following assignment statement.

dl = inttype;
d2 doubletype;

The first enumeration constant receives the value 0 by default and the subsequent enumeration constants
receive an integer value one greater than the previous enumeration constant. The values of d1 and d2 will
be 0 and 2, respectively.

An explicit integer value can be associated with an enumeration constant in the definition. For example,
given the declaration,

enum datatypes {

inttype, // 0
floattype = 10, // 10
doubletype // 11

}i

the value of inttype, floattype, doubletype will be 0, 10 and 11, respectively.
Enumerated type can be used to replace the #define directive in some applications. The following code
fragment uses a variable of enum type in a switch statement.

enum datatypes {
inttype,
floattype,
doubletype

bi
enum datatype dtl;

switch(dtl) {
case inttype:

break;

case floattype:
break;

case doubletype:

break;

343

Chapter 19

Classes and Object-Based Programming

19.1 Class Definition and Objects

The class in C++ and Ch is a natural evolution of the structure. Class can be used to create user-defined
types. Functions can be members of a class but not members of a structure in C. Like C++, both class and
struct in Ch can have member functions. By default, members of a class are private whereas members of a
struct are public.

The following is an example of the definition of a class.

class Student {
int id;
char xname;
i
The class Student has two members. Assume id holds the ID number of a student and name is the name

of the student. After defining a class, it can be used in the program as shown below.

int main () {
class Student s1;

}

where s1 is called an object or an instance of class Student.

19.2 Member Functions of Class

As it is mentioned above, function can be a member of a class. We can redefine the class of Student in a
header file student . h as follows.

/* Filename: student.h =/
#ifndef STUDENT_H
#define STUDENT_H

class Student {
int id;
char xname;
public:

344

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.2. MEMBER FUNCTIONS OF CLASS

void setID(int 1);
vold setName (const char =*n);
int getID();

}i

#pragma importf <Student.cpp>

#endif

The member functions are defined in a separate file Student . cpp shown below. This file located in a
directory specified by the system variable _fpath are loaded once by the statement.

#pragma importf <Student.cpp>

/* Filename: Student.chf */
#include <string.h> /+ for strdup() =*/
#include "student.h"

volid Student::setID(int 1) {
id = 1i;

void Student::setName (const char =*n) {
1f (n)
name = strdup (n);

int Student::getID() {
return id;

}

In the definition of a member function, a function name is preceded by the class name and the scope resolu-
tion operator ‘: :’, which will be explained later. The function set ID () takes the ID number of a student
as the argument and then sets the class member id to it. The function setName () sets the member name
to a new name. The function get ID () gets the ID of the student. The members setID (), setName (),
and get ID () are called member functions or methods in Ch and C++. One can invoke a member function
by using the member operator ‘.’ which is just like accessing a member of a structure as shown in program
pProg.cpp.

/* Filename: prog.cpp */
#include <iostream.h> /% for cout x/
#include "student.h"

using namespace std; /+ for cout */
int main () {
class Student s;
s.setID(1);
s.setName ("Jason") ;
cout << "id is " << s.getID() << endl;

345

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.3. PUBLIC AND PRIVATE MEMBERS OF CLASS

return 0;

}

Private members of a class such as name and id are normally not accessible outside the class, which is
called information hiding. One of the main roles of member functions of a class is to provide a means to
access private members of the class.

19.3 Public and Private Members of Class

As it is pointed out before, the members id and name of class Student are not accessible outside the
class. The outside code has access to them only through some member functions of the class. This is
because they are private members and all of the member functions defined in the class St udent are public
members. Ch has two member access specifiers public: and private:. They can appear multiple times and
in any order in a class definition. By default, members in class are private whereas members in struct are
public. We can write the definition of the class Student like

class Student {
public:
void setID(int 1);
vold setName (const char =*n);
private:
int id;
char xname;

i

Normally the data members of a class are defined as private members and member functions are defined as
public members. The set of public member functions of a class is called the interface. But in certain
cases, we may need to define a public data member or a private member function. A public data member
is accessible outside the class by the member operator .’ just like public member functions. On the other
hand, the private member functions can only be called by other member functions of the class.

19.4 Constructors and Destructors in Class

Data members of a class cannot be initialized in the class definition in Ch. Initializations can be done in
a constructor. The constructor and destructor are member functions, which have no return value specified.
The constructor has the same name as the class name. It is invoked automatically each time an object is
instantiated and performs some initializations. A constructor can take arguments for initializing its data
members while a destructor can not take any argument. For example, we can add constructor and destructor
for class Student as follows.

class Student {

public:
Student (int, const char =*); // constructor
“Student () ; // destructor

void setID(int 1);

vold setName (const char =*n);
private:

int id;

346

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.5. THE NEW AND DELETE OPERATORS

char xname;

}i

Student::Student (int i, const char *n) {
id = 1i; /* initialize id =/
name = strdup(n); /% initialize name =*/

Student :: " Student () {
/+ release the memory allocated in constructor =/
free (name) ;

}

where the constructor sets the data member id and name when the new object is created, and the destructor
frees the memory allocated in the constructor.
The declaration with initialization in the ma in function is shown below.

int main () {
class Student sl = Student (1, "Jason");
class Student s2 Student (2, "Bob");

}

After the constructors are called during the declarations, the data members of s1 and s2 have been set.
When the function main() terminates, the destructor will be called.

19.5 The new and delete Operators

In C, the dynamic memory allocation and deallocation are normally performed by the functions malloc()
and free(). In Ch and C++, the operator pair new and delete can do the same thing as malloc() and free()
and also provide other benifits.

The operator new can calculate automatically the proper size of the memory to be allocated while the
function malloc() must take an argument as the size of the memory. The operator new can return a pointer
of the correct type while the function malloc() only returns a pointer to void. The most important thing
is that the operator new can invoke the contructor of a class automatically and perform the initialization
if necessary while the function malloc() does not provide any initialization of the memory allocated. The
corresponding destructor will be called by the operator delete.

The following code fragment shows how the operators of new and delete are used.

int main() {
class Student xsl = new Student (1, "Jason");
class Student *s2 = new Student (2, "Bob");

sl->setID((5); // change ID of sl to 5

delete s1;
delete s2;

347

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.6. STATIC MEMBER OF CLASS

To users, this example does the same thing as the previous one including initializations, but it is more flexible
and useful in some cases.

If the attempt to allocate memory is successful, the operator new returns a pointer to the allocated
memory. Otherwise, it calls the handler function pointed to by _new_handler if _new_handler is not NULL,
and then returns a NULL pointer. A program may install different handler functions for new operator during
execution, by supplying a pointer to a function defined in the program or the library as an argument to the
function set_new_handler(). The function set_new_handler() is defined in header file new.h as follows.

void (*set_new_handler (void(x*) ())) ();

It establishes the function designated by the argument for the current _new_handler, and returns NULL on
the first call, or the previous _new_handler on subsequent calls. Program[19.1]sets the function newhandle ()
as the handler function for new operator, and then allocates memory for variables p and sp, respectively.
The system has enough memory for p, but not for sp. The function newhandler () is called when the
new operator fails to allocate memory for sp. The output from executing Program [19.1]is appended at the
end of the file.

For a variable of pointer to class, the operator ‘—>’ shall be used to access a member of the class.

The new and delete operators can handle not only a single value, but also an array. For example, the
following code

class Employee {
char xname;
bi
int main () {
class Employee xe = new Employee[1l0];

delete [10] e;
}

instantiates 10 new objects of the class Employee. At the end of the program, all of these 10 objects will
be deleted.

19.6 Static Member of Class

Typically each object of a class has its own copy of the data members in memory. But in certain cases,
different objects of a class need to use some “class-wide” information. That means they have to share the
same copy of a variable. A static class variable can provide this mechanism. The values of a static member
in all objects of a class are the same. The change of its value affects all objects. Even if no object of a
class exists, the static member is still there and can be manipulated. The declaration of a static member
begins with the keyword static. For example, a static member count can be added to the definition of class
Student as shown below,

class Student {
// number of objects instantiated
static int count;
int id;
char xname;
public:

348

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.6. STATIC MEMBER OF CLASS

#include <new.h>
#include <stdio.h>

struct tag{ int i; int j[900000];} s;
void newhandler (void) ;

int main() {
set_new_handler (newhandler) ;

int *p = new int([20];

if (p==NULL)
printf ("not enough memory for p\n\n");
else

printf ("enough memory for p\n\n");

tag *sp = new tag[90];

if (sp==NULL) {
printf ("not enough memory for sp\n");
printf ("sp = %p\n", sp);

}

else {
printf ("enough memory for sp\n");
printf("sp = $p\n", sp);

void newhandler (void) {
printf ("message from newhandler\n");

/**x+ result of the program
newhandler.ch
enough memory for p

message from newhandler
not enough memory for sp

sp = 00000000

*xKkx/

Program 19.1: Setting handler function for new operator.

349

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.6. STATIC MEMBER OF CLASS

Student (int, char x);
“Student () ;

void setID(int 1);

vold setName (const char =*n);

bi

where the member count maintains the count of objects of class Student. The static data member can
be initialized with the following statement along with definitions of other member functions. A static data
member must be initialized once at file scope. For example,

int Student::count = 0;

The member count can be referenced through any member function of Student object. In this example,
the constructor will add 1 to count and the destructor will subtract 1 from it. We can rewrite the constructor
and destructor as follows,

Student::Student (int i, char =*n) {

id = i; /* initialize id x/
name = strdup(n); /% initialize name =/
count++;

Student:: " Student () {
/* release the memory allocated in constructor =/
free (name) ;
count—-—;

}

Like C++, Ch not only has static members of simple data types but also has static member functions such as
the member function getCount () defined below.

class Student {
// number of objects instantiated
static int count;
int id;
char xname;
public:
Student (int, char =*);
“Student () ;
void setID(int 1);
void setName (const char =xn);
static int getCount () ;

bi

int Student::getCount () {
return count;

}

The function can be used to get the count of objects currently instantiated as shown below.

350

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.7. SCOPE RESOLUTION OPERATOR ::

int main() {
class Student sl = Student (1, "Jason");

cout << "Number of student is "
<< sl.getCount () << endl;

}

The static member function can be called even though there is no object instantiated. In other words,
getCount() can be called using the following statement before s1 is instantiated. For example,

int main () {

cout << "Number of student is "
<< Student::getCount () << endl;

19.7 Scope Resolution Operator ::

Ch and C++ provides a unary scope resolution operator : :’ to access a global variable when a local variable
of the same name is in the scope. For example,

#include <stdlib.h>
int num;

int main () {
int num;
num = 10; // use local num
::num = ::num+2 // use global num
trexit (0); // use C function exit ()

}

Furthermore, this operator is used very often with classes. We have already used the scope resolution
operator ‘: :’ in the previous examples. It is mainly used in the following occasions.

1. Member function definition. When a member function is defined after the class definition, the function
name is preceded by the class name and the scope resolution operator ‘: :’. Because different classes
can have members with the same name, the scope resolution can prevent the confusion. For example, the
member function getCount() in the previous examples is defined with the code fragment below.

/* definition of the class Student =/

int Student::getCount () {
return count;

351

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.8. THE IMPLICIT THIS POINTER

2. Accessing the static member. As mentioned above, if no object of a class exists, the static members of
that class are still accessible by adding the class name and the scope resolution operator ‘: :’ in front of the
static data member name. For example, the code

int main() {

cout << "Number of student is "
<< Student::getCount () << endl;

}

can print out the number of the object of the class Student even when no object has been declared.

19.8 The Implicit this Pointer

In Ch and C++, every object has an implicit pointer called this to point to its own address. Although the
pointer this is not regarded as a part of the object, i.e., it is not reflected in the sizeof() operation, it is
actually implicitly used to reference the data members and member functions of an object. The following
definitions of member functions

void setID(int 1) {
id = 1i;

void setName (const char #*n) {
if (n)
name = strdup (n);

}
are equivalent to

void Student::setID(int 1) {
this—->id = i;

void Student::setName (const char =*n) {
1f (n)
this->name = strdup(n);

}

where this pointers are used explicitly. A static member function has no this pointer because it exists
independent of any object of a class.

19.9 Polymorphism

Although Ch does not support operator overloading at the user’s level. Commonly used mathematical oper-
ators are overloaded internally to handle operands of different data types. For example, operator +’ can be
used for addition of integral numbers, floating-point numbers, complex numbers, and computational arrays
of different data types.

352

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.9. POLYMORPHISM

Ch supports polymorphism — the ability for normal functions and member functions of classes to re-
spond differently to the same function calls, but with different argument numbers and types. Ch does not
support C++ function overloading at the user’s level, in which a function can be defined multiple times with
different data types and arguments. This is achieved by mangling function names internally inside a C++
compiler. This name mangling is not suitable for interpretive implementation with a single pass because of
its overhead. The polymorphism in Ch is implemented mainly by the function reloading. How polymorphic
functions are handled in Ch will be summarized in this section.

19.9.1 Polymorphic Generic Mathematical Functions

Commonly used generic mathematical functions such as sin() are polymorphic. They can handle arguments
of integral values, floating-point values, complex values, and computational arrays of different data types
and sizes. Generic mathematical functions for real numbers, complex numbers, and computational arrays of
different data types and sizes have been described in sections and respectively. Below is
an example of calling generic mathematical function sin() with different arguments in a Ch shell.

> float £ = 1.0

> sin (f) // call with a float

0.84

> double d = 1.0

> sin(d) // call with a double
0.8415

> complex float zf =1

> sin(zf) // call with float complex

complex (0.84,0.00)
> complex double zd =1

> sin(zd) // call with double complex

complex (0.8415,0.0000)

> array float afl[2] = {1.0, 2.0}

> sin (afl) // call with a one-dimensional array
0.84 0.91

> array float af2[2][3] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}
> sin(af2) // call with a two-dimensional array
0.84 0.91 0.14

-0.76 -0.96 -0.28

> array double adl[2] = {1.0, 2.0}

> sin (adl) // call with a double array
0.8415 0.9093

> array complex double azl[2] = {1.0, 2.0}

> sin(azl) // call with a complex array
complex (0.8415,0.0000) complex(0.9093,-0.0000)
>

19.9.2 Functions with Parameter Type of Array of Reference

A function with parameters of array of reference can be used to handle array arguments of different dimen-
sions and data types. For example, the function func() with prototype

int func(double al[&][&], array double &b);

353

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.9. POLYMORPHISM

can take arguments of different dimensions and types as follows.

int func(double al[&][&], array double &b);
array double A1[2][3], B1[10];

array float A2[4][5], B2[3][4];

int func(Al, Bl);

int func (A2, B2);

Details about using functions with parameter type of array of reference to pass arguments of different di-
mensions and data types are described in section

19.9.3 Polymorphic Functions

Polymorphic generic mathematical functions are implemented as built-in functions in Ch. Using facilities in
the standard library defined in header file stdarg.h described in section a user can write polymorphic
functions. Header file stdarg.h contains function prototypes and macros listed in Table for handling
arguments of variable length. Through some sample code, this section will illustrate how to use macros
VA _NOARG, va_count, va_datatype, va_arraydim, va_arrayextent, va_arraynum, and va_arraytype to
implement polymorphic functions in a user’s program.

Function func() in Program[19.2] will print out the values of the variable number arguments of different
data types. Inside function, the macro va_count() returns the number of the remaining arguments in the
argument list. Thus the while-loop

while (va_count (ap)) {

}
can retrieve all of the arguments one by one. The output of Program is shown in Figure

354

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.9. POLYMORPHISM

#include<stdarg.h>

void func(...) {
va_list ap;
int arg_num = 0;
int 1i;
float f;
double d;

va_start (ap, VA_NOARG) ;
while (va_count (ap)) {
if (va_datatype (ap) == elementtype (int)) {
i = va_arg(ap, int);
printf ("the %d argument is int %d\n", ++arg_num, 1i);
}
else if (va_datatype(ap) == elementtype(float)) {
f = va_arg(ap, float);
printf ("the %d argument is float %$f\n", ++arg_num, f);
}
else if (va_datatype (ap) == elementtype (double)) {
d = va_arg(ap, double);
printf ("the %d argument is double %$f\n", ++arg_num, d);

func (i, f);
func(f, i, d); // different types and different order
return 0;

Program 19.2: A polymorphic function handling variable length arguments.

the 1 argument is int 10

the 2 argument is float 2.000000
the 1 argument is float 2.000000
the 2 argument is int 10

the 3 argument is double 3.000000

Figure 19.1: Output of Program 19.2]

In addition to regular data types, arrays of different data types can be passed as pointers in a variable-
length argument list. The macros va_arraytype(), va_datatype(), va_arraydim(), va_arrayextent() and
va_arraynum() can be used to get the data type, dimension, extent, and number of elements of a compu-
tational array or C array. These macros must be called before the macro va_arg is called. For example, in

355

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.9. POLYMORPHISM

function fun () of Program[19.3] the statements

if (va_arraytype (ap) == CH_UNDEFINETYPE) { // check if it is not an array
printf ("the argument is not an array\n");
return -1;

}

give an error message if the argument is not an array. The statements

if (va_datatype (ap) == elementtype (int)) {
/* if (va_datatype (ap) == CH_INTTYPE) {
printf ("elementtype int\n");
}
else {
printf ("elementtype
}

other types\n");

determine if the type of the argument is int by calling macro va_datatype() and generic function element-
type(), and then print out the corresponding message. The generic function elementtype() gives the data
type defined in the header file stdarg.h. Because both char* and string_t represent strings in Ch, the fol-
lowing statement could be used in some occasions to determine the string type.

if (va_datatype (ap)==elementtype (charx)
| | va_datatype (ap)==elementtype (string_t)) {
printf ("element type is string\n");
}
else {
printf ("element type is not string\n");

}
In this example, statements

dim = va_arraydim(ap);

num va_arraynum(ap) ;
gets the dimension and number of elements of the array argument. The statement
m = va_arrayextent (ap, 0);

gets the number of elements in the first dimension of the array. If the array has one dimension, the statements

array int x*p;
ptr = va_arg(ap, intx);
p = (array int [:]) (int [m])ptr;

make p share the memory with one-dimension arrays, such as A3 in the main () function. If the array has
two dimensions, the statements

array int (xp)[:]1;

n = va_arrayextent (ap, 1);

ptr = va_arg(ap, intx);

p = (array int [:][:]) (int [m] [n])ptzr;

356

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.9. POLYMORPHISM

make p share the memory with two-dimension arrays, such as A1 and A2 in the main () function. A1l is a
fully-specified-shape computational array and A2 is an assumed-shape computational array. Like A1, they
are passed into function fun () as pointers to int. More information about computational arrays can be
found in Chapter[16l The output of Program[19.3lis shown in Figure [19.2]

357

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.9. POLYMORPHISM

#include <array.h>

#include <stdarg.h>

int fun(...) {
int *xptr, count, dim,num, m, n;
va_list ap;

va_start (ap, noarqg);
count = va_count (ap);

printf ("count = %d\n", count);
if (count >= 1) {
if (va_arraytype (ap) == CH_UNDEFINETYPE) { // check if it is not an array

printf ("the argument is not an array\n");
return -1;

}

dim = va_arraydim(ap); // get the dimension
printf ("dim = %d\n",dim) ;
num = va_arraynum(ap) ; // get the number of element
printf ("num= %d\n", num) ;
if (va_datatype (ap) == elementtype(int)) // get the type
// or if (va_datatype (ap) == CH_INTTYPE)
printf ("elementtype = int\n");
else

printf ("elementtype = other types\n");
m = va_arrayextent (ap, 0); // get the extent
if (dim == 1) {

printf ("extentl = %d\n",m);

array int «*p;

ptr = va_arg(ap, intx);

p = (array int [:]) (int [m])ptr;

printf ("p =\n%d\n", p);
}
if (dim == 2) {

array int (*p)[:1;

n = va_arrayextent (ap, 1);

printf ("extentl = %d, extent2 = %d\n", m, n);
ptr = va_arg(ap, intx);
p = (array int [:][:]) (int [m][n])ptr;

printf ("p =\n%d\n", p);

}
va_end(ap) ;
return 0;

int main() {
array int Al1[2][3];
array int (xA2)[:];
array int A3[3] = {1, 2, 3};

Al = (array int [2][3])50;

fun (Al);
Al = (array int [2][3])80;
A2 = (array int [:]1[:])A1l;
fun (A2) ;
fun (A3) ;

Program 19.3: Pass computational arrays to functions.
358

CHAPTER 19.

19.9. POLYMORPHISM

elementtype = int
extentl = 2, extent2
p =

50 50 50

50 50 50

Il
w

num=
elementtype = int
extentl = 2, extent2
p =

80 80 80

80 80 80

Il
w

num=
elementtype = int
extentl = 3

p =

123

CLASSES AND OBJECT-BASED PROGRAMMING

Figure 19.2: Output of Program[19.3]

One restriction of polymorphic functions in Ch is that functions cannot return values of different data
types. In case results of different data types are to be obtained from a function, it can be implemented
by passing a pointer as an argument to retrieve value of different types. For example, function func() in
Program [19.4] can retrieve values of int or float as the returned values through the first argument which is a
pointer. The output of Program [19.4]is shown in Figure

19.9.4 Polymorphic Member Functions of Class

Not only functions, but also constructors and member functions of classes in Ch can be polymorphic using
facilities in header file stdarg.h for handling variable length arguments.

In Program[19.3] both constructor C1() and member function memfunc () of class C1 can take variable
number of arguments of int type. Objects c1 and c2 are instantiated by using the constructor with one and
two arguments, respectively. The output of Program [19.5]is shown in Figure

359

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.9. POLYMORPHISM

#include<stdarg.h>

void func(...) {
va_list ap;
int xpi, flag;
float *pf;

va_start (ap, VA_NOARG) ;
if (va_count (ap) !'= 2) {
printf ("need 2 arguments\n");

return;

}

if (va_datatype (ap) == elementtype(int x)) { // get the 1lst argument
pi = va_arg(ap, intx);
flag = 1;

}

else if (va_datatype (ap) == elementtype (float *)) {
pf = va_arg(ap, floatx);
flag = 2;

}

if (va_datatype (ap) == elementtype(int)) {// get the 2nd argument
if(flag == 1)

*pl = va_arg(ap, int);
}
else if (va_datatype (ap) == elementtype(float)) {
if(flag == 2)
*pf = va_arg(ap, float);
}
va_end(ap) ;
return;

int main () {
int ret_i, i =
float ret_f, £

func (&ret_i, 1i);
printf ("ret_i = %d\n", ret_i);
func (&ret_£f, f);

printf ("ret_f = $f\n", ret_f);
return 0;

Program 19.4: Polymophism of functions returning different data type.
ret_i = 10
ret_f = 1.000000

Figure 19.3: Output of Program[19.4]

360

CHAPTER 19.

19.9. POLYMORPHISM

#include<stdarg.h>
#include<stdio.h>

class C1 {
double m_d;
public:
Cl(...);
void memfunc(...); // member function

}i

Cl::Cl(...) {
va_list ap;
int vacount;

va_start (ap, VA_NOARG);

CLASSES AND OBJECT-BASED PROGRAMMING

// constructor taking variable length arguments

taking variable length arguments

vacount = va_count (ap);
m_d = 0;
if (vacount == || vacount == 2) { /x integral value for 1lst arg */
if (va_datatype (ap) <= elementtype (int)) {
m_d += va_arg(ap, int);

}
else {
printf ("Error: wrong data type\n");

}

else {

printf ("Error: wrong number of arguments\n");

if (vacount == 2) { /=

if (va_datatype (ap)
m_d += va_arg(ap,

}

else if (va_datatype (ap)
m_d += va_arg(ap, double);

}

else {
printf ("Error: wrong data type\n");

float);

}

va_end(ap) ;

floating-point number for 2nd arg =/
== elementtype (float)) {

== elementtype (double)) {

Program 19.5: Member functions with variable-length argument lists.

361

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.10. NESTED CLASSES

void Cl::memfunc(...) {
va_list ap;
int vacount;
int i, num = 0;

printf("m_d = $f\n", m_d);
va_start (ap, VA_NOARG) ;
vacount = va_count (ap);

printf ("vacount = %d\n", wvacount);
while (num++, vacount—-) {

i = va_arg(ap, int);

printf ("argument %d = %d, ", num, 1i);

}

printf ("\n\n");
va_end(ap) ;
return;

}

int main () |
class Cl cl = C1(3);
class Cl c2 = C1(3, 6.5);
cl.memfunc(l);
c2.memfunc(l, 2, 3);

return 0;

Program 19.5: Member functions with variable-length argument lists (Contd.).

m_d = 3.000000
vacount = 1
argument 1 = 1,

m_d = 9.500000
vacount = 3
argument 1 = 1, argument 2 = 2, argument 3 = 3,

Figure 19.4: Output of Program[19.51

19.10 Nested Classes

Nested classes are classes that are defined within the scope of another class. Classes in which the nested
classes are defined are called surrounding classes or enclosing classes. Ch supports nested classes.

A class can be nested in every part of the surrounding class. A nested class is actually considered a
member of the enclosing class. So, the normal access and visibility rules in classes apply to nested classes.

If a class is nested in the public section of a class, it is visible outside the surrounding class. If it is
nested in the private section, it is only visible for the members of the surrounding class.

Although a nested class is considered a member of the enclosing class, its members are not members of
the enclosing class. So, member functions of the surrounding class have no special access to members of a

362

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.11. CLASSES INSIDE MEMBER FUNCTION

nested class. On the other hand, member functions of a nested class follow regular access rules too and have
no special access privileges to members of their enclosing classes.

The Program shows how to define nested classes in the enclosing class Enc1l.

In this example, access to the members is defined as follows.

1. The public nested class nestPub is visible both outside and inside the enclosing class Enc1.

2. The public member function getVar () of the class nestPub are also globally visible.

3. The private data member variable of the class nestPub is only accessible for the members of
the class nestPub.

4. The private class nestPrv is visible only inside the surrounding class Enc1.

5. The public members of the class nestPrv can be used by the members of the public nested class
nestPub.

6. The public member function getVar () of the class nestPrv can only be accessed by the members
of the enclosing class Enc1 and the members of its nested classes.

7. The private data member variable of the class nestPrv () is only visible for the members of the
class nestPrv.

Besides the definition of the nested class, their member functions are also defined in Program

The definitions of member functions of nested classes are similar to the definitions of the member func-
tions of normal classes. The function name is preceded by both the surrounding class name and the nested
class name. Two scope resolution operators ‘: :’ are used because both nestPub and nestPrv have
member functions named getVar (). The scope resolution can prevent the confusion.

19.11 Classes inside Member Function

As an extension to C++, Ch provides classes inside member function. The classes which are defined in
member functions of other classes are called classes inside member functions in Ch.

The Program shows how to define the class C2 in the member function C1: : func ().

In this example, access to the members is defined as follows.

1. A class inside a member function is only visible inside the member function in which it is defined,
regardless of whether the member function is public or private. In the example, declaration of a variable of
the type class C2 outside the member function C1: : func () is a syntax error in Ch.

2. The member function C1 : : func () in which the class C2 is nested has no special access privileges
to members of C2.

3. The public members of C2 is accessible within C1: : func ().

4. The private members of C2 can only be accessed by its own members.

19.12 Passing Member Functions to Arguments of Functions

Passing member functions to functions as arguments of pointer to function is another feature which is sup-
ported by Ch but not supported by C++.

In Program [19.8] member functions C1:: £5 () and C2: : £ (), and regular function func () take an
argument which is a pointer to function.

363

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.12. PASSING MEMBER FUNCTIONS TO ARGUMENTS OF FUNCTIONS

/+ Nested classes =/
#include <iostream.h>

class Encl {
public:
Encl (int); /* constructor =*/
int getVar();

class nestPub {
public:
int getVar();
private:
int variable;

}i

private:
class nestPrv{
public:
int getVar();
private:
int variable;
InPr;

int variable;
}i

Encl::Encl (int wvar) {
variable = var;

}

int Encl::getVar () {
return variable;

int Encl::nestPub::getVar () {
return variable;

int Encl::nestPrv::getVar () {
return variable;

}

int main() {
Encl el = Encl(5);
cout << "variable = " << el.getVar() << endl;

return 0;

Program 19.6: Nested class.

364

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.12. PASSING MEMBER FUNCTIONS TO ARGUMENTS OF FUNCTIONS

/+* Classes inside member functions =*/

#include <iostream.h>

int main () {
int t;
class C1 {
int vl;
public:

int func();
}i

int Cl::func() {

class C2 {
int v2;

public:
int func2();
int v3;

}i

int C2::func2() {
class Cl c;
class C2 c2;

v2 = 10;
c.vl = 20;
c2.v2 = 30;

return 10;

}

C2 c2;

/* c2.v2 = 30; is wrong */
c2.func2();

c2.v3 = 50;

vl = 30;
return vl;
}
Cl s;
/% C2 s2; 1is wrong x/

cout << s.func() << endl;

return 0;

Program 19.7: Classes inside member functions.

365

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.12. PASSING MEMBER FUNCTIONS TO ARGUMENTS OF FUNCTIONS

#include <stdio.h>
/+ pass member function to a function */
/* normal function with argument of pointer to function «*/
int func(void (xfp) ()) {
printf ("func() called\n");
fp();
return 0;

class C1l {

int 1i;

void fl(); // private member function access 1
public:

Cl1();

void f2(); // access member i

void f£3(); // does not access any member

void £4(); // call func()

/+ function with argument of pointer to function x/

void f5(void (*xfp) ());

void Cl::f1() { // private member function
printf ("Cl::f1() called, i = %d\n", 1);
}
void Cl::£f2() {
printf("Cl::£f2() called, i = %d\n", 1i);
}
void Cl::£3() {
printf ("Cl::£3() called\n");
}
/* member function with argument of pointer to function «*/
volid Cl::f4 () {
func (fl); /* pass private function, ok in Ch and bad in C++ x/
func (f2); /x pass public function, ok in Ch and bad in C++ =%/
}
/+ member function with argument of pointer to function x/
void Cl::f5(void (*fp) ()) {
printf ("Cl::£5() called \n");
fp(); /+ function as argument x/

class C2 {
int d;
public:
C2();
/+ function with argument of pointer to function x/
void f(void (xfp) ());
}i
C2::C2() {
d = 10;
}
/* member function with argument of pointer to function «*/
void C2::f(void (xfp) ()) {
fp(); /% function as argument =x/

Program 19.8: Passing member functions to functions as arguments.

366

CHAPTER 19. CLASSES AND OBJECT-BASED PROGRAMMING
19.12. PASSING MEMBER FUNCTIONS TO ARGUMENTS OF FUNCTIONS

int main () {

class C1l s;
class C2 s2;

printf (" (1)
func(s.£f2);
func(s.£3);
printf (" (2)
s.f4();
printf (" (3)
s.f5(s.f2);
s.f5(s.£3);
printf (" (4)
printf ("
s2.f(s.£3);

printf ("\n(5)

printf ("
s2.f(s.f2);

passed member func to regular func\n");
// OK in Ch, bad in C++
// OK in Ch, bad in C++
passed member func to regular func inside member func\n");
passed member func to member func of the same class \n");
// OK in Ch, bad in C++
// OK in Ch, bad in C++
passed member func, without accessing member field,\n");

to member func of a diff class.\n");
// Ok in Ch, bad in C++

Error: passed member func, with accessing member field,\n");
to member func of a diff class.\n");
// bad in Ch and C++

return 0;

Program 19.8: Passing member functions to functions as arguments (Contd.).

The output from executing Program [19.8]is as follows.

(1) passed member func to regular func

func () called

Cl::f2() called, i =5

func () called

Cl::£f3() called

(2) passed member func to regular func inside member func

func () called

Cl::f1() called, i =5

func () called

Cl::f2() called, i =5

(3) passed member func to member func of the same class

Cl::£f5() called

Cl::f2() called, 1 =5

Cl::£f5() called

Cl::£f3() called

(4) passed member func, without accessing member field,
to member func of a diff class.

Cl::£f3() called

(5) Error: passed member func, with accessing member field,
to member func of a diff class.

Cl::f2() called, i = 10
