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Handling of Complex Numbers
in the Ch Programming Language

Harry H. Cheng

Abstract

The handling of complex numbers in the Ch programming language will be described
in this paper. Complex is a built-in data type in Ch. The I/O, arithmetic and relational
operations, and built-in mathematical functions are defined for both regular complex
numbers and complex metanumbers of ComplexZero, ComplexInf, and ComplexNaN.
Due to polymorphism, the syntax of complex arithmetic and relational operations, and
built-in mathematical functions are the same as those for real numbers. Besides poly-
morphism, the built-in mathematical functions are implemented with a variable number
of arguments, which greatly simplies computations of different branches of multiple-
valued complex functions. The valid lvalues related to complex numbers are defined.
Rationales for the design of complex features in Ch are discussed from language design,
implementation, and application points of views. Sample Ch programs show that a
computer language which does not distinguish the sign of zeros in complex numbers
can also handle the branch cuts of multiple-valued complex functions effectively so long
as it is appropriately designed and implemented.

1 Introduction

Cheng (1993) presented the extension of C to Ch, a general-purpose block-structured inter-
pretive programming language, for the numerical computation of real numbers. The extension of
scientific programming from the one-dimensional real line to the two-dimensional extended com-
plex plane will be described in this paper. Complex number, an extension of real number, has
wide applications in science and engineering. Due to its importance in scientific programming,
numerically-oriented programming languages and software packages usually provide complex num-
ber support in one way or another. For example, Fortran (ANSI, 1978), a language mainly for
scientific computing, has provided complex data type since its earliest days. Ada has introduced
complex data in its new proposed standard recently (Hodgson, 1991a,b; Squire, 1991a,b). C, a
modern language originally invented for the Unix system programming (Ritchie and Thompson,
1974; Kernighan and Ritchie, 1978), does not have complex as a basic data type because the
numerically-oriented scientific computing was not its original design goal. Computations involving
complex numbers can be introduced as a data structure in C. However, programming with this
structure is somewhat clumsy because, for each operation, a corresponding function has to be in-
voked. Using C++ (Stroustrup, 1987), a class for complex numbers can be created. By using
operator and function overloadings, built-in operators and functions can be extended so as to also
apply to the complex data type. Therefore, the complex data type can be achieved. However, it
may be too involved for novice users to create such a class. Besides, many features described in
this paper cannot be conveniently implemented at user’s level.

Ch retains most features of C for scientific computing and extends C’s capabilities in many
aspects. Providing complex as a basic data type is one of its extensions. The reason for providing
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Figure 1: The Riemann sphere I' and extended complex plane.

complex as a basic data type is not only for programming convenience, but also due to design con-
siderations. Design considerations such as automatic data conversion, handling of metanumbers,
and optional arguments in a function are difficult to implement at a user’s program level even for
a language like C++ with operator and function overloading capabilities. They should best be
handled as language primitives. As described in (Cheng, 1993), Ch provides real metanumbers of
0.0, —0.0, Inf, —Inf, and NaN, which makes the power of the IEEE 754 standard for binary floating-
point arithmetic (IEEE, 1985) easily available to the programmer. This paper extends the idea of
metanumbers to complex numbers not only for arithmetic, but also for commonly used mathemat-
ical functions in the spirit of the IEEE 754 standard and ANSI C (ANSI, 1989). Mathematically,
complex numbers can be represented in the extended complex plane shown in Figure 1 (Churchill
and Brown, 1984; Marsden, 1973). In Figure 1, there is a one-to-one correspondence between the
points on the Riemann sphere I' and the points on the extended complex plane C. The point p on
the surface of the sphere is determined by the intersection of the line through the point z and the
north pole N of the sphere. There is only one complex infinity in the extended complex plane. The
north pole N corresponds to the point at infinity. Due to the finite representation of floating-point
numbers, the extended finite complex plane shown in Figure 2 is introduced in this paper. Any com-
plex values inside the ranges of |z| < FLT_MAX and |y| < FLT_MAX are representable in finite
floating-point numbers. Variable z is used to represent the real part of a complex number and y
the imaginary part; FLT_MAX, a predefined system constant, is the maximum representable finite
floating-point number in the float data type. Outside this rectangular area, a complex number is
treated as a Complex-Infinity represented as ComplexInf or complex(Inf,Inf) in Ch. The one-to-one
correspondence between points on the Riemann sphere I' and the extended complex plane is no
longer valid for the unit sphere A and the extended finite complex plane. All points on the surface
of the upper part A1 of the unit sphere correspond to the complex infinity. Points on the lower part
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Figure 2: The unit sphere A and extended finite complex plane.

As of the sphere and points in the extended finite complex plane are in one-to-one correspondence.
The boundary between surfaces A1 and As corresponds to the threshold of overflow. For example,
points p; and p2 on the unit sphere A correspond to points z; = complex(FLT_MAX, 0.0) and 2, =
complex(FLT_MAX, FLT_MAX) in the extended finite complex plane shown in Figure 2, respec-
tively. The origin of the extended finite complex plane is complex(0.0, 0.0) or ComplexZero which
stands for Complex-Zero. In Ch, an undefined or mathematically indeterminate complex number
is denoted as complex(NaN, NaN) or ComplexNaN which stands for Complex-Not-a-Number. The
special complex numbers of ComplexZero, ComplexInf, and ComplexNaN are referred to as complex
metanumbers. Because of the mathematical infinities of 00, it becomes necessary to distinguish
a positive zero 0.0 from a negative zero —0.0 for real numbers. Unlike the real line, along which
real numbers can approach the origin through the positive or negative numbers, the origin of the
complex plane can be reached in any directions in terms of the limit value of lim,_,ore?® where
7 is the modulus and @ is the phase of a complex number. Therefore, complex operations and
complex functions in Ch do not distinguish 0.0 from —0.0 for real and imaginary parts of complex
numbers. Due to these differences, some operations and functions need to be handled differently
for real and complex numbers, especially for real metanumbers and complex metanumbers. For
example, following the IEEE 754 standard, the addition of two real positive infinities is a value
of infinity in Ch (Cheng, 1993). But, the addition of two complex infinities is indeterminate, ac-
cording to complex analysis, although the value of ComplexInf is represented internally as two
positive infinities of Inf. As another example, following the ANSI C standard (ANSI, 1989), the
mathematical function atan2(y, x) in Ch returns a value in the range of [—m,7]. The value of
the expression atan2(—0.0,—1) is —x. Using this result as the phase angle for complex number
—1.0—10.0, the square root of —1.0 —40.0, expressed in Ch as sqrt(complex(—1.0, —0.0)), becomes
complex(0.0,—1.0) which is obtained by cos(—n/2) + isin(—n/2) = 0.0 — i. In our definition, this
is the second branch of the square root function for the complex number of complex(—1.0,—0.0),
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obtained by the expression sqrt(complex(—1.0, —0.0), 1) where the second argument of the function
sqrt() indicates the branch number with the default value of 0. As illustrated in this example,
the mathematical functions in Ch are not only polymorphic, but also with variable number of
arguments so that the function sqrt() cannot only be used to compute the square root of a real
number, but also to calculate the different branches of the square root of a complex number. Due
to polymorphism and variable number of arguments for mathematical functions, scientific comput-
ing with complex numbers in Ch is much simpler in comparison to Fortran and other languages.
In Fortran, there are only few standard mathematical functions and they can only calculate the
principal branches of multiple-valued functions.

Manipulation of complex numbers in Ch, as it is currently implemented, will be described in this
paper. The rest of the paper is organized as follows. Section 2 discusses how complex numbers and
variables are created in Ch. The data conversions between real numbers and complex numbers are
explained. The I/O for complex numbers is also illustrated in this section. Sections 3 and 4 present
complex operations and complex functions, respectively. Section 5 defines valid objects on the left
hand side of an assignment statement related to complex numbers. Section 6 demonstrates how
user’s complex functions in Ch can be conveniently created through the example for computation
of the logarithm of the complex gamma function. Section 7 provides rationales for the handling of
complex numbers in Ch, in comparison with existing systems and current research efforts in the
design of languages with a complex data type.

2 Complex Numbers

2.1 Complex Constants and Complex Variables

Complez numbers z € C = {(z,y) | z,y € R} can be defined as ordered pairs

z = (z,y) (1)

with specific addition and multiplication rules (Churchill and Brown, 1984; Marsden, 1973). The
real numbers x and y are called the real and imaginary parts of z. If we identify the pair of (z,0.0)
as the real numbers. The real number R is a subset of C, i.e., R = {(z,y) | z € R,y = 0.0} and
R C C. If a real number is considered either as z or (z,0.0) and let 7 denote the pure imaginary
number (0,1), complex numbers can be mathematically represented as

z=z+1iy (2)

Both mathematical notations (1) and (2) can be implemented for complex numbers in a computer
language. General-purpose computer programming languages such as Fortran, Ada, Common Lisp
(Steele, 1990) tend to use notation (1) whereas software packages such as Mathematica (Wolfram,
1988) and MATLAB (MathWorks, 1990) incline to notation (2). Following the lead of Fortran
in scientific programming, a complex number can be created in Ch by the complex constructor
complex(x, y) with z,y € R. For example, a complex number with its real part of 3.0 and
imaginary part of 4.0 can be constructed by complex(3.0, 4.0). Internally, a complex number
consists of two floats at the current implementation. Therefore, if arguments of a complex con-
structor are not floats, they will be cast to floats internally. As described in (Cheng, 1993), all
floating-point constants in Ch are floats by default. The double constants can be obtained by
suffixing a floating-point constant with D or d. When double complex data type is implemented in
the future, the complex constructor shall return complex or double complex polymorphically, de-
pending on the data types of the input arguments. For example, complex(3, 4.0d), complex(3.0f,
4.0d), complex(3.0D, 4.0F), and complex(3.0D, 4.0D) shall return a double complex number

4
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of complex(3.0D, 4.0D). By default, complex, ComplexZero, ComplexInf, and ComplexNaN are
keywords in Ch. However, as described in (Cheng, 1993), these keywords can be changed at user’s
discretion. For example, one can add CMPLX to the keyword list and remove complex from the list by
addkey("CMPLX","complex") and remkey("complex"), respectively. With this keyword change
from complex to CMPLX, CMPLX will act the same as complex in a Ch program in both syntax and
semantics. Hence, porting code related to complex numbers from Fortran to Ch is relatively easy.
Many C programs have defined complex as the definition of a structure for complex numbers. With
the keyword changeability, reserved word conflict can be avoided when porting C programs to Ch.

One can declare not only a simple compler variable, but also pointer to complex, array of
complex, and array of pointer to complex, etc.. Declarations of these complex variables are similar
to the declarations of any other data types in C. The array and pointer of complex in Ch are
manipulated in the same manner as the floating-point float and double. The following code segment
will illustrate how complex is declared and manipulated in Ch:

complex z1; /* declare zl as complex variable */

complex *zptri; /* declare zptrl as pointer to complex variable */
complex z2[2], z3[2,3];/* declare z2 and z3 as arrays of complex */

complex *zptr2[2][4]; /* declare zptr2 as an array of pointer to complex */
zptlr = &=z1; /* zptrl point to the address of zl */

*zptrl = complex(1,2); /* zl becomes 1+i2 */

2.2 Data Conversion Rules

Ch is a loosely typed language. All arguments of calling functions will be checked for compati-
bility with the data types of the called functions. The data types of operands for an operation will
also be checked for compatibility. If data types do not match, the system will signal an error and
print out some informative messages for the convenience of program debugging. However, unlike
languages such as Pascal (ANSI, 1983) which prohibits automatic type conversion, some data type
conversion rules have been built into Ch so that they can be invoked whenever necessary. This will
save many explicit type conversion commands for a program. The order of the data type in Ch is
arranged as

data type order

complex high
double

float

int

char low

with char being the lowest data type and complex the highest data type. The default conversion
rules will be briefly discussed in this section as follows:

e Char, int, float, and double can be converted according to ANSI C data conversion rules. The
ASCII value of a character will be used in conversion for a char data type. Demotion of data
may lose the information.

e Char, int, float, and double can be converted to complex with its imaginary part being
zero. When casting a real number into a complex number, the values of Inf and —Inf become
ComplexInf; and the value of NaN becomes ComplexNaN. Conversion from double to complex
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may lose the information. A real number can be cast into a complex explicitly by the complex
construction function complex(x,y), which will be discussed in details in section 4.

When a complex is converted to char, int, float, and double; only its real part is used, and
the imaginary part will be discarded. If the value of a complex is ComplexInf, the converted
real number becomes NaN. The real and imaginary components of a complex number can be
obtained explicitly by the functions real(z) and imag(z), which will be discussed in details
in section 4. When a complex number is converted to a real number either implicitly by
assignment statement such as f = z or explicitly by real(z), imag(z), float(z), double(z),
(float)z, and (double)z; the sign of a zero will not be carried over. Converting a complex
number to an integral value such as char and int is equivalent to conversion of real(z) to an
integral value. For example, i = ComplexInf will make i equal to INT_MAX. However, if
real() or imag() is used as a lvalue, the sign of zeros from rvalue will be preserved, which
will allow experimentation with signed zeros in computations of complex numbers. A [value
is any object that occurs on the left hand side of an assignment statement. The lvalue refers
to a memory such as a variable or pointer, not a function or constant. On the other hand, the
rvalue refers to the value of the expression on the right hand side of an assignment statement.
Details about the lvalue will be discussed in section 5.

In binary operations such as addition, subtraction, multiplication, and division, etc. with
mixed data types, the result of the operation will carry the higher data type of two operands.
For example, the result of addition of an int and a double will result in a double. When one of
the two binary operands is complex and the data type of other operand is a real number, the
real number will be cast into a complex before the operation is carried out. This conversion
rule is also valid for an assignment statement when data types of the lvalue and rvalue are
different.

In a pointer assignment statement, the pointer types of lvalue and rvalue can be different.
They will be reconciled internally. To comply with the ANSI C standard, the data type of the
rvalue can also be explicitly cast into that of the lvalue in an assignment in Ch. For example,
the statement fp = (float*)intptr will cast the integer pointer intptr to float pointer before
its address is assigned to float pointer fp. But, the contents pointed to by intptr will not be
changed by this data type casting operation. For example, if xintptr is 90, the value of *fp
will not be equal to 90 because of the difference in their internal representations for int and
float. The memory of a complex variable can be accessed by pointers. If real or imaginary
part of a complex variable is obtained by a float pointer, the sign of a zero will be carried
over, which will be discussed in section 5.

The following code segment will illustrate how different data types are automatically converted
in Ch.

char c;

int i;

float f;

double d;

complex z, *zptr;

C

i=c; /*
£ =
d

is ’a’ x/
is 97, ASCII number of ‘’a’ */
is 97.0 *x/
is 97.0 x/

a’; /*

i; /*
i; /%

Q H H O
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z = complex(ch+1l, f); /* z is 98.0 + i 97.0 */

z = complex(Inf, Inf); /* z is ComplexInf */

z = Inf; /* z is ComplexInf */

z = -Inf; /* z is ComplexInf */

f = z; /* £ is NaN, since real(ComplexInf) is NaN */

d = z; /* d is NaN, since real(ComplexInf) is NaN */

i = Inf; /* i is 2147483647 = INT_MAX, */

i=2z; /* i is 2147483647, int of NaN is 2147483647
plus warning message */

z = complex(d+1l, 3); /* z is 98.0 + i 3.0 */

c = z; /* ¢ is ’b’, ASCII number of ’b’ is 98 */

i=z; /* i is 98 *x/

f = z; /* £ is 98.0 */

d = d; /* d is 98.0 */

z = Nal; /* z is ComplexNaN */

zptr = &z; /* zptr points to address of z */

zptr++; /* zptr points to memory at address of z plus 8 bytes */

2.3 I/0 for Complex Numbers

Since complex is a basic data type in Ch, it is desired that the I/O for this data type is also
handled in the same manner as real numbers. Similar to Fortran, the real and imaginary parts of
a complex number can be treated as two individual floats by the functions real(z) and imag(z)
as will be discussed in sections 3 and 4. Then, all standard I/O functions such as printf() and
scanf() for real numbers presented in (Cheng, 1993) can be readily used. In this section, how a
complex number is treated as a single object by the standard I/O function will be discussed. Due
to the space limit, only the enhancement related to the function printf() will be explained in the
following discussions. However, the underlining principle can be applied to other I/O functions as
well. The format of function printf() in Ch is as follows

int printf(char *format, argl, arg2, ...)

The function printf() prints output to the standard output device under the control of the string
pointed to by format and returns the number of characters printed. If the format string contains
two types of objects: ordinary characters and conversion specifications beginning with a character
of % and ending with a conversion character, the ANSI C rules for printf() will be used. If the
format string in printf() contains only ordinary characters, the subsequent numerical constants
or variables will be printed according to preset default formats. For function printf(), a single
conversion specification for a float will be used for both real and imaginary parts of a complex
number. The default format for complex is %f, which will be applied to both real and imaginary
parts of a complex number. The metanumbers ComplexZero, ComplexInf and ComplexNaN are
treated as regular complex numbers in I/O functions. For the debugging purpose, the default output
for ComplexInf and ComplexNaN are complex(Inf, Inf) and complex(NaN, NaN), respectively. The
default output for ComplexZero is complex(0.000000,0.000000). The format for real and imaginary
parts can be controlled by a format specifier. The following Ch program will illustrate how complex
numbers are handled by the I/O functions printf() and scanf().

complex zl, z2, *zptr;
zptr = &z2; /* zptr points to z2’s memory location */
printf("Please type in real and imaginary of two complex numbers \n");
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Table 1: The complex operations.

Definition Ch Syntax Ch Semantics
negation —7z —T —1y
addition zl + z2 (1 + z2) + i(y1 + y2)
subtraction zl — 72 (1 — z2) +i(y1 — y2)
multiplication | zl * z2 (1 x 2o —y1 * y2) + (Y1 * T2 + 21 * yo)
division zl | 22 L1 x T + Yr*Ys | ;i *xTg — V1 * Yo
Ty + Y3 Ty + Y3
equal z1 ==122 | 1 ==2x9 and y; == 19
not equal zl '= z2 T1!=x9 or Y1 !I= 9o

scanf (&z1, zptr);
printf("The first complex is ", zl, "\n");
printf("The second complex is %.3f \n", z2);

The result of the interactive execution of the above program is shown as follows
Please type in real and imaginary of two complex numbers

12.038.04

The first complex is complex(1.000000,2.000000)
The second complex is complex(3.000,4.000)

where the second line in italic is the input and the rest are the output of the program. Function
printf() in Ch is in full compliance with ANSI C. Function scanf() in Ch at its current implemen-
tation has a minor difference from ANSI C. In the future implementation, scanf() will comply with
ANSI C; besides, it will accept the input constants such as ComplexInf, ConmplexNaN, complex(2,
3.8F), etc..

3 Complex Operations

The arithmetic and relational operations for complex numbers are treated in the same manner
as those for real numbers in Ch. This section will discuss how these operations are defined and
handled by Ch.

3.1 Complex Operations with Regular Complex Numbers

The negation of a complex number, and arithmetic and comparison operations for two complex
numbers are defined in Table 1, where the complex numbers z, z1, and 2o are defined as = + 4y, 1 +
1y1, and xo + iys, respectively.

The negation of a complex number will change the sign of both real and imaginary parts of the
complex number. The addition of two complex numbers will add real and imaginary components
of two complex numbers, separately. The subtraction of two complex numbers will subtract real
and imaginary parts of the second complex number from real and imaginary of the first complex
number, respectively. Treating the imaginary number 7 as a complex number of complex(0, 1), the
multiplication and division for two complex numbers are defined in Table 1. For binary operations
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Table 2: Negation results.

Negation —
operand | complex(0.0, 0.0) z ComplexInf ComplexNaN
result complex(0.0, 0.0) —z ComplexInf ComplexNaN

Table 3: Addition and subtraction results.

Addition and Subtraction +
left operand right operand
complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0, 0.0) | complex(0.0, 0.0) +272 ComplexInf ComplexNaN
z1 z1 zl + 72 ComplexInf ComplexNaN
ComplexInf ComplexInf ComplexInf ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

with a real operand and a complex operand, the regular real operand will be cast into a complex
before the operation. Complex numbers are not ordered, one cannot compare whether one complex
number is larger or smaller than other. But two complex numbers can be tested whether they are
equal or not. Two complex numbers are equal to each other iff both real and imaginary parts of
two complex numbers are equal to each other, separately. If real or imaginary parts of two complex
numbers are not equal to each other, two complex numbers are said not equal.

3.2 Complex Operations with Complex Metanumbers

In the above definitions of complex operations, we assume that all operands are regular complex
numbers. The real and imaginary parts of a complex number are then treated as two regular
floating-point floats. If the values of operands involve complex metanumbers, the definitions defined
in Table 1 may not be valid. For example, ComplexInf is represented internally as complex(Inf, Inf).
According to the complex addition definition defined in Table 1 and addition rule for real numbers
discussed in (Cheng, 1993), the result of addition of two ComplexInfs would be complex(Inf, Inf).
But, addition of two complex infinities is mathematically indeterminate. Therefore, the results for
arithmetic and relational operations with both regular complex numbers and complex metanumbers
are defined in Tables 2 to 7.

From a programmer’s point of view, values of complex(+0.0, £0.0) are the same as complex(0.0,
0.0) or ComplexZero when they are used as operands or arguments in Ch. In the following dis-
cussions, the positive zero 0.0 and the negative zero —0.0 for real and imaginary components of a
complex number are considered the same. Therefore, although the negation of complex(0.0, 0.0)
returns complex(—0.0, —0.0), the result listed in Table 2 is complex(0.0, 0.0). Negation of a complex
infinity is still a complex infinity. Of course, negation of a complex Not-a-Number is ComplexNaN.

For binary operations in Tables 3 to 5, if any one of operands is ComplexNaN, the result is
ComplexNaN. If one of two operands is ComplexInf and other is a finite complex number, the result
of addition and subtraction is ComplexInf. Unlike real numbers, addition and subtraction of two
ComplexInfs are ComplexNaNs. Multiplication of ComplexInf with complex(0.0, 0.0) is Complex-
NaN; multiplication of ComplexInf with a finite nonzero number is ComplexInf; and multiplication
of two ComplexInfs becomes ComplexInf. Like real numbers, divisions of complex(0.0, 0.0) by
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Table 4: Multiplication results.

Multiplication *
left operand right operand
complex (0.0, 0.0) 72 ComplexInf ComplexNaN
complex(0.0, 0.0) | complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN ComplexNaN
z1 | complex(0.0, 0.0) 7122 ComplexInf ComplexNaN
ComplexInf ComplexNaN ComplexInf  ComplexInf ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

Table 5: Division results.

Division +
left operand right operand
complex(0.0, 0.0) 72 ComplexInf ComplexNaN
complex(0.0, 0.0) ComplexNaN complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN
zl ComplexInf z1/2z2  complex(0.0, 0.0) ComplexNaN
ComplexInf ComplexInf ComplexInf ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

complex(0.0, 0.0) and ComplexInf by ComplexInf are ComplexNaNs. A finite number or infinity
divided by complex (0.0, 0.0) becomes ComplexInf. The division of ComplexInf by a finite number
gives ComplexInf. Theoretically, two complex infinities cannot be compared with each other,
they may or may not be equal to each other. In Ch, however, two ComplexInfs are considered the
same from the programming point of view as shown in Table 6. Likewise, the comparison of two
ComplexNaNs will get a logic TRUE. This design consideration is also reflected in the not equal
relational operation shown in Table 7.

4 Complex Functions

Besides the polymorphism, the mathematical functions implemented in Ch can have a variable
number of arguments, which is very convenient for calculations of complex mathematical functions
with multiple branches. If a mathematical function, as a real function, has only one real argument,
the additional second argument will render the function to a complex function unless explained
otherwise. The integral value of the second argument will indicate the branch of the complex
function. When this second argument presents, the first argument will be cast into a complex
number according to the previously discussed data type conversion rules when the order of its data
type is lower than complex. For a mathematical function with two arguments as a real function,
if either one of two input arguments is a complex, the mathematical function becomes a complex
function. If an additional third argument as a branch indicator is provided, the function becomes
a complex function if data types of the first two arguments are lower than or equal to complex. If
their data types are lower than complex, they will be cast into complex numbers.

4.1 Results of Complex Functions with Regular Complex Numbers

The built-in functions related to the complex numbers are listed in Table 8 along with their

10
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Table 6: Equal comparison results.

Equal comparison ==

left operand right operand
complex (0.0, 0.0) 72 ComplexInf ComplexNaN
complex(0.0, 0.0) 1 0 0 0
z1 0 7zl == 72 0 0
ComplexInf 0 0 1 0
ComplexNaN 0 0 0 1
Table 7: Not equal comparison results.
Not equal comparison !=
left operand right operand
complex (0.0, 0.0) 72 ComplexInf ComplexNaN
complex (0.0, 0.0) 0 1 1 1
zl 1 zl 1= 22 1 1
ComplexInf 1 1 0 1
ComplexNaN 1 1 1 0

definitions. The input arguments of these functions can be complex numbers, variables, or expres-
sions. For the presentation purpose, the complex numbers z, z, and 2, are defined as z+iy, £1+iy1,
and o + iyo, respectively. The integer values of k, k1, and ks are the branch numbers of complex
functions. If arguments for these branch numbers of the calling function are not integers, they will
be cast into integers internally. For mathematical expressions in the second column in Table 8, if
the arguments of mathematical functions are regular real numbers, the mathematical functions are
real mathematical functions which have been described in (Cheng, 1993). The results of complex
functions involving complex metanumbers will be discussed in the next section. In Table 8, the
principal value © of the argument of a complex number is in the range of —m < © < 7. The
definition of the principal value © for various complex numbers are given in Table 9. Note that
the trigonometric function atan2(y,x) is in the range of —7 < atan2(y,z) < 7. Normally, through
complex arithmetic and complex functions, one shall not get a complex number with its real or
imaginary part being the value of —Inf, Inf, or NaN while the other part is a regular real number.
This kind of result can be obtained only explicitly by functions real(z) and imag(z), and float
pointer variables through lvalues, which will be discussed in section 5.

The first four functions in Table 8 return real numbers. The sizeof() function returns, in bytes,
an integer of the variable, type-specifier, or expression that it precedes. Since Ch does not have
unsigned data types at its current implementation, the returned data type is signed integer, which
slightly differs from ANSI C. If the argument is a complex, it will return the value of 8 which
is the number of bytes required for storing two floats of real and imaginary parts of a complex.
The abs(z) function computes the modulus of a complex number. The returned data type is float.
The functions real(z) and imag(z) returns the real and imaginary parts of a complex number,
respectively. The results of real(z) and imag(z) are always floats. If the data type of the argument
for real() is lower or equal to double, the input data will be cast into a float. If the data type of the
argument for imag() is lower than or equal to double, the value of zero will be returned. The sign
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Table 8: The syntax and semantics of built-in complex functions.

Ch Syntax Ch Semantics
sizeof(z) 8
abs(z) sqrt(z? + y?)
real(z) z
imaginary(z) Yy
complex(z, y) T+ 1y
conjugate(z) T —1iy
polar(z) sqrt(z? + y?) +i0; © = atan2(y, T)

polar(r, theta)
sqrt(z)

sqrt(z, k)
exp(z)

log(2)

log(z, k)

log10(z)
log10(z, k)

pow(z1, 22)
pow(z1, 22, k)
ceil(z)

floor(z)
fmod(z1, 22)
modf(z1, &22)
frexp(z1, &22)
ldexp(z1, 22)
sin(z)

cos(z)
tan(z)
asin(z)
asin(z, k)
asin(z, k1, k2)
acos(z)
acos(z, k)
acos(z, k1

k2)

atan(z)
atan(z, k)
atan2(z1, z2)

atan2(z1, 22, k)
sinh(z)
cosh(z)
tanh(z)

r cos(theta) + ir sin(theta)
sqrt(sqrt (22 + y?))(cos g
sqrt(sqrt (22 + y?) (cos ==
e®(cosy + isin y)
log(v/z? + y?) +10; © = atan2(y, x)
log(vz? + y?) + i(© + 2k7); © = atan2(y, x)
log(z)
log(10)
log(z, k)
log(10)
2172 = #2201 = exp(z9 * log(21))
2172 = e?20%1 = exp(zy * log(z1, k))
ceil(z) + i ceil(y)
floor(z) + i floor(y)
z; % =k+ ;—2, k>0
modf(z1, &z2) + 7 modf(y1, &y2)
frexp(z1, &x2) + i frexp(y1, &y2)
ldexp(z1,x2) + i 1dexp(y1, y2)
sinz coshy + i coszsinhy

cos ¢ coshy — isinz sinhy
sin z
COS Z
—ilog(iz + sqrt(1 — 22))
—ilog(iz + sqrt(1 — 22, k))
—ilog(iz + sqrt(1 — 22, k1), ko)
(
(
(

+1 sm ; © = atan2(y,
+ 2kw —I—zsm®+2k7r) o

(i

(¢

(i

—ilog(z + isqrt(1 — 22))

—ilog(z + isqrt(1 — 22, k))

—1 log(z +isqrt(1 — 22, k1), ko)
(i
(i
8(

97 log(1E42)
+ 1z
27, log zz’k)
11 1 +2251/22)
] 1 —zzl/zg
1 1 +22’1/2’2
% 108(T =721 2, )

sinhz cosy + ¢ coshzsiny

coshz cosy + ¢sinhxsiny
sinhz cosy +icoshzsiny
coshz cosy + isinhxsiny

x)

= atan2(y, )

continued on next page
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Table 8: continued.

Ch Syntax Ch Semantics
asinh(z) log(z + sqrt(2? + 1))
asinh(z, k) log(z + sqrt(22 + 1, k))
asinh(z, k1,%k2) | log(z + sqrt(z? + 1, k1), ko)
acosh(z) log(z + sqrt(z + 1)sqrt(z — 1))
acosh(z, k) log(z + sart(z + 1, k)sqrt(z — 1, k))
acosh(z, k1,k2) | log(z —|—Sqr (z 4+ 1,k1)sqrt(z — 1, k1), k2)
atanh(z) i log( T g)
atanh(z, k) 5 log(%ﬂ k)

Table 9: The principal value © (—7 < © < ) of the argument for complex(x,y).

C)
y value x value
—x1 —=0.0 0.0 x2 Inf NaN
y2 atan2(yq, —x1) pi/2  pi/2  atan2(ya,z2)
0.0 pi 0.0 0.0 0.0
—-0.0 pi 0.0 0.0 0.0
—yl atan2(—y1,—x1) —pi/2 —pi/2 atan2(—y1,z2)
Inf Inf
NaN NaN

of a zero will be ignored in real(z) and imag(z) functions. For example, real(complex(—0.0,0.0))
will return 0.0.

A complex number can be created from two real numbers by the complex construction function
complex(x,y). If the input arguments are not floats, they will be cast into floats according to the
internal data conversion rules. The sign of a zero for x or y will be carried over to the complex
number.

The conj(z) function returns the complex conjugate Z of z. The complex number Z represented
by the point (z, —y) is the reflection in the real axis of the point (z,y) representing z.

The function polar() is implemented mainly for the convenience of transformation between
Cartesian and polar representations of a complex number. If there is only one input argument, a
complex number with its real and imaginary parts being the modulus and argument, respectively, of
the input complex number will be returned. If there are two input arguments, the complex number
z in the polar form will be returned. The first and second input arguments are the modulus and
argument of z, respectively. According to the definition re? for the polar function, negative values
for r are valid.

For the square root function sqrt(), whenever there are two arguments, the first argument is
treated as a complex number. In case it is not a complex number and cannot be cast into a complex
number, a syntax error message will be reported by the system. If the second argument is not an
integer, it will be cast into an integral value according to internal data conversion rules. For the
complex square root, there are only two distinct branches because of the periodic natures of the
sine and cosine functions. In general, for taking the nth root, there are n distinct branches. If the
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function sqrt() is invoked with a single complex argument, the default branch value of 0 will be
used.

The exp(z) function will calculate the exponential function of the complex number z.

Like the square root function, the natural logarithmic function log() has multiple branches.
The branch number is provided by the second argument of the function. For the convenience, the
function log10() will calculate the base-ten logarithmic function of a complex value.

The exponential function with a complex base can be calculated by the function pow(), which
is accomplished by the exponential function and logarithmic function as is shown in Table 8.
The branch of the logarithmic function determines the branch of the function pow(). Unlike its
corresponding real function, the complex function pow() is always well-defined. If any one of two
arguments of pow(zl, z2) is complex, the result is complex which is obtained by the principal
branch of the expression exp(z2+log(z1)). The result of the expression y* equals the real part of
the expression pow(complex(y,0.0), complex(x,0.0)) with its imaginary part being zero. For the
function pow(zl, z2, k), z1 and z2 can be any data type lower than or equal to complex, and &
is an integer. Whenever there are three arguments for the function pow(), the first and second
arguments are treated as complex numbers. If z2 is an integer, all branches will have the same
result; thus the solution is unique.

For functions ceil(z), floor(z), and ldexp(z1, z2), the real and imaginary parts are treated as
if their were two separate real functions. The functions modf(zl, &z2) and frexp(zl, &z2) are
handled in the same manner. For these two functions, when the data type of the first arguments
are complex, the data type of the second argument must be a pointer to complex. The fmod(z1,22)
function computes the complex remainder of z1/z2.

The complex trigonometric functions sin(z), cos(z), and tan(z) and complex hyperbolic func-
tions sinh(z), cosh(z), and tanh(z) have unique values. But, the complex inverse trigonomet-
ric functions asin(z), acos(z), and atan(z) and complex inverse hyperbolic functions asinh(z),
acosh(z), and atanh(z) have multiple branches for a given input complex value. The second argu-
ment of these inverse functions indicates the branch number. For functions asin(), acos(), asinh(),
and acosh(), the second and third arguments specify the branches of the related square root and
logarithmic functions, respectively. The function atan2() is implemented similar to the function
atan().

4.2 Results of Complex Functions with Complex Metanumbers

Like complex arithmetic operations, the definition for regular complex functions may not be
valid when the input arguments are complex metanumbers. The results of the built-in complex
functions with complex metanumbers as their input arguments are given in Table 10. In Table 10,
complex(£0.0,£0.0) in Ch is treated as complex(0.0, 0.0). When the input argument of a function
is ComplexNaN, the returned result is always ComplexNaN except for the function sizeof(). As
shown in Figure 2, a complex infinity is different from the real infinities of £00. When either real or
imaginary part of a complex value is outside the range of the representable floating-point number, it
becomes ComplexInf. Therefore, the absolute value of ComplexInf is a real number of Inf. The real
and imaginary parts of ComplexInf are NaN. But, the conjugate of ComplexInf is still a complex
infinity. The result polar(complex(0.0,0.0)) is defined as complex(0.0,0.0) because the principal
value © for complex(0.0, 0.0) equals 0.0 as defined in Table 9. The result of polar(ComplexInf)
is defined as complex(Inf, Inf). Therefore, if z equals complex(0.0,0.0) or ComplexInf, the equality
of z = polar(real(polar(z)), imaginary(polar(z))) will still be satisfied. Like a real function, the
square root of ComplexInf is ComplexInf.

As a real function, exp(Inf) = Inf whereas exp(—Inf) = 0.0. However, both values of +Inf
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Table 10: Results of complex functions for complex(0.0,0.0), ComplexInf, and ComplexNaN.

function z value and results
complex (0.0, 0.0) ComplexInf ComplexNaN
sizeof(z) 8 8 8
abs(z) 0.0 Inf NaN
real(z) 0.0 NaN NaN
imaginary(z) 0.0 NaN NaN
conjugate(z) complex (0.0, 0.0) ComplexInf ComplexNaN
polar(z) complex(0.0, 0.0) ComplexInf ComplexNaN
sqrt(z) complex (0.0, 0.0) ComplexInf ComplexNaN
exp(z) complex(1.0,0.0) ComplexNaN ComplexNaN
log(z) ComplexInf ComplexInf ComplexNaN
log10(z) ComplexInf ComplexInf ComplexNaN
ceil(z) complex(0.0,0.0) ComplexInf ComplexNaN
floor(z) complex (0.0, 0.0) ComplexInf ComplexNaN
modf(z, &z2) | complex(0.0,0.0)  complex(0.0,0.0) ComplexNaN
72 complex (0.0, 0.0) ComplexInf ComplexNaN
frexp(z, &z2) | complex(0.0,0.0) ComplexInf ComplexNaN
22 complex (0.0, 0.0) complex(0.0,0.0) ComplexNaN
ldexp(z, z2) complex(0.0, 0.0) ComplexInf ComplexNaN
sin(z) complex (0.0, 0.0) ComplexNaN ComplexNaN
cos(z) complex(1.0,0.0) ComplexNaN ComplexNaN
tan(z) complex(0.0,0.0) ComplexNaN ComplexNaN
Note: tan(complex(n/2 + k * 7,0.0)) = ComplexInf
asin(z) complex(0.0, 0.0) ComplexInf ComplexNaN
acos(z) complex(pi/2, 0.0) ComplexInf ComplexNaN
atan(z) complex(0.0,0.0) complex(pi/2, 0.0) ComplexNaN
Note: atan(complex(0.0,£1.0)) = ComplexInf;
atan(ComplexInf, k) = complex(pi/2 + kx*pi, 0.0)
sinh(z) complex (0.0, 0.0) ComplexNaN  ComplexNaN
cosh(z) complex(1.0,0.0) ComplexNaN ComplexNaN
tanh(z) complex (0.0, 0.0) ComplexNaN ComplexNaN
Note: tanh(complex(0.0,7/2 + k * 7)) = ComplexInf
asinh(z) complex(0.0, 0.0) ComplexInf ComplexNaN
acosh(z) complex(0.0, pi/2) ComplexInf ComplexNaN
atanh(z) complex(0.0,0.0) complex(0.0, pi/2) ComplexNaN

Note: atanh(complex(+1.0,0.0)) = ComplexInf;
atanh(ComplexInf, k) = complex(0.0, pi/2 + kxpi)
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Table 11: Results of the function complex(x, y) for 0.0, £00, and NaN.

complex(x, y)

x value y value
—Inf -yl 0.0 y2 Inf NaN
Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
x2 ComplexInf complex(x2, —y1) complex(x2, 0.0) complex(x2, y2) ComplexInf ComplexNaN
0.0 ComplexInf  complex(0.0, —y1) complex(0.0, 0.0) complex(0.0, y2) ComplexInf ComplexNaN
—x1 ComplexInf complex(—x1, —yl) complex(—x1, 0.0) complex(—x1, y2) ComplexInf ComplexNaN
—Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
NaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN
Table 12: Results of the function polar(r, theta) for 0.0, £o00, and NaN.
polar(r, theta)
r value theta value
—Inf —thetal 0.0 theta2 Inf NaN
Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
r2 ComplexNaN polar(r2, —thetal) complex(r2, 0.0) polar(r2, theta2) ComplexNaN ComplexNaN
0.0 ComplexNaN complex(0.0, 0.0)  complex(0.0, 0.0) complex(0.0, 0.0) ComplexNaN ComplexNaN
—rl ComplexNaN polar(—rl, —thetal) complex(—rl, 0.0) polar(—rl, theta2) ComplexNaN ComplexNaN
—Inf ComplexInf ComplexInf ComplexInf ComplexInf ComplexInf ComplexNaN
NaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

become ComplexInf if they are cast into complex numbers. Therefore, the complex exponential
function exp(z) is ComplexNaN when the input argument is ComplexInf. The complex logarithmic
function log(z) with the input argument of complex(0.0,0.0) or ComplexInf will return ComplexInf.
With complex metanumbers as their input arguments, the real and imaginary parts of functions
ceil(z), floor(z), and ldexp(zl, z2) are handled equivalent to two individual real functions. Like
real functions, the complex trigonometric functions sin(z), cos(z), and tan(z) are undefined when
the input arguments are ComplexInfs. The irrational number 7 is not representable in a computer
program. If we had the value of 7, the expression of tan(km+m/2) would return ComplexInf. Unlike
real functions, the complex inverse trigonometric functions asin(z) and acos(z) return Complex-
Infs when the input arguments are ComplexInfs. As an inverse function of tan(z), the function
atan(z,k) has different branches when the first input value is ComplexInf. According to the defini-
tion, atan(=+i) equals ComplexInf. The results of complex hyperbolic functions sinh(z), cosh(z),
and tanh(z), and complex inverse hyperbolic functions asinh(z), acosh(z), and atanh(z) are im-
plemented similar to those of complex trigonometric functions and complex inverse trigonometric
functions.

The results of the complex construction function complex(x,y) are given in Table 11.  For
constructing a complex number, if either its real or imaginary part is NaN, the result is a com-
plex Not-a-Number. Likewise, if either one is a value of +o00, the result is ComplexInf. For the
function polar(r, theta) shown in Table 12, when the modulus is infinitely large, the resultant
complex number is ComplexInf even if the provided argument of a complex number is infinity,
which is compatible with the result of polar(ComplexInf) = complex(Inf, Inf). This also follows
the rule that, through complex arithmetic and complex functions, one shall not get a complex
number with its real or imaginary part being the value of —Inf, Inf, or NaN while the other
part is a regular real number. Like the exponential function exp(z), the function pow(z1,22) is
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Table 13: Results of the function pow(z1, z2) for complex (0.0, 0.0), ComplexInf, and ComplexNaN.

pow(zl, z2)

z1 value z2 value

complex(0.0, 0.0) z2; (Jy2| < o0) ComplexInf ComplexNaN
—00<72<0.0 x2 =0.0 0<z2<00

complex(0.0, 0.0) ComplexNaN ComplexInf ComplexNaN complex(0.0,0.0) ComplexNaN ComplexNaN
zl | complex(1.0,0.0) 232 232 27>  ComplexNaN  ComplexNaN
ComplexInf ComplexNaN  complex(0.0,0.0) ComplexNaN ComplexInf ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN  ComplexNaN ComplexNaN  ComplexNaN ComplexNaN

Table 14: Results of the function fmod(z1, z2) for complex(0.0, 0.0), ComplexInf, and ComplexNaN.

fmod(z1, z2)
z1 value z2 value
complex (0.0, 0.0) 72 ComplexInf ComplexNaN
complex (0.0, 0.0) ComplexNaN complex(0.0,0.0) complex(0.0,0.0) ComplexNaN
zl ComplexNaN fmod(z1,22) z1 ComplexNaN
ComplexInf ComplexNaN ComplexNaN ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN

undefined when the second argument is ComplexInf as is shown in Table 13.  When the imag-
inary part y2 of z2 is a finite value, the results of the function depends on the value of its real
part x2 when the value of z1 is complex(0.0, 0.0) or ComplexInf. Like the real function, the follow-
ing expressions pow(complex(0.0,0.0), complex(0.0,0.0)), pow(complex(0.0,0.0), complex(0.0,y2)),
pow (ComplexInf, complex(0.0,0.0)), and pow(ComplexInf, complex(0.0,y2)) are ComplexNaN.
Because pow(0.0, Inf) = 0.0 and pow(0.0, —Inf) = Inf, and both Inf and —Inf are considered as
ComplexInf, pow(complex(0.0,0.0),ComplexInf) is defined as ComplexNaN. The results of function
fmod(z1,2z2) for complex metanumbers are given in Table 14.

5 Lvalue Related to Complex Numbers

As defined before that a lvalue is any object that occurs on the left hand side of an assignment
statement. The valid lvalues related to complex numbers are listed in Table 15. The assign-
ment operations +=, -=, *=, /= as well as increment operation ++ and decrement operation —-
described in (Cheng, 1993) can be applied to all these lvalues. Besides the simple variable in case
(1), an element of a complex array can be a lvalue which is case (2) in Table 15. In case (3), pointer
to complex is used as a lvalue to get the memory or to point to a memory of a complex object. In
case (4), the memory pointed to by the pointer zptr is assigned the value of the expression on the
right hand side of an assignment statement. In addition to a single pointer variable, one can have
an array of complex pointers. Cases (5) and (6) show how an element of a complex pointer array
is used to access the memory. The function real() cannot only be used as a rvalue or an operand,
but also used as a lvalue to access the memory of its argument. In case (7), the argument of real()
must be a complex variable, or address pointed to by a complex pointer or pointer expression. A
constant complex number or expression can be used as an input argument of the function real()
only when it is a rvalue or an operand. In case (8), the imaginary part of a complex is accessed by
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Table 15: The valid lvalues related to complex numbers.

Meaning of lvalue

Example

simple variable

z = complex(1.0, 2);

2 an element of a complex array zarray[i]l = complex(1.0, 2)+ ComplexInf;

3 complex pointer variable zptr = malloc(sizeof (complex) * 3;
zptr = &z;

4 address pointed to by a complex variable *zptr = complex(1.0, 2) + z;

5 an element of a complex pointer array zarrayptr[i] = malloc(sizeof (complex) * 3;
zarrayptr[i] = &z;

6 address pointed to by an element of a complex pointer array | *zarrayptr[i] = complex(1.0, 2);

7 real part of a complex variable real(z) = 3.4;

real part of a complex variable
real part of a complex variable
real part of a complex variable
8 imaginary part of a complex variable
imaginary part of a complex variable
imaginary part of a complex variable
imaginary part of a complex variable

real (¥zptr) = 3.4;

real (*(zptr+1)) = 3.4;

real (¥zarrayptr[il) = 3.4;
imaginary(z) = complex(1.0, 2);
imaginary (¥zptr) = 3.4;
imaginary (*(zptr+1)) = 3.4;
imaginary (¥zarrayptr[i]) = 3.4;

9 float pointer variable fptr = &z;
fptr = zptr;
pointer to real part of a complex variable *fptr = 1.0;

pointer to imaginary part of a complex variable *(fptr+l) = 2.0;

the function imag() in the same manner as the function real(). Since a complex number occupies
two floats internally, this memory storage can be accessed not only by the functions real() and
imag(), but also by a pointer to float as is shown in case (9) where the variable fptr is a pointer
to float. For cases (7)-(9), a real number, including +0.0, +Inf, and NaN, on the right hand side
will be assigned to lvalue formally without filtering. Therefore, abnormal complex numbers such as
complex(Inf, NaN), complex(Inf,0.0), etc. may be created. For example, two Ch commands real(z)
= NaN and imag(z) = Inf make z equal to complex(NaN,Inf); and real(z) = —0.0 and imag(z)
= NZero gives z the value of complex(—0.0, —0.0).

6 Creation of User’s Complex Functions

User’s complex functions in Ch can be created in the spirit of ANSI C, which will be demon-
strated by the computation of the gamma function I'(z). I'(z) can be defined by the integral

o
['(z) = / t*~letdt (3)
0
One of approximation formulas for the function I'(z) derived by Lanczos (1964) is as follows

180091 50532
D(2) = (s + 4.5)" 05 (+45) /o7 (1.0+ 76.18009173  86.50532033

z+1
24.01409822 B 1.231739516  0.120858003¢e — 2 B 0.536382¢ — 5 + e) _ @)
z+2 z+3 !

z+4 z+5

with the error smaller than |¢| < 2 * 10710, The above formula is valid for the complex gamma
function in the half complex plane of real(z) > 0. To avoid the overflow, log(I'(z)) rather than
['(z) is usually computed. For example, the logarithm of the above approximation formula for
the gamma function with a float argument has been programmed by Press et al (1990) in C. The
complex version of the logarithm of the gamma function can be easily programmed in Ch as follows.
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complex gammalog(complex z)
{
complex zz, sum;
sum = 1.0 + 76.18009173/z - 86.50532033/(z+1) + 24.01409822/(z+2)
-1.231739516/(z+3) + 0.120858003e-2/(z+4) -0.536382e-5/(z+5);
zz = (z-0.5)*1log(z+4.5) - (z+4.5) + log(sqrt(2*pi)*sum);
return zz;

}
Using the above programmed external gamma function, the commands of

printf("gammalog(-2) = %f \n", gammalog(-2));
printf ("gammalog(complex(1,2)) = %f \n", gammalog(complex(1,2)));
printf("gammalog(2) = %f \n", gammalog(2));

will produce the following output.

gammalog(-2) = complex(Inf,Inf)

gammalog(complez(1,2)) = complez(-1.876079,0.129647)

gammalog(2) = complez(0.000000,0.000000)

Note that the Gamma function gets ComplexInf at the singular point —2. For a real argument
as in gammalog(2), the complex gamma function returns a complex number with an identically
imaginary zero.

7 Rationale behind Ch

This section will provide rationales for some of scientific programming features of Ch. The
following philosophies guided me through the design and implementation of language features pre-
sented in this paper and the companion paper (Cheng, 1993).

1. Follow conventional mathematics; define values for all operations and functions over the entire
domain;

2. Preserve ANSI C and Fortran styles. The interpretation will follow C whenever there is a
syntax conflict.

3. Make language easy to use.
4. Make language easy to implement.

These principles are reflected in many features of the Ch programming language. Some features like
polymorphism of built-in functions and optional arguments for multiple-valued complex functions
are obvious. Others are less obvious and even contentious, which are briefly explained in the
following discussions.

7.1 No Unanticipated Complex Values

Unlike conventional languages, there is no reserved words in Ch. The keyword changeability
in Ch makes the language very flexible. Ch is a programming environment, it can be configured
at the programmer’s discretion. Whenever appropriate, the decision in Ch will be made by the
programmer, not the language implementor. This policy is also reflected in features related to
complex numbers.
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In some programming languages like Common Lisp and software packages such as Mathematica
and MATLAB, values are typed, but variables are typeless. As a result, a function could return
different data types even with same data types for input arguments. For example, a square root
function may return a real value at one point as in sqrt(9.0) = 3.0 and may return a complex value
at other point as in sqrt(—9.0) = —43. In Ch, if x is a negative real number, function sqrt(x) will
return NaN as described in (Cheng, 1993). At the first sight, their policy seems more generous than
Ch’s because functions like sqrt() can deliver some meaningful results. But, numerical computation
experiences indicate that typeless variable is not a good language design for scientific programming
as demonstrated by Kahan (1992). For example, the unanticipated creation of complex results
due to roundoff errors in solving a nonlinear equation may not allow a numerical algorithm to find
solutions in real numbers. Another serious problem for typeless languages such as MATLAB is that
all computations are performed in double precision, which is apparently not applicable for many
applications as discussed in (Cheng, 1993).

Following the lead of Fortran and C in scientific programming, Ch is also designed as a loosely
typed language. Different data types can be mixed in arithmetic operations according to built-in
data conversion rules as described in section 2.2. Unlike C, its standard mathematical functions
can only return double value, functions in Ch can deliver different data types. But, the output
data type of a function is still deliberated by the application programmer through the data types
and numbers of the input arguments polymorphically. Extending definition of functions beyond
their valid domains is the programmer’s responsibility. The decision whether an expression delivers
a real value or complex value are made by the application programmer, not by the Ch language
implementor, which can be illustrated by numerically solving the quadratic equation 22 +2z+2 = 0.
In (Cheng, 1993), we have shown that, if the results are restricted to real numbers, the solutions
to this equation is NaNs. With a little modification, the following Ch program

complex root[2], al;

float a,b,c;

al=1; a=1; b =2; c = 2;

root[0] = (-b+sqrt(bxb-4*aixc))/(2*a);

root[1] = (-b+sqrt(b*b-4*alxc, 1))/(2*a);
printf("Solutions are %f and %.1f \n", root[0], root[1]);

will produce the output

Solutions are complez(-1.000000,1.000000) and complez(-1.0,-1.0)

Comparing with the program in (Cheng, 1993), one can see that integral value of 1 assigned to
the complex variable a; is first cast to complex(1.0,0.0) internally. The complex variable a1 then
promotes the argument of sqrt() to a complex value, which finally results in a complex square root
function in the calculation of r00t[0] . The complex result in root[1] is achieved by switching the
mode of function sqrt() through its auxiliary second argument directly.

7.2 Deliver Correct Numerical Values or NaN/ComplexNaN

In many computer systems, if operations such as 1/0.0 and sqrt(—9.0) are encountered, a
computer program will be halted and the system will invoke exception routines to report invalid
instructions such as division by zero or domain error. In Ch, to ensure the correct flow of a program,
all instructions will be executed. However, If a computer program at one point can deliver a
correct numerical result while at other point it may deliver an erroneous result, the user will lose
his/her confidence in the computer program immediately. To guarantee the delivery of correct
numerical results, mathematically indeterminate expressions are defined as NaN in real operations
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and ComplexNaN in complex operations in Ch. For example, 0° is defined as NaN in Ch. If 0°
is otherwise defined as 1 as suggested in (Kahan, 1986; Thomas, 1993), the expression of pow(x,
1/log(x)) with z = 0 would deliver 1.0; whereas lim,_,oz'/1°8(®) is e according to mathematical
analysis. The result of ComplexNaN for exp(ComplexInf) is another example. In general, all
built-in operations and functions in Ch will either deliver correct numerical results or NaN in real
numbers and ComplexNaN in complex numbers if they are mathematically indeterminate.

7.3 Programming Complex Numbers over the Extended Finite Complex Plane

Most textbooks avoid issues related to complex infinity (Churchill and Brown, 1984; Marsden,
1973). Likewise, all currently existing general-purpose computer programming languages do not
have provisions for consistent handling of complex infinity. For example, the recent proposed stan-
dard for Ada only spells out the behaviors when the absolute values for both real and imaginary
parts of a complex number are less than or equal to FLT MAX. In an effort to extend the IEEE
754 standard to complex arithmetic, Kahan (1986) and Tydeman (1991) explored the handling
of complex numbers with components of £0.0, 200, and NaN. In their proposed complex system,
complex numbers are manipulated in the Cartesian plane, somewhat similar to the implementation
of mathematical software package MATLAB. Pairs of real numbers such as (+Inf,y) and (z, +Inf)
with —Inf < z < Inf and —Inf < y < Inf are considered as valid complex numbers. It is true
that these values can be represented by two floating-point data in a computer program. But, they
are in conflict with the convention of mathematics in many situations. For example, according to
complex analysis, there is only one complex infinity in an extended complex plane which corre-
sponds to the north pole of the Riemann sphere as shown in Figure 1. Addition of two complex
infinities is indeterminate and division of complex infinity by zero is complex infinity. Ch is in
full compliance with mathematical conventions regarding complex numbers. Therefore, (Inf, Inf)
+ (Inf, Inf) is defined as (NaN, NaN) and (Inf, Inf)/(0.0, 0.0) as (Inf, Inf) in Ch. However, if
real and imaginary parts of a complex number are treated as two completely separate objects,
according to the arithmetic operation rules given in Table 1, (Inf, Inf) + (Inf, Inf) will become
(Inf,Inf) and (Inf,Inf)/(0.0,0.0) will become (NaN, NaN) as given in (MathWorks, 1990; Tydeman,
1991). Similarly, according to complex analysis, complex numbers such as (NaN, NaN), (NaN, y),
(x, NaN), (Inf, NaN), (NaN, Inf), (Inf, y), and (x, Inf), (—Inf, NaN), (NaN, —Inf), (—Inf, y), and
(x, —Inf) are not valid complex numbers. Therefore, complex operations and complex functions in
Ch shall not produce these abnormal complex numbers. We try to make Ch simple. In Ch, there
is no negative NaN because not-a-number is not a number as is discussed in (Cheng, 1993). For
the same reason, there is no need for having so many different formats of complex-not-a-number
although these formats can be stored in complex data. There are serious problems for allowing
existence of these abnormal complex data in a computer program. For example, let z = 0 4 700, if
one attempts to get z * z = —oo + i0, the result may end up with complex(0.0, Inf)*complex(0.0,
Inf) = complex(—Inf, NaN), not complex(0.0, Inf)*complex(0.0, Inf) = complex(—Inf, 0.0) (Ka-
han and Thomas, 1991). After getting numerous such surprising results during the testing of the
implemented Ch complex features, we decided to use ComplexInf and ComplexNaN in Ch. These
two complex metanumbers make the implementation of a whole complex system much simpler. In
Ch, there is only one Complex-Infinity in the extended finite complex plane and one Complex-
Not-a-Number, which follows mathematical conventions with respect to the complex number and
Riemann sphere. This will avoid the delivery of a complex number with its real or imaginary part
being Inf, —Inf, or NaN while the other part has a different value in complex operations and com-
plex functions. The rules for coercion of two real numbers into ComplexInf and ComplexNaN are
given in Table 11. The only way to get abnormal complex numbers such as complex(Inf, NaN) is by
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assigning real metanumbers to the address of a float pointer variable which points to the memory
of a complex variable, or use functions real(z) and imag(z) as lvalues, as shown in section 5. The
memory accessibility, which is inherited from C, makes many impossible tasks in other languages
possible in Ch.

7.4 Distinguish —0.0 from 0.0 in Real Numbers, not in Complex Numbers

In the domain of real numbers, there are +Inf and +0.0 which are very useful for scientific
programming as is shown in (Cheng, 1993). Shall the sign of zeros also be honored in complex
numbers as in real numbers. The immediate answer seems to be “yes”. As illustrated by Kahan
(1986), the sign of zeros can be useful in complex numbers, especially for handling of branch cuts of
multiple-valued complex functions. Indeed, we tried to implement complex operations and complex
functions which would treat 0.0 and —0.0 as two different objects. It turns out that , if 0.0 and
—0.0 were treated as two different objects as in real numbers (Cheng, 1993), not only would the
implementation of the language become a very difficult task, but also programming of the language
would be very tedious. The programmer would have to struggle with the sign of zeros. It would be
almost impossible to write a program without constantly consulting a manual because everything
would be so complicated. The programmer may lose the sight of the forest for trees. For example,
the square root of the complex zero is only defined as sqrt(complex(0.0,0.0)) = complex(0.0, 0.0)
in Ch, irrespective of the sign of zeros. The same function in a language with the sign of zeros being
respected may be defined as sqrt(complex(0.0, 0.0)) = complex(0.0, 0.0), sqrt(complex(—0.0, 0.0))
= complex(0.0, 0.0), sqrt(complex(0.0, —0.0)) = complex(0.0, —0.0), sqrt(complex(—0.0, —0.0))
= complex (0.0, —0.0) as is listed in (Squire, 1991a), depending on the implementation. As one can
see that, for a function with multiple input arguments, the definition will be even more complicated.
Although the proposed standard for Ada provides some guidelines for handling the sign of zeros
in complex numbers, many critical issues related to the implementation of such a system have not
been addressed in the documentations.

Implementing complex data with a respected sign of zeros is not as easy as in real numbers.
There are some tradeoffs have to be compromised. In the spirit of ANSI C, real numbers and com-
plex numbers can be mixed in arithmetic operations and elementary functions in Ch. For example,
r+complex(x, y) becomes complex(r+x, y+0.0) in Ch at its current implementation. For the con-
venience of implementation, a real number is first coerced into a complex number with a zero imag-
inary part prior to addition operation. If y is —0.0, its sign will be coerced such that r+complex(x,
—0.0) becomes complex(r+x,0.0). The minus sign of y will be lost in the addition operation,
and other arithmetic operations and functions. The sign of a zero has a serious affect on results.
For example, sqrt(complex(—4.0, —0.0) = complex(0.0, —2.0) whereas sqrt(complex(—4.0,0.0) =
complex(0.0,2.0) in a complex system with signed zeros. Of course, there is no difficulty to imple-
ment the addition of a real number and a complex number in r+complex(x, y) as complex(r+x,
y) without data coercion so that the sign of the imaginary part of the complex number will be
preserved. But, how do we handle arithmetic operations for a pair of imaginary and complex num-
bers? Most computer languages such as Fortran, Ada, Common Lisp, etc. treat a complex number
as a pair of real numbers. An imaginary number z = iy is conventionally represented as a complex
number complex (0.0, y) or (0.0, y) in a computer program, i.e., an imaginary number is treated as
a complex number with zero real part both internally and externally. Such handling of imaginary
numbers cannot prevent data coercions. Hence, in order for a language to effectively handle the
sign of zeros in a complex system, a new imaginary data type is needed (Kahan and Thomas, 1991),
which will result in a completely new syntax and semantics of the language. The new language will
have a style different from ANSI C and Fortran. For example, a complex number will be created
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by x +4*y where ¢ is an imaginary data; multiplication of an imaginary number and a real number
delivers an imaginary number, and addition of (real)+(imaginary) will be promoted to a complex
number rather than actually add two operands. This kind of language is not difficult to implement;
but, experienced C programmers will have to be adapted to a new language paradigm. To preserve
the ANSI C and Fortran styles and ease the implementation and programming, we choose to do
not distinguish 0.0 from —0,0 for complex numbers in Ch. This is why 0.0 and —0.0 in relational
operations in Ch are considered the same in Ch (Cheng, 1993). Otherwise, they would be regarded
as two different objects in comparison operations because, in real operations and real functions,
the sign of zeros does make a difference.

It should be pointed out in passing that, in Fortran, a complex number is represented as a pair
of real numbers. For example, (3.0, 4.0) in Fortran stands for 3.04i4.0. This representation of a
complex number is intentionally avoided in the design of Ch because not only complex number,
but also dual number are basic data types in Ch. A dual number also consists of a pair of real
numbers. A dual number is defined as z + ey with €2 = 0. For consistent handling of aggregate
data types, complex and dual numbers are created by complex constructor complex() and dual
constructor dual(), respectively. These data constructors are also refereed to as explicit type
conversion functions. Details about the handling of dual number and its applications in mechanical
systems analysis and design can be found in (Cheng, 1993b).

In Ch, the rules for the determination of the sign of a zero resultant when it is produced and
rules for the use of the sign of a zero operand or argument have been spelled out for real numbers
in (Cheng, 1993). Although the sign of zeros are not honored in complex numbers in Ch, the sign
of zeros will be carried over when signed zeros of real numbers are converted to complex numbers
either implicitly or explicitly. For the convenience of implementation, many complex operations
and functions are implemented through real operations and real functions which treat —0.0 and 0.0
as two different objects. For example, the Ch expression complex(—0.0, —0.0)+ complex(0.0, —0.0)
actually delivers complex(0.0, —0.0). In many applications, real and imaginary parts of a complex
zero are used as real numbers for real operations. It seems that it is necessary to keep track of
the sign of complex zeros when it is generated. However, to make programmers’ life easier, when
—0.0 of real or imaginary part of a complex value is coerced into a real number either implicitly
or explicitly, the sign of a zero will be discarded as described in section 2.2, which simplifies mixed
mode application significantly. The programmer shall not worry about the sign of each complex
zero delivered by complex operations and complex functions. However, if one must carry the sign of
a zero in a complex value over to a real number, pointing a pointer-to-float to the memory location
of the complex variable can achieve this goal.

Real numbers have two infinities +o0c and —oco, and the origin in a real line can be approached
through both positive and negative directions represented by 0.0 and —0.0, respectively. Unlike
real number, there is only one complex infinity and the origin of the complex plane can be reached
in any directions in terms of the limit value of lim,_,qre® where r is the modulus and @ is the
phase of a complex number in the range of —7 < 8 < 7. Therefore, it seems that distinction of
the sign of zeros only along the real and imaginary axes does not make much sense. If the origin
is approached from directions other than the Cartesian coordinate axes, points in the complex
plane will be obtained by functions like polar(r, theta) instead of complex(x, y); then, roundoff
errors introduced in the computations of polar(r, theta) and other operations and functions will
overpower the sign of zeros. If the one-to-one correspondence between the origin and infinity of the
complex plane is concerned, there is certainly no need for recognition of the sign of zeros.
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7.5 The Principal Value O lies in the Range of -1 <0 <7

But, unlike complex operations, complex functions are much more complicated than real func-
tions. It is branch cuts that make complex functions so complicated. The sign of zeros can play
a role in the computation of complex functions along branch cuts. There is a general consensus
about where the slits should be placed for commonly used complex mathematical functions (Pen-
field, 1981; Kahan, 1986; Steele, 1990; Squire, 1991a,b). The slits for functions sqrt(), log(), and
pow() are along the negative real axis. The slits for asin(), acos(),and atanh() are the real axis
excluding the segment between —1 and 1. Similarly, the slits for functions atan() and asinh() lie
on the imaginary axis not between —i and i. The slit for function acosh() is along the real axis
where z < 1. Since all slits of elementary functions lie on either the real or imaginary axis, Kahan
(1986) proposed that every point z along a slit be represented in two ways: once with a +0.0 and
once with —0.0 for whichever the real and imaginary parts of z vanishes. This can be easily achieved
by the complex constructor such as complex(x, £0.0) or complex(+£0.0, y) in Ch. Accordingly, the
principal value © of the argument of a complex number should be in the range of —7 < © < 7.
Although defining the principal value © in this range is not conventional, it does provide a nice
treatment for branch cuts, especially, many identities for real numbers can be preserved for complex
numbers along slits as well. But, if a slit does not lie on the Cartesian coordinate axis, such as
in the conformal map dz/dw = (w + «)/(w? — ) or z = w?/(1 — B) with @ > 0 and 0 < 8 < 1
(Kober, 1957), the roundoff errors will be inevitably introduced during computations so that the
sign of zeros intended for handling the slits can be easily lost. In the situation like this, there is no
payoff for the distinction of 0.0 and —0.0.

The handling of branch cuts in Ch is similar to what was proposed for APL by Penfield (1981).
On the branch cut, the function is “clockwise continuous” in the sense that the discontinuity associ-
ated with the branch cut occurs just below or left of the cut so that the function is continuous with
values above or right of the slit. Under this treatment of branch cuts, the principal value of the
argument of a complex number will be in the range of —7m < ©® < 7, which follows the convention
of mathematics (Churchill and Brown, 1984; Marsden, 1973). In Ch, there is no distinction of
0.0 and —0.0 for components of a complex number, every point z on a slit is represented with 0.0
or —0.0 for whichever of the real and imaginary parts of z vanishes. The discontinuity of a slit
along the real axis can be represented by setting the imaginary component of a complex number
to —FLT_MINIMUM or —FLT_MIN which are the maximum denormalized and normalized nega-
tive numbers (Cheng, 1993), respectively, depending on if the computer system is in conformance
with the IEEE 754 standard or not. If it is an IEEE machine, —FLT_MINIMUM can be used;
otherwise, FLT_MIN should be used. Similarly, the discontinuity of a slit along the imaginary axis
can be treated by setting the real part of a complex number to —FLT_MINIMUM or —FLT_MIN.
For example, the principal value of Log(z) = log(v/z? + y?) + i© can be obtained by log(z) or
log(z,0) in Ch as given in Table 8. This logarithm function is a single-valued function defined
over the extended finite complex plane. This single-valued function is not analytic in its domain
r>0,—1 < © < 7. When z lies on the negative real axis with z =complex(—z, +0.0), © is ;
whereas just below the real axis of FLT_MINIMUM, i.e., z =complex(—z, —FLT_MINIMUM), ©
is near —m. For example, log(complex(—1.0, —FLT_-MINIMUM)) becomes complex(0.0, —pi). Due
to the finite representation, the system constant pi will be used in Ch. When —7 < © < 7, each
branch of a multiple-valued function will have unique value. For example, in Ch, log(complex(—1.0,
0.0)) = complex(0.0, ) and log(complex(—1.0, 0.0), 1) = complex(0.0, 3 * 7). If the sign of zeros
was respected and —7 < © < , the above expression would be evaluated as log(complex(—1.0,
0.0)) = complex(0.0, ), log(complex(—1.0, —0.0)) = complex(0.0, —7), log(complex(—1.0, 0.0),
1) = complex(0.0, 37), and log(complex(—1.0, —0.0), 1) = complex(0.0, 7). Different branches
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log(complex(—1.0, 0.0)) and log(complex(—1.0, —0.0), 1) would have the same result of com-
plex(0.0, 7).

In Ch, all familiar identities will be satisfied in the domain where the concerned functions in
an identity are analytic. Some identities will not hold if the values of functions lie on the slit. For
example, log(1/z) = — log(z) will not be valid if z is on the negative real axis because log(1/(—z)) =
Log(1/z) + im = —Log(x) + im, whereas —log(—z) = —Log(z) — im. As another example, entire
functions like 22 +1 and sin(z) satisfy the reflection identity of w(Z) = w(z) over the extended finite
complex plane, but not functions like z2 4+ 1 and iz. The Principle of Reflection requires that the
function w(z) be analytic in its domain in order to hold the identity of w(Z) = w(z) (Churchill and
Brown, 1984). Indeed, identities like sin(z) = sin(z) and 2 + 1 = 22 + 1 are valid in Ch over the
extended finite complex plane, including z = ComplexInf and z = ComplexNaN. But, the identity
of v/Z = y/z may not hold if z < 0 because the square root function has a slit along the negative
real axis. For comparison, if a complex system distinguishs 0.0 from —0.0 with —7 < © < 7,
these two identities can be preserved along the slits (Kahan, 1986). However, if identities along
slits really matter, Ch has mechanisms for these equivalent identities. Using the above examples,
if z < 0, the following two Ch identities along the slits are valid: conj(sqrt(complex(—z,0.0),k) =
sqrt(conj(complex(—z,0.0)),k — 1), log(1/complex(—z,0.0), k) = — log(complex(—z,0.0), —k —
1)) where k is an integral value as a branch indicator. However, programmers are cautioned that the
Ch expression
conj(sqrt(complex(—z,0.0),k) == sqrt(conj(complex(—z,0.0)),k — 1) will always evaluate to
TRUE whereas log(1/complex(—z,0.0), k) == — log(complex(—z,0.0), —k — 1)) may not return
TRUE because of roundoff errors as in any other computer languages. As demonstrated in these
examples, values of different branches of a multiple-valued function can be easily obtained in Ch.

If one wants to distinguish —0.0 from 0.0 in complex numbers and place © in the range of
—7m < © < 7, he/she can achieve this objective through Ch’s real operations and real functions
in which the sign of zeros is respected and real function atan2() will readily provide the value for
©. Although the programmer cannot directly access the function overloading features in Ch at
its current implementation, one can replace built-in mathematical functions by external functions
through functions addkey(), chkey(), and remkey() (Cheng, 1993). For this experimentation
purpose, when real() and imag() are used as lvalues, the sign of zeros of rvalues will be honored as
described in sections 2.2 and 5. Program examples using real() and imag() as lvalues with signed
zeros will be given in section 7.7.

7.6 F(z+1i0) = F(z) +140, If z Is within the Valid Domain of F(z)

Taking roundoff errors into consideration, the sign of zeros in complex number appears an
accuracy issue. In many cases, the fiddling of £0.0 in the proposed complex system (Kahan, 1986)
and fiddling of £FLT_MINIMUM or +FLT_MIN in Ch have essentially the same perturbation
effect. Most important for a complex system is to preserve the correct sign for the results of complex
operations and functions so that an intended branch of a multiple-valued function can be invoked.
If a language is not carefully implemented, the sign of zeros and FLT_MINIMUM both can be lost.
From a language implementation point of view, preserving the sign of a result is less demanding than
preserving both sign and zero in complex operations and complex functions. It is even more true
from an application programmer’s point of view. In modern languages such as Fortran, Common
Lisp, and proposed complex systems (Kahan, 1986; Tydeman, 1992), some commonly used complex
functions are defined or implemented in terms of other complex operations and complex functions.
This is not only computationally inefficient, but also may introduce some potential errors. For
example, atan(x+i0.0), ideally, should deliver a result whose imaginary part is identically zero. If
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it is implemented in terms of complex operations and complex functions, due to roundoff errors
of the complex implementation, its imaginary part may not be identically zero. Propagation of
this non-zero imaginary part may lead to severe problems near branch cuts. Complex operations
and functions in Ch are defined in the conventional mathematical forms. No function is defined
in terms of complex trigonometric and hyperbolic functions. Although formulas given in Tables 1
and 8 may not be the direct implementation, they do indicate that all operations and functions in
Ch are achieved through real operations and real functions. Quite a few algorithms for complex
operations and complex functions are available [4,7,11,12, 13,14,17,18, 23,25,30,32,34,38]. But, due
to the unique design of the Ch programming language, some of these algorithms have to be slightly
modified. The detailed description of the implementation of algorithms used in Ch is beyond the
scope of this paper. A point should be made is that a complex number in Ch is stored internally in
a Cartesian format rather than in a polar form which involves trigonometric functions. When the
imaginary part of a complex operand or a complex argument is identically zero, Ch will deliver a
complex result with an identically zero imaginary part, if mathematically possible, as demonstrated
in section 6. As another example, the computation of sqrt(complex(0.0,0.6) — 6xcomplex(6, 0.1))
will surely deliver complex(0.0, 6.0) with identically zero real part, not complex(0.0, —6.0). Ch
is designed to be deterministic. There is no fuzzy around branch cuts. Essential to the built-in
complex functions are the principal phase angle ®. When a point z = x + 4y lies slightly below
the negative real axis, © is —pi so long as y in the Ch expression y < -FLT_MINIMUM evaluates to
TRUE, which is critical for many multiple-valued functions with branch cuts.

7.7 Application Examples Involving Branch Cuts

So long as built-in complex operations and complex functions are appropriately implemented,
complicated problems can be solved using these language primitives. This section will be concluded
by solving two complex conformal map problems. Kahan (1986) showed that these two problems
are difficult to handle by a computer language which does not respect the sign of zeros in complex
numbers. Through these two interesting examples, we will illustrate how Ch which does not respect
the sign of zeros in complex numbers can conveniently solve complex problems which involve branch
cuts. We will also demonstrate how to handle signed zeros in complex numbers in a Ch program.
Example 1

The first example is the conformal map w(z) = z — iv/iz + 1v/iz — 1 which maps the complex
z—plane of z = = + 4y onto the w-plane of w = u + iv. Note that function w(z) has a slit along the
imaginary axis from —i to ¢ which will be mapped onto the unit circle |[w| = 1. Vertical lines in the
z-plane are mapped to the stream-lines of a vertical flow around the unit circle in the w-plane. A
Ch program that can calculate stream-lines in the w-plane is given below:

FILE *stream; complex i, z, w; float x, y;
stream = fopen("diskflow.out","w");

i = complex(0,1); x = -0.5;

while(x <= 0.5)

{
y = -1.5;
while(y <= 1.5)
{
z = complex(x, y);
w =2z - ix sqrt(i*z+1)*sqrt(i*z-1);

fprintf (stream, "%f %f \n", real(w), imaginary(w));

26



Harry H. Cheng Scientific Programming, Vol. 2, No. 3, Fall, 1993, pp. 76-106.

vy

-3 -2 =1 1 2 3

o
u(x,y)
Figure 3: The flow around an unit disk without x = —FLT _MINIMUM.

y += 0.01;
}
x += 0.1;
}

fclose(stream);

The program runs vertical lines in the z-plane with y from —1.5 to 1.5 and z from —0.5 to 0.5,
both at the interval of 0.1. The stream-lines in the w-plane through the output file diskflow.out
produced by execution of the above Ch program is shown in Figure 3. Note that the slit —1 < 22 < 0
is mapped to the right-hand arc of the circle by w =iy —i/—y +1\/—y — 1= —iy+ /—y?+ 1=
4 + 4v. In order to get the left-hand arc of the circle, the following Ch code fragment should be
added to the above program before the last statement fclose(stream).

x = -FLT_MINIMUM;

y = -1.5;
while(y <= 1.5)
{
z = complex(x, y);
W =z - ix sqrt(i*z+1)*sqrt(i*z-1);

fprintf (stream, "%f %f \n", real(w), imaginary(w));
y += 0.01;
}

With this additional vertical line x = — FLT_MINIMUM in the z-plane, the corresponding image
in the w-plane is shown in Figure 4, where the dashed line corresponds to the vertical line z = —
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Figure 4: The flow around an unit disk with z = —FLT_MINIMUM.

FLT_MINIMUM. The images in the w-plane for vertical lines z = 0.0 and x = — FLT_MINIMUM
with |y| > 1 in the z-plane are overlapped in Figure 4. Note that z = — FLT_MINIMUM in
the program can be replaced by any small negative numbers such as —FLT_MIN or —0.0001;
graphically, the result will be the same as Figure 4. It appears that the singularity of the slit along
the imaginary axis between 1 < z? < 0 is the source of the problem because, as shown in Figure 4,
the images for the segments |y| > 1 along the imaginary axis in the z-plane are well-behaved.

In the above program, if x is set to —0.0 in complex(x,y) which is equivalent to complex(0.0, y)
in a Ch program, the left-hand arc of the unit circle cannot be obtained. The picture will be the
same as Figure 3. As pointed out in section 7.5, one can experiment with signed zeros in complex
numbers in a Ch program which honors the sign of zeros of real numbers. The following program
will illustrate the handling of signed zeros in complex numbers.

FILE *stream;
complex i,z,w;
float x,y;
int sign(float f);
stream = fopen("diskflow2.out","w");
complex SQRT(complex c)
{

float *fp;

complex comp;

if (¢ == ComplexInf)

return ComplexInf;
fp = (float *)&c; /# fp points the real part of ¢
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real(comp) = sqrt((abs(c)+real(c))*0.5);
imaginary(c) = sign(*++fp)*sqrt((abs(c)-real(c))*0.5);
return comp;

}
int sign(float f) /# sign() works for char, int,
/# double or complex inputs also
{
if(£<0.0 || isnegzero(f))
return -1;
else
return 1;
}
i = complex(0.0, 1.0);
x = -0.0;
y = -1.5;
while(y <= 1.5)
{
z = complex(x,y);
w = z-1*SQRT(i*z+1) *SQRT (i*z-1);
fprintf (stream, "%f %f \n", real(w), imaginary(w));
y += 0.01;
}

fclose(streamn);

When real() and imag() are used as lvalues, the sign of zeros of rvalues will be preserved. In the
above program, the sign of zeros in the complex square root function SQRT() is implemented
according to the definition given in (Friedland, 1980; Kahan, 1986; Squire, 1991b; Tydeman,

1992). The square root function is essentially defined as /r(cos %— + 4sin %—) with —7 < O < 7.
The results of complex zeros are defined as SQRT(complex(£0.0,0.0)) = complex(0.0,0.0) and
SQRT(complex(+0.0, —0.0)) = complex(0.0, —0.0). In addition, SQRT(ComplexInf) is ComplexInf
and SQRT(ComplexNaN) equals ComplexNaN. The output of the above Ch program is the file
diskflow2.out. The vertical flow in the complex w-plane mapped from the vertical line z = —0.0
in the complex z-plane is shown in Figure 5 with data from file diskflow2.out. Note that the
horizontal straight-line is introduced purely due to graphical interpolation. This straight connec-
tion line is not mapped from points in the z-plane. Although the square root function is imple-
mented with a proper design for the sign of zeros, the result is still not correct. The reason is
that the multiplication 7 * z of an imaginary number with a complex number in function SQRT ()
has coerced the sign of zeros in z as discussed in section 7.4. If we replace the statement w = =z
- i*SQRT(i*z+1)*SQRT (i*z-1) by w = z-i*SQRT (complex(1-y, -0.0))*SQRT (complex(-1-y,
-0.0)), the correct vertical flow can be obtained. The corresponding conformal map is shown in
Figure 6. According to the definitions for real operations and functions with signed zeros given
in (Cheng, 1993), the difference of these two statements can be shown by two sample points. For
point z = complex(—0.0,0.36), the Ch expression z - i*SQRT (i*z+1)*SQRT (i*z-1) is computed
as follows

w = (~0.0,0.36) — (0.0,1.0)1/(0.0,1.0)  (~0.0,0.36) + 1,/(0.0, 1.0) * (~0.0,0.36) — 1

= (~0.0,0.36) — (0.0,1.0)1/(~0.36,0.0) + 1,/(~0.36,0.0) — 1
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Figure 6: The flow around an unit disk for z = —0.0.
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= (~0.0,0.36) — (0.0,1.0),/(0.64,0.0),/(~1.36,0.0)
(~0.0,0.36) — (0.0, 1.0) * (0.8, 0.0) * (0.0, 1.166)
—  (0.933,0.36)

whereas the Ch expression z-i*SQRT (complex(1-y, -0.0))*SQRT(complex(-1-y, -0.0)) is com-
puted by

w = (~0.0,0.36) — (0.0,1.0)y/(0.64,-0.0)y/(~1.36,-0.0)
—  (—0.0,0.36) — (0.0, 1.0) % (0.8, —0.0) * (0.0, —1.166)

—  (—0.933,0.36)
For point z = complex(—0.0, —0.36), the first expression is computed as follows
w = (~0.0,-0.36) — (0.0,1.0)1/(0.0,1.0) (0.0, ~0.36) +1,/(0.0, 1.0) * (~0.0, ~0.36) —
= (~0.0,-0.36) — (0.0,1.0),/(0.36,~0.0) +1,/(0.36,~0.0) — 1
= (~0.0,-0.36) — (0.0,1.0)y/(1.36,0.0) /(—0.64, ~0.0)
—  (—0.0,-0.36) — (0.0, 1.0) * (1.166,0.0) * (0.0, —0.8)
(

—0.933, -0.36)

whereas the second expression is computed by
w = (~0.0,-0.36) — (0.0,1.0)y/(1.36,-0.0)/(~0.64,-0.0)
(—0.0, —0.36) — (0.0, 1.0) * (1.166, —0.0) * (0.0, —0.8)
= (=0.933,—0.36)

In this simple example, we are able to avoid the coercion of sign of zeros by simplifying the mul-
tiplication of ¢ * z manually. This kind of reformulation will be quite difficult when a problem is
complicated. Note that the coercion of sign of zeros by the imaginary number ¢ outside the square
root function will not make a difference in conformal mapping because no branch cuts are involved.
With an appropriate design for the sign of zeros in complex operations and complex functions, the
left-hand arc of the unit circle can also be obtained using £ = —0.0 in a program. Therefore, one
may also attribute much of the misbehavior in Figure 3 to the lack of recognition of the sign of
zeros in a computer programming language (Kahan, 1986).

Example 2

The second example also deals with conformal map. If a liquid is forced by high pressure
to jet into a slot, stream-lines will be formed around the opening of slot. The conformal map
w(z) =1+ 22 + 2v/22 + 1 + log(2? + 2/22 + 1) which will map radial straight-lines, including the
imaginary axis, in the right half-plane onto these stream-lines. The following Ch program can
compute these stream-lines with data saved in file slotflow.out.

FILE *stream; complex z, w; float r; int k;
stream = fopen("slotflow.out","w");
= -5;
while(k <= 5)
{
= 0.01;
while(r <= 1.8)
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Figure 7: The radial straight-lines in the z-plane.

polar(r, (pi/10)x*k);
1 + z*z +zxsqrt(z*z +1) +log(z*z +z *sqrt(z*z +1))
fprintf (stream, "%f %f \n", real(w), imaginary(w));
r += 0.01;
}
k++;
}

fclose(stream);

Z

w

The radial straight-lines in the z-plane and corresponding images in the w-plane are shown in
Figures 7 and 8, respectively.  Points along radial straight-lines in the z-plane are generated
by the function polar(r,theta), where r runs from 0.01 to 1.8 with a step size of 0.01 and theta
from —7/2 to m/2 with a step size of 7/10. If  in the above program is 0, w will be ComplexInf;
correspondingly, real(w) and imag(w) become NaNs. It appears in Figure 8 that complex infinities
in the w-plane are located in (u,v) = —oo + iy with —7/2 < y < 7/2 for different stream-lines;
but, there is actually only one complex infinity. The origin of the z-complex plane is mapped to
ComplexInf in the extended finite complex plane in an one-to-one manner with w(complex(0.0,
0.0)) = ComplexInf. In Ch, all points on the w-plane with their real parts less than —FLT MAX
are treated as ComplexInf as shown in Figure 2. The picture of w(z) is symmetrical about the real
axis because w(%Z) = w(z). The conformal map can be viewed as follows. Along the imaginary axis
with x = 0, as y running from —oo through —1 toward 0, and then from 0 through 1 toward oo,
the image in the w-plane runs from left to right along the lower wall and back along the lower free
boundary of the jet toward infinity, then from the infinity to the upper free boundary, finally, from
left to right along the upper free boundary and back along the upper wall. Interestingly, lower
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Figure 8  The flow forced into a slot in the w-plane with 2 = polar(r,6) or

z =complex(FLT_MINIMUM, y)

and upper free boundaries and other stream-lines can be considered to merge at the infinity of
ComplexInf in the w-plane which corresponds to the origin of complex(0.0,0.0) in the z-plane.
Note that there are slits in the imaginary axis with 2?2 < —1 beyond #i. Points generated
by z = polar(r, pi/2) may not be exactly on the imaginary axis due to roundoff errors. If we
are cautious, we may want to examine the behavior of this conformal map without the effect of
roundoff errors introduced by the polar() function. To suppress the contribution of the pertur-
bation effect of roundoff errors, points along the imaginary axis in the z-plane can be generated
by z = complex(0.0, y). When the two radial lines along the imaginary axis are calculated by
z =complex(0.0, y) with y running from 0.01 to 1.8 and from —0.01 to —1.8, the corresponding
images in the w-plane are plotted in Figure 9. Like the previous example, the lower wall, part of the
image, disappears, which can be explained as follows. The walls v = 47 and v = —im in the w-plane
are the images of points in the imaginary axis z = 4y with y > 1 and y < —1, respectively. The
curve forward from v = im then back to w = —Inf+4n/2 is the image of the segment of z = iy with
0 <y < 1. When z = —iy with y > 1, w(z) becomes 1 — y? +y/y2 — 1 +log(y? — y\/y2 — 1) +iw
which will map the slit on the lower part of the imaginary axis onto the tiny segment of the up-
per wall as is shown in Figure 10. This result holds even if the sign of zeros are respected with
—m < © < 7 as proposed in (Kahan, 1986). This phenomenon is due to the singularity along
the slit. Note that, like the horizontal line in Figure 5, the vertical straight-line, which connects
the tiny segment in v = 47 and the stream-line in the lower part of Figure 10, is produced by
graphical interpolation. This straight connection line is not mapped from points in the z-plane.
Nevertheless, a small perturbation of z, when y runs from —oo to —1, can bring back the missing
lower wall. How tiny should z be is a nontrivial question in most computer languages as pointed
out by Kahan (1986). In Ch, however, there is a definitive answer to this question. If z for the
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Figure 9: The flow forced into a slot in the w-plane with z = complex(0.0, y) for the imaginary
axis in the z-plane.
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Figure 10: The true image in the w-plane for the negative imaginary axis in the z-plane.
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imaginary axis in the program is set to any small positive number that is larger than or equal
to FLT_MINIMUM, i.e. z =complex(FLT_-MINIMUM, y), the missing lower wall in Figure 9 can
be recovered. It is intersting to point out that, if the conformal mapping function is chosen as
w(z) = 14+ 22+ 22z + vz — i +log(2% + 2z + iv/z — i), the tiny segment of the wall that appears
in Figure 10 will become a full wall, but other behaviors like locations of slits remain the same.

The above two examples demonstrate that conformal maps may misbehave along slits. However,
a small perturbation normally will bring back the missing information. Decreasing the step size
in a loop of a program may also recover the critical information, which resembles the handling of
numerical solutions for stiff differential equations in some aspects.

8 Conclusions

Complex numbers are generalization of real numbers. Complex numbers are manipulated in the
same manner as real numbers in Ch. Since complex is implemented as a basic data type in the Ch
programming language, the numerical computation can be handled in a much integrated fashion.
Ch treats floating-point real numbers with signed zeros and complex numbers with unsigned zeros
as well as Not-a-Number and infinities in an integrated consistent manner.

For scientific computing with complex numbers, the extended finite complex plane along with
complex metanumbers of ComplexZero, ComplexInf, and ComplexNaN are introduced in this pa-
per. The I/O for complex numbers and data conversion rules between real numbers and complex
numbers are defined. The results of complex arithmetic and relational operations, and polymorphic
mathematical functions with complex metanumbers as input arguments are also defined. These
may be different from the results obtained directly according to their definitions for regular com-
plex numbers. Besides the polymorphic nature in which the algorithms and resultant data types
of arithmetic operations depend on the data types of operands, and the algorithms and resultant
data types of mathematical functions are related to the input arguments; mathematical functions
in Ch can have a variable number of arguments. In case a function becomes a complex function,
additional integral arguments in comparing with its real counterpart indicate which branch of a
multiple-valued complex function shall be invoked. It is the first time, I believe, that such a sim-
plicity is introduced in a general-purpose computer programming language for scientific computing
with complex numbers. Example programs show that the external complex functions in Ch can be
programmed in the same syntax of the ANSI C and treated as if they were the internally built-in
functions.

The rationales for the decision of the designed features, related to complex numbers in Ch, have
been provided from language design, implementation, and application points of views. We have
demonstrated, in Ch programs, the effective handling of branch cuts of multiple-valued complex
functions which are difficult to handle for most other computer programming languages.
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