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Scientific Computing in the Ch Programming Language

Harry H. Cheng

Abstract

We have developed a general-purpose block-structured interpretive programming
language. The syntax and semantics of this language called Ch are similar to C. Ch
retains most features of C from the scientific computing point of view. In this paper,
the extension of C to Ch for numerical computation of real numbers will be described.
Metanumbers of —0.0, 0.0, Inf, —Inf, and NaN are introduced in Ch. Through these
metanumbers, the power of the IEEE-754 arithmetic standard is easily available to
the programmer. These metanumbers are extended to commonly used mathematical
functions in the spirit of the IEEE 754 standard and ANSI C. The definitions for manip-
ulation of these metanumbers in I/O; arithmetic, relational, and logic operations; and
built-in polymorphic mathematical functions are defined. The capabilities of bitwise,
assignment, address and indirection, increment and decrement, as well as type conver-
sion operations in ANSI C are extended in Ch. In this paper, mainly new linguistic
features of Ch in comparison to C will be described. Example programs programmed
in Ch with metanumbers and polymorphic mathematical functions will demonstrate
capabilities of Ch in scientific computing.

1 Introduction

We have developed a general-purpose block-structured interpretive programming language. Due
to our research interests, this language called Ch has been developed to be especially suitable for
research and applications in scientific and system programming. Ch is expressive with modern
programming constructs and rich sets of data types and operators. At its current implementation,
Ch supports most features of the C programming language except data structures. Some rough
edges incompatible with the ANSI C (ANSI, 1989) will be smoothed out in the future. By then,
one may consider Ch as a C language with High-level extensions. Ch extends the capabilities of
C in many aspects. Ch not only supports C’s basic data types such as int and float, but also
provides many additional data types such as complex and others. The handling of complex and
dual numbers in Ch are described in (Cheng, 1993, 1993b). The constants, variables, and operators
of new data types in Ch follow the same syntax rules of basic data types such as int and float. C, a
modern language originally invented for the Unix system programming (Thompson, 1978; Ritchie
and Thompson, 1974), is commonly regarded as a mid-level computer language. Ch retains low
level features of C with respect to interface to hardware. But, Ch is a high-level language, designed
for both novice users and experienced programmers. If one makes mistakes in a Ch program, the
system will prompt informative warning or error messages for the debugging of the program.

Ch is a language designed for both scientific and system programming. Currently, Fortran
(ANSI, 1978; Cheng, 1989) and C are the two predominant computer languages for scientific com-
puting. Ch has been designed to make the porting of both Fortran and C code to Ch as easy
as possible. However, as the name of the language implies, whenever there is a syntax conflict
between C and other languages, the interpretation will follow that of C. As a result, the syntax and
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semantics of Ch are similar to those of C in many aspects. Therefore, unless indicated otherwise,
all code fragments included in this paper will have the same implications as those in the ANSI C.
The detailed explanations for each single line of code presented in this paper will not be given.

In this paper, the scientific computing aspect of the Ch language will be addressed. Ch retains
most features of C from the scientific computing point of view. The ANSI/IEEE 754 standard for
binary floating-point arithmetic (IEEE, 1985, Cody et al, 1984) is a significant milestone on the road
to consistent floating-point arithmetic with respect to real numbers. This standard has significantly
influenced the design of Ch. The IEEE 754 standard distinguishes +0.0 from —0.0, which introduces
an extra complexity for programming. The rationale for this extra complexity is not well understood
and accepted by all computer scientists and C experts (Plauger, 1992). Many have challenged the
necessity for the sign of zeros. Apparently, how to handle best “the sign of nothing” is still a
topic to be further investigated. Another important feature of the IEEE 754 standard is the
internal representation for mathematical infinity and invalid value. The mathematical infinity
oo is represented by the symbol of Inf. A mathematically indeterminate or an undefined value
such as division of zero by zero is represented by NaN which stands for Not-a-Number. Many
computer hardware have signed zeros, infinity, and NaN (Motorola, 1989a, 1989b). But, information
about low-level and limited high-level instruction sets provided by hardware vendors may not be
relevant to the application programmer and most features of a final system depend on the software
implementation. Even for IEEE machines, if there is no provision for propagating the sign of zeros,
infinity, and NaN in a consistent and useful manner through the software support, they will have
to be programmed as if zeros are unsigned without infinity and NaN. For example, the proposed
Ada standard does not distinguish —0.0 from 0.0 and has no provision for consistent handling
of infinity and NaN (Dritz, 1991a,b,c,d; Hodgson, 1991a,b). As another example, the standard
mathematical C library implemented in (Plauger, 1992) has provisions for signed infinities and
NaN, but zeros are unsigned. Based on IEEE machines, some vendors provide software support for
the IEEE 754 standard through libraries (Sun, 1990a, 1990b; Apple, 1986). However, these special
values in libraries are not transparent to the programmer. Due to different design considerations,
they have defined different values for many operations and functions discussed in this paper. For
example, the SUN’s mathematical library will deliver the following results: oo® = 1; NaN°? =
1509 = 15 (=00)" = 00; (=00) ™ = 0; (—00)° = 1;(—2)> = o0; (—2)~> = 0; (~00)~f = 0, which
differs from Ch. Although the application of symbols such as Inf and NaN can be found in some
software packages, their handling of these special numbers is often full of flaws. For example,
one can find ComplexInfinity in the software package Mathematica (Wolfram, 1988), and Inf and
NaN in MATLAB (MathWorks, 1990). In Mathematica, there is no distinction between complex
infinity and real infinities, neither between —0.0 and 0.0; therefore, many operations defined in
this paper cannot be achieved in this package. In MATLAB, there is no complex infinity, and one
will be surprised by some of its results. At one point, the sign of a zero is honored; but at other
point, it may not. For example, according to the IEEE 754 standard, sqrt(—0.0) should be —0.0,
but, sqrt(—0.0) = 0.0 in MATLAB (version 4.0, 1992). As another example, acosh(Inf) equals
NaN whereas acos(Inf) is a complex NaN. Results of mathematical functions in many cases are
not consistent with mathematical conventions. It is in these grey areas that the standard is not
supported in many implementations of hardware and software systems.

To make the power of the IEEE 754 standard easily available to the programmer, the floating-
point numbers of —0.0, 0.0, Inf, —Inf, and NaN, referred to as metanumbers, are introduced in
Ch. These metanumbers are transparent to the programmer. Signed zeros 4+0.0 and —0.0 in Ch
behave like correctly signed infinitesimal quantities 04 and O_; whereas symbols Inf and —Inf
correspond to mathematical infinities co and —oo, respectively. The manipulation capabilities of
Inf and NaN in Ch go way beyond the scope used in mathematical software packages such as
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Mathematica and MATLAB. The integration of the metanumbers in the C programming language
will be described in this paper. The IEEE 754 standard only addresses the arithmetic involving
these metanumbers. In this paper, these metanumbers are extended consistently to commonly used
mathematical functions in the spirit of the IEEE 754 standard. The linguistic features of Ch, as it is
currently implemented, in dealing with metanumbers will be presented in this paper. The emphasis
is placed on the handling of metanumbers in I/0; arithmetic, relational, and logic operations; and
polymorphic mathematical functions. The concepts presented in this paper have been extended to
complex numbers in (Cheng ,1993).

It should be mentioned that related to the work described in this paper is the current effort
pursued by Numerical C Extension Group (NCEG), the subcommittee X3J11.1 of the ANSI C
X3J11 committee. The NCEG is working on floating-point C extension standard; to make features
of the IEEE 754 standard available for use by programmers is one of its efforts. Reviewing its
preliminary draft (Thomas, 1993) for the proposed floating-point C extension standard reveals
that some features presented in this paper are in conformance with the proposed standard. But,
there are many differences between Ch and the proposal. For example, recognizing that operations
like isnan(x) can be problematic in dealing with NaN, the proposal introduces eight additional
relational operators of 1<>=, <>, <>=, I<=, I<. I>=, 1>, 1<>ontop of the existing operators
<, >, <=, >=, ==, |=. But, to preserve the clarity and succinctness of C, no additional relational
operator has been introduced in Ch. The handling of NaN in Ch will be described in details in
this paper. There is no —NaN in Ch whereas the sign of NaN is honored in the proposal. The
proposal suggests function overloading for elementary mathematical functions in C. However, unlike
C++ (Stroustrup, 1987), there is no provision for function overloading in ANSI C. Consequently,
mechanisms for function overloading are to be introduced, which will likely complicate the syntax
of C. All mathematical functions are built polymorphically with optional auxiliary arguments into
Ch itself (Cheng, 1993). Therefore, unlike the proposal, there is no need in Ch for distinction of
functions log(x) and loglp(x) which is expected to be more accurate than log() for small magnitude
of x because these two functions can be easily reconciled inside Ch. The proposal introduces several
new functions, most of these new functions can be easily implemented as external functions in Ch.
Due to different considerations, the design of Ch is different from the proposal in some other aspects.
For example, Ch is definitive; results of all operations and functions involving metanumbers are
properly defined in Ch whereas the proposal still leave rooms for unspecified values. The proposed
floating-point C extension is still at its preliminary stage. The final specification and actual language
implementation of the proposed standard remain to be seen.

The rest of the paper is arranged as follows. Section 2 presents the number system in Ch. The
different data types and their internal memory representations are described. Section 3 describes
the external representations of numerical constants in Ch. Section 4 discusses the I/O extension
of C to Ch for numerical data and metanumbers. Section 5 defines arithmetic, relational, and
logic operations involving metanumbers. In addition, the Ch extensions of bitwise, assignment,
address and indirection, increment and decrement operations, as well as explicit type conversions
will be highlighted. Section 6 defines polymorphic mathematical functions with metanumbers as
input arguments or as returned results. Example programs in section 7 with metanumbers and
polymorphic mathematical functions will demonstrate Ch’s capabilities in scientific computing.
Some conclusions will be made in section 8.

2 Real Numbers in Ch

Ch is a loosely typed language. The Ch programming language has a rich set of data types.
Unlike languages such as Pascal (ANSI, 1983) which prohibits automatic type conversion, one data
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type in Ch can be automatically converted to another data type if it makes sense in context. As it is
currently implemented, Ch encapsulates Fortran’s four numeric data types of integer, real, double
precision, and complex. Programming with complex numbers in Ch will be described in (Cheng,
1993). In this paper, we discuss only the real numbers directly related to scientific computing. The
formats of these data stored in a computer memory depends on the machine architecture in use.
How these numbers are internally represented in a computer system for manipulation inside Ch will
be illustrated in this section. The discussion is based upon the architecture of the RISC processor
for SUN SPARCStations (SUN, 1990b). But, ideas are applicable to all IEEE machines. Data
types of short, unsigned, long double, double complex, and long double complex are not available
in Ch at its current implementation, mainly, because our applications of Ch can bypass these data
types. As user’s base of Ch increases, they will be supported in the future if necessary.

2.1 Integers

Integer is a basic data type for any computer languages. An integer in Ch can be represented
in data types of char or int. Numerical manipulations of char and int data in Ch follow the rules
defined in ANSI C.

2.1.1 Char Data Representation

The char data is used to store characters such as letters and punctuations. An array of char can
be used to store a string. A character is actually stored in integer according to a certain numerical
code such as the ASCII code. Under this code, certain integers represent certain characters. The
standard ASCIT code ranges from 0 to 127, which can be hold by only 7 bits. In Ch, the char
variable is a signed integer ranging from CHAR_MIN to CHAR_MAX. The parameters CHAR_MIN
and CHAR_MAX, defined in the ANSI C standard header 1limits.h, are system constants in Ch.
Typically, a char constant or variable occupies one byte unit memory. Bit 8 is a sign bit. The
maximum positive integer for a signed one-byte representation is 127 or in the binary form of
01111111. A negative number is stored as the binary complement of its absolute value minus 1.
For example, the decimal value of —2 is determined by the binary value of 11111110 in a one-byte
two’s complement value as

com(11111110)5 = (00000001 + 1)3 = (10)5

where the subscript of 2 indicates the base of the integer number. The minimum integer values for
a signed char is —128 or in binary form of 10000000. The range of integers for a char is then from
—128 to +127.

2.1.2 Int Data Representation

An int data is a signed integer in Ch. An int number is a whole number which can be negative,
positive, or zero. The int ranges from INT_MIN to INT_MAX. The parameters INT_MIN and
INT_MAX, defined in the ANSI C standard header 1imits.h, are precalculated system constants
in Ch. Unlike some of C implementations, in which an int data may occupy only two bytes, an
int data uses four bytes (32 bits) for storage with one bit for sign in Ch. Negative numbers are
stored in four-byte two’s complement minus 1. The values of INT_MIN and INT_MAX then become
—2147483648 (231) and 2147483647, respectively. The int type of Ch is the same as the int data
type defined in the ANSI C. Operations such as addition, subtraction, multiplication, and division,
etc. in Ch are fully compatible with those defined in the ANSI C. For example, the following
statements are valid in Ch.
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char c[2][3], *cptr;

int i, *iptr; /* /# comment */

c[0]l[1] = ’a’; /# c[0][1] becomes ‘’a’ x/

i=-c[0] [ 1]; /# /* i becomes 97, ASCII number for ‘’a’ x/

cl[1,2] = i+1 /* c[1,2] becomes ‘b’, ASCII number for ‘b’ is 98 */
i+=c[1, 2]; /# i becomes 194 = 97 +97

iptr = &i; /* iptr points to address of i */

*iptr /= 2; /* i becomes 97 = 194/2 */

Like C, comments of a, Ch program can be enclosed within a pair of delimiters /* and */. These
two comment delimiters cannot be nested. In addition, the symbol /# in Ch will comment out
a subsequent text terminated at the end of a line. A /# can be used to comment out /* or */,
and /* */ can be used to comment out /#. These two companion methods provide a convenient
mechanism to comment out a section of Ch code which contains comments. When a comment does
not start at the beginning of a line, the use of /# is recommended for Ch programs. It should be
mentioned that, in ANSI C, a combined use of preprocessor directives #if, #elif, #else, and
#endif can also comment out a section of C code. Note that arrays in Ch can be declared and
accessed by c[i][j] or c[i,j]. The former is in ANSI C style whereas the later has a Fortran
flavor. All white space and tab characters will be ignored in the Ch program, except when they
are characters within a string. A program using invisible characters such as a tab character as
delimiters and control sequences is very difficult to debug. Such design examples are not difficult
to find in computer systems.

2.2 Real Numbers

The integer data type serves well for some software development projects, especially for system
programming. However, for scientific computing, the floating-point numbers are used extensively.
The floating-point numbers correspond to real numbers which include the numbers between integers.
These numbers are defined in Ch as float or double, which are equivalent to real and double precision
in Fortran, respectively. Floating-point numbers are analogous to the representations of numbers in
scientific notion. Floating-point arithmetic is complicated as compared with the integer arithmetic.
This paper mainly addresses issues related to the floating-point operations and built-in functions
in Ch.

The most common implementation of floating-point arithmetic is based upon the IEEE 754
standard. In this standard, a float or double is represented in the form of

(_1)sign26acponentfbiasl.f (1)
where 1.f is the significand and f is the bits in the significand fraction. This normalized float
or double number contains a “hidden” bit because it has one more bit of precision than would
otherwise be the case.

2.2.1 Float Data Representation
The float data type uses 32 bits for its storage. The result of a float data is formulated as
(_1)sign26wponent—1271'f (2)

Bit 31 is a sign bit; it is 1 iff the number is negative. Eight-bit exponent of bits 23-30 is biased by 127;
Values of all zeroes and all ones are reserved for metanumbers. Bits 0-22 are the fraction component
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Table 1: Hexadecimal representation of selected real numbers.

value float double
0.0 | 00000000 | 0000000000000000
—0.0 | 80000000 | 8000000000000000
1.0 | 3F800000 | 3FFO000000000000
—1.0 | BF800000 | BFFO000000000000
2.0 | 40000000 | 4000000000000000
—2.0 | CO000000 | CO00000000000000
3.0 | 40400000 | 4080000000000000
—3.0 | C0400000 | C080000000000000
Inf | 7F800000 | 7FF0000000000000
—Inf | FF800000 | FFFO000000000000
NaN | 7FFFFFFF | 7TFFFFFFFFFFFFFFF
FLT_MAX | 7F7FFFFF

DBL_MAX TFEFFFFFFFFFFFFF
FLT_MIN | OO7FFFFF

DBL_MIN OOOFFFFFFFFFFFFF
FLT_MINIMUM | 00000001

DBL_MINIMUM 0000000000000001

of a normalized significand. The leading integer value 1 of the normalized significand is hidden.
The hexadecimal representation of some typical float numbers are given in Table 1. For example,
according to formula (2), float numbers 1.0 and —2.0 can be obtained by (—1)°2127-1271.0 = 1.0
and (—1)'2128-1271.0 = 2.0, respectively. Remember that the fraction of the normalized significand
is stored in a binary fraction. The float number 3.0 can be calculated by (—1)°2!28-127(1.1), =
2% (1.1)9 = 2 % (1.5)10 = (3.0)10 where subscripts indicate the base of the floating-point number.
Note that the IEEE 754 standard distinguishes +0.0 from —0.0 for floating-point numbers. For
user’s convenience, these two constants are predefined as system constants Zero and NZero in Ch.
NZero stands for Negative-Zero.

The parameter FLT MAX, defined as the maximum representable finite floating-point number
in the float date type in the ANSI C standard header float.h, is a precalculated system constant
in Ch. As mentioned before that eight-bit exponent of bits 23-30 is biased by 127; values of all
ones for eight-bit exponent of bits 23-30 are reserved for metanumbers. If a number is larger than
FLT_MAX, which is called an overflow, and it will be represented by the symbol of Inf which
corresponds to the mathematical infinity oo. This is the result of many operations such as division
of a finite number by zero although an inexact exception may be raised in an IEEE machine. In
the same manner, if a number is less than —FLT_MAX, it will be represented by —Inf which is
equivalent to the negative infinity —oc.

The value of the parameter FLT_MIN is defined in the ANSI C standard library header float.h
as a minimum normalized positive floating-point float number. If a number is less than FLT_MIN,
it is called an underflow. The IEEE 754 standard provides a gradual underflow. When a number is
too small for a normalized representation, leading zeros are placed in the significand to produce a
denormalized representation. A denormalized number is a nonzero number that is not normalized
and whose exponent is the minimum exponent fot the storage type. The maximum representable
positive denormalized float is defined as FLT_MINIMUM in Ch as shown in Table 1. As one can see
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that there is only one Unit in the Last Place for FLT_MINIMUM so that it is commonly referred
to as ulp. Almost all floating-point implementations substitute the value zero for a value which is
smaller than FLT_MINIMUM for IEEE machines, FLT_MIN for non-IEEE machines. However, in
the arithmetic operations and mathematical functions defined in Ch, there is a qualitative difference
between FLT_MINIMUM which is smaller than FLT_MIN and zero. In this paper, by the value of
0.0 means that it is a zero, not a small number. The Ch expressions of 0., 0.00, and .0 are the same
as 0.0. In the same token, the following Ch floating-point constant expressions —0.0, —0., —0.00,
and — .0 are equivalent. Mathematically, divisions of zero by zero of % and infinity by infinity of
> are indeterminate. The results of these operations are represented by the symbol of NaN which
stands for Not-a-Number. It should be mentioned that the IEEE 754 standard distinguishes quiet
NaN from signaling NaN. The signaling NaN should generate a signal or raise an exception. In
Ch, all NaNs are treated as quiet NaNs. Furthermore, the IEEE 754 standard does not interpret
the sign of NaN. However, many floating-point arithmetic implementations such as in the SUN’s
ANSI C, Apple’s Standard Apple Numeric Environment, and preliminary proposed floating-point
C extensions distinct NaN from —NaN. But, from the user’s point of view, what is the difference
between a negative Not-a-Number and a positive Not-a-Number? After all, Not-a-Number is not
a number. Therefore, no —NaN will be produced as a resultant of arithmetic and functions in
Ch although it can be created by manipulating the bit pattern of the memory location of a float
variable. The expression —NaN is interpreted as NaN in Ch. The metanumbers are treated just as
regular floating-point numbers. The internal hexadecimal representations of the metanumbers for
the float type are also given in Table 1.

2.2.2 Double Data Representation

For a large range of representable floating-point numbers, a double data can be used in Ch.
The double data type uses 64 bits as its storage. The result of the double data is formulated as

(_1)sign28wponent710231'f (3)

Bit 63 is a sign bit; it is 1 iff the number is negative. Eleven-bit exponent of bits 52-62 is biased
by 1023; values of all zeroes and all ones are reserved for metanumbers. Bits 0-51 are fractional
component of normalized significand. Like float, the integral value 1 of the normalized significand is
hidden. The hexadecimal representation of some typical double numbers are also given in Table 1.
Note that the width and bias value of the exponent of double is different from those of float.
Therefore, a float cannot be converted into a double just by padding zeroes in its fraction. On
the other hand, when a double data is cast into a float, the result cannot be obtained just by
ignoring the values in bits 0-31. Note that there is no external distinction between float Inf and
double Inf although their internal representations differ. This is also true for metanumbers —Inf and
NaN. Similar to float, parameters DBL_MAX, DBL_MIN, and DBL_MINIMUM are precalculated
constants in Ch. The internal memory representations of these special finite double floating-point
numbers are also given in Table 1. Note that due to the finite precision of the floating-point number
representation, the exact values of irrational numbers such as 7 are not representable in a computer
system whether they are represented in float or double.

3 Constants of Real Numbers

In this section, we will describe the external representations of data types discussed in the
previous section. Besides declared variables and system defined parameters, all different data types
in Ch can have their corresponding constants at the programmer’s disposal.
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Char and int constants in Ch are in full compliance with the ANSI C standard. A character
constant, stored as an integer, can be written as one character within a pair of single quotes like
’x?. Character constants enclosed in a pair of single quotes cannot contain the ’ character. In order
to represent the ’ character and certain other characters such as a newline character, the escape
sequence may be used. For example, ¢ = ’\’’ will assign the ’ character to ¢ while ¢ = ’\n’
will give ¢ a newline character.

A decimal integer constant like 12345 is an int. An integer can also be specified in octal or
hexadecimal instead of decimal. A leading 0 (zero) on an integer constant indicates an octal integer
whereas a leading 0x or 0X means hexadecimal. Besides these integral values defined in ANSI C, Ch
introduces a binary constant with leading Ob or 0B. For example, decimal 30 can be written as 036
in octal, 0X1e or 0x1E in hexadecimal, and 0b11110 or 0B11110 in binary. Note that expressions
like 029 and 0b211 are illegal, which can be detected by Ch.

The value of 0 in Ch means that it is an integer zero. Unlike real numbers, there is no 0_ in
int. Therefore, the integer value of —0 equals 0 in Ch. The domain [-FLT_MAX, FLT_MAX] of
real numbers is larger than the domain [-INT_MIN, INT_MAX] of integer numbers. When a real
number which is smaller than INT_MIN, including —Inf, is converted to an integer, the result is
INT_MIN. For a real number which is larger than INT_MAX, including Inf, the converted integral
value is INT_MAX. When NaN is assigned to an integral variable, the system will print a warning
message, and the resultant integral value becomes INT_MAX whose memory map is the same as
that of NaN.

In K&R C (Kernighan and Ritchie, 1978; Ritchie et al, 1978) all floats in expressions are con-
verted into doubles before evaluation. As a result, any operations involving floating-point operands,
even with two float operands, will produce a double result. This is not applicable to many scien-
tific computations in which speed and memory of a program are very critical. The inconvenient
floating-point operation modes for 32-bit operands and 64-bit operands of the original hardware
platform, a PDP-11/45 FPP, for running C programs was a major factor in the design of this
implicit data conversion of K&R C (Plauger, 1992; Rosler, 1984). Although this indiscriminate
conversion is sometimes complemented with a positive tone for its generosity, it is harshly criti-
cized by the numerically-oriented scientific programmers as a language design fault (Press, et al,
1990). Because of the indiscriminate conversion rules in the early design of C, every floating point
constant like 3.5 and 3e7 is taken as double. This default double mode for floating-point constants
has been carried over to the ANSI C standard. However, the ANSI C has provided a mechanism
to specify a float constant. The suffixes F or f indicate a float constant.

In regards to the default data type of floating-point constants, Ch follows the lead of Fortran,
but with an ANSI C modern syntax style. Floating-point numbers are represented in scientific
notation. All floating-point constants such as 2.4,2e + 3, —2.F — 3, and +2.1e3 are float constants
by default because, in most applications, a floating-point constant with a small number of digits
after a decimal point is intended to be float. This default mode, however, can be switched by the
function floatconst(onoff). After execution of command floatconst(FALSE), the aforementioned
floating-point constants will be taken as double. However, the default mode can always be overruled
by the suffixes F or f for float, D or d for double. For example, constants 3.4e3F,3E — 3f, and
3e + 3F are floats whereas constants 3.4e3D,3E — 3d, and 3e 4+ 3D are doubles regardless of the
default mode for floating-point constants. But, the constant metanumbers Zero, NZero, +Inf, and
NaN are always taken as floats unless they are values of double variables. According to this design,
the range of representable floating-point number can be expanded automatically. For example, the
values of FLT_MAX and DBL_MAX for SUN SPARCStations are 3.4e38 and 1.8e308, respectively.
The following Ch program
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printf ("pow(10.0, 39) < Inf is %d \n", pow(10.0, 39) < Inf);
floatconst (FALSE) ;
printf ("pow(10.0, 39) < Inf is %d \n", pow(10.0, 39) < Inf);

will print out

pow(10.0, 89) < Infis 0

pow(10.0, 39) < Infis 1

In the first statement of the program, the value of 10°” calculated by pow(10.0, 39) has overflowed
as Inf because it is larger than FLT_MAX. By switching the default mode of floating-point constants
to double through the function floatconst(FALSE), the value of 103? calculated by pow(10.0, 39)
in double data is still within the representable range of —-DBL_MAX < pow(10.0,39) < DBL_MAX.
In the second case, the metanumber Inf is expanded as a double infinity larger than DBL_MAX. The
float mode for floating-point constants can be switched back by the command floatconst(TRUE).
With this mode switching function, both Fortran and C code can be ported to Ch conveniently.
Details about relational operator < and polymorphic function pow() will be discussed in sections 5
and 6, respectively. In the remaining presentation of this paper, we assume that the default mode
for floating-point constants is float.

039

4 1I/0 for Real Numbers

In ANSI C, the input of integers and floating-point numbers are obtained through the standard
I/O functions scanf(), fscanf(), and etc.; the output is accomplished using the function printf(),
fprintf(), and etc.. These functions are also available in Ch and will be in full compliance with the
ANSI C standard. However, implementation of these functions in Ch is different from C. In this
section, the differences of these functions between Ch and C, and enhancements of these functions
in Ch will be discussed.

The major difference of these functions between Ch and C is that these functions are built-in
internal functions in Ch whereas they are external functions in C. Therefore, they can be rec-
onciled inside Ch so that they are more flexible and powerful. The standard input/output/error
devices stdin/stdout/stderr defined in the ANSI C header stdio.h are provided as system con-
stants in Ch. The inclusion of header stdio.h in a program is, therefore, unnecessary in Ch.
Other than this difference, a C programmer will not notice any difference in these functions be-
tween Ch and C. But, these I/O functions in Ch are enhanced. Here, we only briefly discuss the
enhancements related to real numbers for the function printf(). The underlining principle can
be applied to other I/O functions as well. The format of function printf() in Ch is as follows

int printf(char *format, argl, arg2, ...)
The function printf() prints output to the standard output device under the control of the string
pointed to by format and returns the number of characters printed. If the format string contains
two types of objects: ordinary characters and conversion specifications beginning with a character
of % and ending with a conversion character, the ANSI C rules for printf() will be used. Besides
the control characters specified by the ANSI C standard, Ch has one more conversion character
‘b’ which is used to print real numbers in binary format. An integer number between the symbol
% and the character ‘b’ specifies how many bits starting with bit 0 shall be printed. If without
an integer number between the symbol % and the character ‘b’, the default format will print int
data without leading zeroes, float data in 32 bits, and double data in 64 bits. This binary format
is very convenient to examine the bit patterns of metanumbers. If the format string in printf()
contains only ordinary characters, the subsequent numerical constants or variables will be printed
according to preset default formats. The default format for int, float, and double are %d, %f, and
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%lf, respectively. The metanumbers Inf and NaN are treated as regular numbers in I/O functions.
The default data types for these numbers are float. The following Ch program illustrates how
b-format and metanumbers are handled by the I/O functions printf() and scanfy().

float fInf, fNal;

double dInf, dNaN;

printf("Please type ’Inf NaN Inf NaN’ \n");
scanf (&fInf, &fNaN, &dInf, &dNaN);

printf ("The float Inf = %f\n", fInf);
printf("The float -Inf = ", -fInf, "\n");
printf("The float NaN = %f\n", fNaN);
printf("The float Inf = %b \n", fInf);
printf("The float -Inf = %b \n", -fInf);
printf("The float NaN = %b \n", fNalN);
printf("The double Inf = %1f\n", dInf);
printf ("The double -Inf = ", -dInf, "\n");
printf("The double NaN = %1f\n", dNalN);
printf("The double Inf = %b \n", dInf);
printf ("The double -Inf = %b \n", -dInf);
printf("The double NaN = %b \n", dNaN);

printf ("The int 2 =9%b \n", 2);
printf ("The int 2 = %32b \n", 2);
printf("The int -2  =9%b \n", -2);

printf("The float O.
printf("The float -0.
printf("The float 1.
printf("The float -1.
printf("The float 2.
printf("The float -2.

= %b \n", 0.0);
= %b \n", -0.0);
=%b \n", 1.0);
= %b \n", -1.0);
= %b \n", 2.0);
= %b \n", -2.0);

o O O O O O

The first two lines of the program declares two float variables fInf and fNaN, and two double
variables dInf and dNaN. The function scanf() will get Inf and NaN for the declared variables from
the standard input device which is the terminal keyboard in this example. These metanumbers
will be printed in default formats %f for float and %If for double. These numbers are also printed
using the binary format %b. For comparison, the memory storage for integers of +2, and floats of
40.0, £1.0, 2.0 are printed. The result of the interactive execution of the above program is shown
as follows

Please type ’Inf NaN Inf NaN’

Inf Nan Inf Nan

The float Inf = Inf
The float -Inf = -Inf
The float NaN = NaN
The float Inf = 01111111100000000000000000000000
The float -Inf = 11111111100000000000000000000000
The float NaN = 0111111141111 14114111111111111111
The double Inf = Inf

10



Harry H. Cheng Scientific Programming, Vol. 2, No. 3, Fall, 1993, pp. 49-75.

The double -Inf = -Inf

The double NaN = NaN

The double Inf = 0111111111110000000000000000000000000000000000000000000000000000
The double -Inf = 1111111111110000000000000000000000000000000000000000000000000000
The double NaN = 011111111111111114114111431111413143141314431413131431131113131111111111
The int 2 = 10

The int 2 = 00000000000000000000000000000010

The int -2 = 11111111111111111111111111111110

The float 0.0 = 00000000000000000000000000000000

The float -0.0 = 10000000000000000000000000000000

The float 1.0 = 00111111100000000000000000000000

The float -1.0 = 10111111100000000000000000000000

The float 2.0 = 01000000000000000000000000000000

The float -2.0 = 11000000000000000000000000000000

O O O O O O

where the second line in italic is the input and the rest are the output of the program. As one can
see that, for metanumbers Inf, —Inf, and NaN, there is no difference between float and double types
from the user’s point of view. It can be easily verified that the bit-mappings of all these numbers
in memory match with data representations discussed in the previous sections.

5 Real Operations

In this section, the arithmetic, relational, logic, bitwise, assignment, address and indirection,
increment and decrement operations, as well as explicit type conversions of real numbers in Ch will
be discussed. The operation precedence for different operators in Ch are in full compliance with
the ANSI C standard, except the new operator =~ introduced in section 5.2. Following the ANSI
C standard, the algorithms and resultant data types of operations for floating-point numbers will
depend on the data types of operands in Ch. The conversion rules for char, int, float, and double
in Ch follows the type conversion rules defined in the ANSI C standard. A data type that occupies
less memory can be converted to a data type that occupies more memory space without loss of any
information. For example, a char integer can be cast into int or float without problem. However,
a reverse conversion may result in loss of information. The order of real numbers in Ch ranges
from char, int, float, to double. The char data type is the lowest and double the highest. Like the
ANSI C, the algorithms and resultant data types of the operations depend on the data types of
operands in Ch. For binary operations, such as addition, subtraction, multiplication, and division,
the resultant data type will take the higher order data type of two operands. For example, addition
of two float numbers will result in a float number while addition of a float number and a double
number will become a double number.

The operation rules for regular real numbers and metanumbers in Ch are presented in Tables 2
to 12. In Tables 2 to 12, x, x1, and x2 are regular positive normalized floating-point numbers in
float or double; metanumbers 0.0, —0.0, Inf, —Inf, and NaN are constants or the values of float or
double variables. By default, the constant metanumbers are float constants.

5.1 Arithmetic Operations

For the negation operation shown in Table 2, the data type of the result is the same as the data
type of the operand, a real number will change its sign by negation operation. There is no —NaN
in Ch. The leading plus sign ‘4+’, an unary plus operator, in an expression such as +57864 — z will

11
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Table 2: Negation results.

Negation —
operand | —Inf —x1 —0.0 0.0 x2 Inf NaN
result Inf x1 0.0 —-0.0 —x2 —Inf NaN

Table 3: Addition results.

Addition +
left operand right operand

—Inf —x1 -0.0 0.0 x2 Inf NaN

Inf NaN Inf Inf Inf Inf Inf NaN

y2 —Inf  y2—x1 y2 y2 y2+x2 Inf NaN

0.0 —Inf —x1 0.0 0.0 x2 Inf NaN

-0.0 —Inf —x1 -=0.0 0.0 x2 Inf NaN
-yl —Inf —-yl-x1 -yl —yl —yl+4x2 Inf NaN
—Inf —Inf —Inf —Inf —Inf —Inf NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

be ignored. It should be pointed out that the negation of a positive integer zero is still a positive
zero. Based upon two’s complement representation of negative integer numbers discussed before,
we cannot represent Inf and NaN in the int data type.

Note that, according to the IEEE 754 standard, some operations depend on the rounding mode.
For example, in case of rounding toward zero, overflow will deliver FLT _MAX rather than Inf with
the appropriate sign. This rounding mode is necessary for Fortran implementation and for machines
that lack infinity. If the rounding mode is round toward —oo, both —0.0 + 0.0 and 0.0 — 0.0 deliver
—0.0 rather than 0.0. For scientific programming, consistency and determinacy are essential. Ch
is currently implemented using the default rounding mode of round to nearest so that overflow will
result in Inf, and both —0.0 4+ 0.0 and 0.0 — 0.0 deliver 0.0 as shown in Tables 3 and 4. Note that
the modulus operator % in Ch is ANSI C compatible.

For addition, subtraction, multiplication, and division operations shown in Tables 3 to 6, the
resultant data type will be double if any one of two operands is double; otherwise, the result is a
float. Notice that the mathematically indeterminate expressions such as oo — 00,00 * 0.0, 2, and
% will result in NaNs. The values of +0.0 play important roles in the multiplication and division
operations. For example, a finite positive value of x2 divided by 0.0 results in a positive infinity
400 while division by —0.0 will create a negative infinity —oc. If any one of operands of binary

arithmetic operations is NaN, the result is NaN.

5.2 Relational Operations

For relational operations given in Tables 7-12, the result is always an integer with a logic value
of 1 or 0 corresponding to TRUE or FALSE, which are predefined system constants. According to
the IEEE 754 standard, there is a distinction between +0.0 and —0.0 for floating-point numbers.
In Ch, the value of 0.0 means that the value approaches zero from positive numbers along the
real line and it is a zero; the value of —0.0 means that the value approaches zero from negative
numbers along the real line and it is infinitely smaller than 0.0 in many cases. Signed zeros

12
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Table 4: Subtraction results.

Subtraction —
left operand right operand

—Inf —x1 -=0.0 0.0 x2 Inf NaN

Inf Inf Inf Inf Inf Inf NaN NaN

y2 Inf  y2+4x1 y2 y2 y2—x2 —Inf NaN

0.0 Inf x1 0.0 0.0 —x2 —Inf NaN
—-0.0 Inf x1 0.0 -0.0 —x2 —Inf NaN
-yl Inf —yl4x1 -yl —yl —yl—x2 —Inf NaN
—Inf NaN —Inf —Inf —Inf —Inf —Inf NaN
NalN NaN NaN NaN NaN NaN NaN NaN

Table 5: Multiplication results.

Multiplication *
left operand right operand

—Inf —x1 -=0.0 0.0 x2 Inf NaN

Inf —Inf —Inf NaN NaN Inf Inf NaN

y2 —Inf —y2«x1 —0.0 0.0 y2%x2 Inf NaN

0.0 NaN —0.0 -0.0 0.0 0.0 NaN NaN

—0.0 NaN 0.0 0.0 -0.0 —0.0 NaN NaN
-yl Inf  ylxx1 0.0 —-0.0 —ylxx2 —Inf NaN
—Inf Inf Inf NaN NaN —Inf —Inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Table 6: Division results.

Division +
left operand right operand

—Inf —x1 —-0.0 0.0 x2 Inf NaN

Inf NaN —Inf NaN NaN Inf NaN NaN

y2 —0.0 —y2/x1 —Inf Inf y2/x2 0.0 NaN

0.0 -0.0 —0.0 NaN NaN 0.0 0.0 NaN

-0.0 0.0 0.0 NaN NaN —-0.0 —-0.0 NaN
-yl 0.0 yl/x1 Inf —Inf -yl1/x2 —-0.0 NaN
—Inf NaN Inf Inf —Inf —Inf NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

13
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+0.0 and —0.0 in a Ch program behave like correctly signed infinitesimal quantities 04 and 0_,
respectively. Although there is a distinction between —0.0 and 0.0 for floating-point numbers in
many operations, according to the IEEE 754 standard, the comparison shall ignore the sign of
zeros so that —0.0 equals 0.0 in relational operations. For the convenience of the programmer, two
polymorphic logic operations isposzero(x) and isnegzero(x) are introduced in Ch, which can
test if the argument x is 0.0 or —0.0. The argument x can be char, int, float, or double. If x is
0.0, isposzero(x) and isnegzero(x) return 1 and 0, respectively. If x is —0.0, isposzero(x)
and isnegzero(x) return 0 and 1, respectively. If x is a complex or dual number, only its real
part will be used in these operations. More elaborative, but less frequently used, functions such
as signbit(x) and copysign(x,y) can be easily implemented as external functions in Ch. The
value of —0.0 could be regarded different from 0.0 for comparison operations in Ch. But, for the
convenience of porting C code to Ch, zero is unsigned in comparison operations. The equality for
metanumbers have different implications in Ch. Two identical metanumbers are considered being
equal to each other. As a result, comparing two Infs or two NaNs will get logic TRUE. This is just
for the convenience of programming because, mathematically, the infinity of oo and Not-a-Number
of NaN are undefined values which cannot be compared with each other. Metanumbers of Inf, —Inf,
and NaN in Ch are treated as regular floating-point numbers consistently in arithmetic, relational,
and logic operations. There is no need to use functions such as isnan(x), isinf(x), etc. as is
introduced in some software packages and mathematical libraries according to the recommendation
of the IEEE 754 standard. Note that NaN is unordered and does not compare equal to itself in
the TEEE 754 standard. However, for the convenience of the programmer, NaN is handled in the
same manner as Inf in Ch. NaN is still unordered, but it equals itself, which is the only place in
which Ch is not in compliance with the IEEE 754 standard. The difference from the standard is
likely to cause arguments and resistances. However, with this slight change, programming with
metanumbers is much cleaner than would otherwise be the case.

Table 7: Less than comparison results.

Less than comparison <
left operand right operand
—Inf —x1 —0.0 0.0 x2 Inf NaN
Inf 0 0 0 0 0 0 0
y2 0 0 0 0 y2<x2 1 0
0.0 0 0 0 0 1 1 0
—0.0 0 0 0 0 1 1 0
-yl 0 -yl < —x1 1 1 1 1 0
—Inf 0 1 1 1 1 1 0
NaN 0 0 0 0 0 0 0
5.3 Logic Operations
In Ch, there are four logic operators !, &&, ||, and ~~ corresponding to logic operations not,

and, inclusive or, and exclusive or, respectively. The operations of !, ||, && in Ch comply
with the ANSI C standard. The operator -~ is introduced in Ch due to the consideration of
programming convenience and orthogonality between logic operators and bitwise operators. Note
that, like ANSI C, both the &% and || operations in Ch permit the right operand to be evaluated

14
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Table 8: Less than or equal comparison results.

Less or equal comparison <=
left operand right operand
—Inf —x1 —-0.0 0.0 x2 Inf NaN
Inf 0 0 0 0 0 1 0
y2 0 0 0 0 y2<=x2 1 0
0.0 0 0 1 1 1 1 0
-0.0 0 0 1 1 1 1 0
-yl 0 -yl <= —x1 1 1 1 1 0
—Inf 1 1 1 1 1 1 0
NaN 0 0 0 0 0 0 1
Table 9: Equal comparison results.
Equal comparison ==
left operand right operand
—Inf —x1 —-0.0 0.0 x2 Inf NaN

Inf 0 0 0 0 0 1 0
y2 0 0 0 0 y2==x2 0 0
0.0 0 0 1 1 0 0 0
-0.0 0 0 1 1 0 0 0
-yl 0 —yl == —x1 0 0 0 0 0
—Inf 1 0 0 0 0 0 0
NaN 0 0 0 0 0 0 1

Table 10: Greater than or equal comparison results.

Greater or equal comparison >=
left operand right operand
—Inf —x1 —-0.0 0.0 x2 Inf NaN
Inf 1 1 1 1 1 1 0
y2 1 1 1 1 y2>=x2 0 0
0.0 1 1 1 1 0 0 0
-0.0 1 1 1 1 0 0 0
-yl 1 —yl >= —x1 0 0 0 0 0
—Inf 1 0 0 0 0 0 0
NaN 0 0 0 0 0 0 1
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Table 11: Greater than comparison results.

Greater than comparison >
left operand right operand
—Inf —x1 —-0.0 0.0 x2 Inf NaN

Inf 1 1 1 1 1 0 0
y2 1 1 1 1 y2>x2 0 0
0.0 1 1 0 0 0 0 0
-0.0 1 1 0 0 0 0 0
-yl 1 -yl > —x1 0 0 0 0 0
—Inf 0 0 0 0 0 0 0
NaN 0 0 0 0 0 0 0

Table 12: Not equal comparison results.

Not equal comparison !=
left operand right operand
—Inf —x1 —0.0 0.0 x2 Inf NaN
Inf 1 1 1 1 1 0 1
y2 1 1 1 1 y2!=x2 1 1
0.0 1 1 0 0 1 1 1
-0.0 1 1 0 0 1 1 1
-yl 1 —yl = —x1 1 1 1 1 1
—Inf 0 1 1 1 1 1 1
NaN 1 1 1 1 1 1 0
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only if the left operand evaluates to TRUE and FALSE, respectively. This “short circuit” behavior
for the =~ operator does not exist because, for either TRUE or FALSE of the first operand, an
exclusive-or operation can return TRUE, depending on the second operand. The precedence of
operator "~ is higher than operator ||, but lower than &&. This operation precedence is similar
to that for bitwise operators &, |, and ~, which will be discussed in the next section. Because
there are only two values of either TRUE or FALSE for logic operations, the values of +0.0 are
treated as logic FALSE while the metanumbers —Inf, Inf, and NaN are considered as logic TRUE.
For example, evaluations of !(—0.0) and !NaN will get the values of 1 and 0, respectively.

5.4 Bitwise Operations

In Ch, there are six bitwise operators &, |, ~, <<, >>, and ~, corresponding to bitwise and,
inclusive or, exclusive or, left shift, right shift, and one’s complement, respectively.
These operators in Ch are in full compliance with the ANSI C standard. They can only be applied
to integral data which are char and int at its current implementation of Ch. The returned data
type depends on the data types of operands. The result of the unary operator ~ keeps the data
type of its operand. Results of binary operators &, |, and ~ will have the higher data type of two
operands. The binary operators << and >> return the data type of the left operand.

However, some undefined behaviors in ANSI C are defined in Ch. For operators << and >>,
the right operand can be any data type so long it can be converted into int internally whereas the
right operand must be a positive integral value in ANSI C. In Ch, if the right operand is negative
integral value which may be converted from a floating-point data, the shifting direction will be
reversed. For example, the expression of 7 << —2.0 is equivalent to 7 >> 2.0 in Ch. Therefore, only
one of these two shift operators is needed in Ch. The use of operator << is recommended for Ch
programming. A program with dual shift directions for one operator can be cleaner as compared
with unidirectional shifts of two operators.

5.5 Assignment Operations

Besides the regular assignment statement, there are nine assignment operators of +=, -=, *=,
/=, &=, |=, "=, <<=, and >>=. These assignment operators are ANSI C compatible. A lvalue is
any object that occurs on the left hand side of an assignment statement. The lvalue refers to a
memory such as a variable or pointer, not a function or constant. The Ch expression of 1value
op= rvalue is defined as 1value = lvalue op rvalue where lvalue is any valid lvalue including
complex numbers discussed in (Cheng, 1993) and it is only evaluated once. For example, i += 3 is
equivalent to i = i+3, and real(c) *= 2 is the same as real(c) = real(c)*2. But, statement

*ptr++ += 2 is different from statement *ptr++ = *ptr++ +2 because lvalue *ptr++ contains
an increment operation. The operation rules for operators of +, -, *, /, &, |, =, <<, and >>
have been discussed in the previous sections.

5.6 Address and Indirection Operations

The unary operator & gives the address of an object. The operator &, which is ANSI C com-
patible, can only be applied to a valid lvalue.

When an unary indirection operator * is applied to a pointer, it accesses the object the pointer
points to. A pointer and an integer can be added or subtracted. Th expression ptr+n gives the
address of the n-th object beyond the one ptr currently points to. The memory locations of
pointers ptr+n and ptr are n¥sizeof (*ptr) bytes apart, i.e., n is scaled to n*sizeof (*ptr) bytes
according to declaration of pointer variable ptr. Pointer subtraction for pointers with the same
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data type is permitted. If ptrl > ptr2, ptrl — ptr2i gives the number of objects between
ptr2 and ptrl. Array of pointers can also be declared. When a pointer is declared, it is initialized
to zero. The symbolic constant NULL, instead of zero, can be used in the program. If ptr is NULL;
the operand *ptr in an expression is evaluated as zero, when *ptr is used as a lvalue, a memory
of sizeof(*ptr) will be allocated automatically for pointer ptr. In both cases, the system will print
out warning messages. The automatical memory allocation for a pointer which does not point to a
valid location can avoid a system crash.

Two pointers and constant NULL can be used in the relational operations <, <=, ==, >=, >,
and !=. In assignment and relational operations, pointers with different data types can work
together without explicit type conversions. For example, following are the valid Ch program.

int *iptr;
float *fptr;
iptr = (int *)malloc(90);
fptr = malloc(80); /# fptr = (float *)malloc(80)
if (iptr != NULL && iptr != fptr)
free(iptr);
iptr = fptr;

Unlike ANSI C, not only all variables are initialized to zero when they are declared, but also the
memory allocated by either function malloc() or calloc() is initialized to zero in Ch. The casting
operation for three memory allocation functions malloc(), calloc(), and realloc() is unnecessary.
If no memory is available, these functions will return NULL and the system will print out error
messages. The function free(ptr) will deallocate the memory allocated by these three functions
and set pointer ptr to NULL. In C, ptr is not set to NULL when the memory it points to is
deallocated. This dangling memory makes the debugging of the C program very difficult because
the problem will not surface until this deallocated memory is claimed again by other parts of the
program. The other related functions such as memecpy() in Ch for memory manipulations are
ANSI C compatible.

As described before, there are several system defined parameters such as NaN, Inf, FLT_MAX,
INT_MIN, FLT _EPSILON, etc.. These parameters cannot be used as lvalues so that an accidental
change of values of these parameters can be avoided. However, if really necessary, the values of these
parameters can be modified by accessing their memory locations through pointers. For example, a
numerical algorithm may depend on the parameters FLT_EPSILON and Inf. One can change the
values of FLT_EPSILON to 10~* and Inf to FLT_MAX by the following Ch code

float *fptr;
fptr = & FLT_EPSILON; *fptr = le-4;
fptr = &Inf; *fptr = FLT_MAX;

which may, in effect, change the underlying numerical algorithm.

5.7 Increment and Decrement Operations

C is well-known for the succinctness of its syntax. The increment operator ++ and decrement
operator —- are unique to C. These two operators in Ch are compatible with ANSI C. The increment
operator ++ adds 1 to its operand whereas the decrement operator —- subtracts 1. If ++ or —- is
used as a prefix operator, the expression increments or decrements operand before its value is used,

18



Harry H. Cheng Scientific Programming, Vol. 2, No. 3, Fall, 1993, pp. 49-75.

respectively. If it is used as a postfix operator, the operation will be performed after its value has
been used.

However, additional functions are added to these two operators in Ch. The repeated use of
operator ++ means successive increment whereas repeated use of operator -- indicates successive
decrement. These two operators can be combined in any combinations. A single + is treated as an
addition or unary plus operator depending on the context. Likewise, a single — can be a subtraction
or unary negation operator. For example, following are the valid Ch code.

i=+(-9); /# unary plus and negation operators

ittt J# i = i+2

j o= +Hi--; /# i =i+l § o= i; 4= i-1;

J o= i /#1=3; j=1i;

j = i /#1=1+43; j=1i; i =1 - 1;

j =i /3 =1i; 4 =1-2;

i = (kptr++++)++; /# ptr = ptr + 2; i = *ptr; *ptr = *ptr + 1;

By definition, ++1value means 1value = lvalue + 1 and expression lvalue + 1, and lvalue--
is equivalent to expression 1value - 1 and lvalue = lvalue - 1. The ++ and -- operators can
be applied to any valid lvalues, not just integral variables, so long as the lvalue can add or subtract
an integer value of 1 according to internal data conversion rules. Following are the valid Ch code.

int i, al4], *aptr[5];

complex z, *zptr; /# declare complex variable and complex pointer
Z = zZ++; /# z =z + 1; z is a complex variable

zptr = (complex *)malloc(sizeof (complex)*90) ;

aptr[3] = malloc(90); /# aptr[3] = (int *)malloc(90) ;

/* imaginary(z)=complex(0.0, 4.0); zptr=zptr+1l; *aptr[3]=1; i=i-1 */
imaginary(z) = ++++real (+++++x (zptr+++2*(int)real (++*aptr[3+i--]1)));

real (z)++; /# real(z) = real(z) + 1;
—----imaginary(*zptr) ; /# imaginary(*zptr) = imaginary(*zptr) - 2;
a[--i] = a[2]++; /# 1 =1 - 1; al[i] = a[2]; a[2] = a[2] + 1;

Details about complex numbers and functions real() and imag() in Ch are described in (Cheng,
1993). Note that the memory allocated by function malloc() is initialized to zero.

5.8 Type Conversions

In Ch, the explicit type conversion is not necessary in many cases when C needs it as is shown
in the previous section for aptr[3] = malloc(90). But, sometimes, it is necessary to convert a
value of one type explicitly to a value of other type. This can be achieved by the traditional C
cast operation (type)expr where expr is a Ch expression and type is a data type of single object
such as char, int, float, double or any pointer declaration identifiers such as char *, double
*, complex *, etc.. For example, (int)9.3, (float)ptr, (double)9, (float*)&i, (complexsx)iptr
are valid Ch expressions. There is an additional functional type casting operation in Ch in the
form of type(expr) for data types of single object or type(exprl, expr2, ...) for data types
of aggregate such as complex and dual (Cheng, 1993; 1993b). In this functional type casting
operation, type shall not be a pointer data type. For example, int(9.3), complex(float(3), 2),
dual(2, float(3)) are valid Ch expressions. Note that operation float() is the same as real() if they
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are used as operands. However, function real() can be used as a lvalue as described in (Cheng,
1993) whereas float() cannot.

The sizeof() function can also use a type identifier. For example,
ptr = malloc(5+sizeof (int*)+sizeof ((int)2.3) + sizeof ((int)float(90)+7)) isa valid Ch
statement.

One important feature of C is its capability for hardware interface by accessing a specific memory
location in a computer. This is achieved by pointing a pointer to a specific memory location or
register. This hardware interface capability is retained in Ch. For example, the following statements
will assign the integer value at the memory location (68FFE);s to variable i and set the byte at
the memory address (FF000):6 to (01101001)2;

char *cptr;
int i, *iptr, j;

iptr = (int *)O0X68FFE; /# iptr points to the memory location at OX68FFE
i = *iptr; /# i equals the value at 0X68FFE;

cptr = (char *)0XFF000; /# cptr points to the memory location at OXFF000
*cptr = 0B01101001; /# 0B01101001 is assigned to OXFF000

cptr = (float *)cptr + 1; /# cptr points to O0XFF004, not OXFFOO1.
/# note: (float *)cptr++ is (float *) (cptr++)
j = int(cptr); /# j becomes OXFF004

Note that an integral value cannot be assigned to a pointer variable without an explicit type cast,
and vice versa. The lower segment of the memory in a computer is usually reserved for the operating
system and system programs. An application program will be terminated with exception handling
if these protected segments of memory are messed up by pointers.

6 Real Functions

A computer language with no mathematical functions is not suitable for scientific computing
and many other applications. The C language is a small language; it does not provide mathematical
functions internally. The mathematical functions are provided in a standard library of mathematical
functions. Writing good mathematical functions is not easy as pointed out by Plauger (1992). The
mathematical functions implemented in (Plauger, 1992) have provisions for handling of —Inf, Inf,
and NaN; but they do not distinguish —0.0 from +0.0, which is the case for most implementations
of mathematical functions in C. Since C does not provide mathematical functions internally, like
arithmetic operations in K&R C, the returned value from a standard mathematical function is a
double floating-point number regardless of the data types of the input arguments. In some of C
implementations, if the input arguments are not doubles the mathematical functions may return
erroneous results without warning. Numerically-oriented programmers have little tolerance with
respect to the implicit conversion of the data type from float to double for arithmetic operations of
a computer language as discussed in section 3. However, they generally accept the strongly typed
implementation of mathematical functions. Note that the ANSI C mathematical standard library
does not provide any float functions. If a different return data type is desired for a mathematical
function, a new function with a different name will be needed. For example, the operation sin(1)
appears right in C. Indeed, most C programs will execute this operation calmly, but, maybe with
an erroneous result because the input data type of integer is not what sin() function expected. As
another example, the function abs() in C returns an absolute int number while fabs() will result
in a double number. If one wants to get a float absolute value, a new function has to be created.
As a result, one has to remember many arcane names for different functions.
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The external functions of Ch can be created in the same manner as in C. Unlike C, however, the
commonly used mathematical functions are built internally into Ch. The mathematical functions
in Ch can handle different data types of the arguments gracefully. The output data type of a
function depends on the data types of the input arguments, which is called polymorphism. Like
arithmetic operators, the built-in commonly used mathematical functions in Ch are polymorphic.
For example, for the polymorphic function abs(), if the data type of the input argument is int, it
will return an int as the absolute value. If the input argument of abs() is a float or double, the
output will return the same data type of float or double, respectively. For a complex number input,
the result of abs() is a float with the value of the modulus of the input complex number. Similarly,
if the argument data type is lower than or equal to float, sin() will return a float result correctly.
Function sin() can also return double and complex results for double and complex input arguments,
respectively. Because I/O functions are also built into Ch itself, different data types are reconciled
inside Ch. For example, printf ("%f", x) in C can print x if x is a float. But, if x is changed to
int in a program, the printing statement must also be changed accordingly as printf ("%d", x).
Therefore, the change of data type declaration of a variable will have to accompany the change of
many other parts of the program. Unlike C, the commands printf(x) and printf(sin(x)) in Ch can
handle different data types of x; x can be char, int, float, double, or complex.

For portability, all mathematical functions included in the ANSI C header math.h have been
implemented polymorphically in Ch. The names of built-in mathematical functions of Ch presented
in this paper are based upon the ANSI C header math.h. However, one can change, add, or remove
these functions and operators in Ch at his/her discretion. These mathematical functions are ANSI
C compatible. If the arguments of these functions have the data types of the corresponding ANSI
C mathematical functions, there is no difference of these functions between the ANSI C and Ch
from a user’s point of view. Besides the aforementioned polymorphic nature, the mathematical
function in Ch is more powerful due to its abilities to handle metanumbers.

The ANSI C standard is descriptive, many special cases are implementation-dependent. Most
mathematical operations related to the metanumbers have not been spelled out in the ANSI C
standard. Therefore, loosely speaking, the built-in polymorphic mathematical functions of Ch are
ANSI C compatible. Note that, unlike ANSI C, polymorphic mathematical function names in this
section, by default, are keywords. In the same token, Inf and NaN are keywords in Ch. The
metanumbers Inf and NaN are handled as system constants in the similar manner as constants
such as 2.0. Therefore, a declaration statement like

int Inf, NaN, sin;

is not valid in Ch by default. However, keywords and symbols in Ch can be added, changed, and re-
moved by the built-in functions addkey (char *o0ld resword or_symbol, *new resword or symbol),
chkey(char *old_resword or_symbol, *new_resword or_symbol), and
remkey(char *resword or_symbol), respectively. For example, the command
addkey ("fabs","abs") will make function fabs() the same as function abs(). The following
Ch program is valid.

chkey ("sin", "SIN");

addkey("printf", "write");

addkey("double", "double_precision");

addkey("=", "equals");

addkey("+", "plus");

begin /# real code begins here {
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double_precision sin; /# double sin;

sin equals SIN(30) plus 6; /# sin = SIN(30)+6;

write("The keyword changeability is unique to CH.\n");
end /# end }

where chkey("sin", "SIN") changes the keyword sin to SIN. Once a default keyword sin is
changed, it then can be used as a regular variable. However, using function names in a standard
library as variable names is considered a bad programming practice. Whether an object is a keyword
can be tested by the built-in function iskey(char *name). The case sensitivity for a Ch program
can be switched off and on through a boolean switch function casesen(onoff). Therefore, porting
code written in other languages and software packages to Ch is not very difficult due to the keyword
changeability. The detailed exploration of this unique Ch feature is beyond the scope of this paper.

In this section, the built-in mathematical functions of Ch will be discussed. The input and
output of the functions involving the metanumbers will be highlighted. The results of the mathe-
matical functions involving metanumbers are given in Tables 13 to 16. In Tables 13 to 16, unless
indicated otherwise, z, 1, z2 are real numbers with 0 < z,z1,22 < 00; and k is an integral value.
The value of pi is the finite representation of the irrational number 7 in floating-point numbers.
The returned data of a function is float or double depends on the data type of the input arguments.
In Table 13, if the order of the data type x is less than or equal to float, the returned data type is
float. The returned data type is double if x is a double data. If the argument x of a function in
Table 13 is NaN, the function will return NaN. In Tables 14 to 16, the returned data type will be
the same as the higher order data type of two input arguments if any of two arguments is float or
double. Otherwise, the float is the default returned data type.

Functions defined in this section will return float or double, except for functions abs() and
pow(). If arguments of these two functions are integral values, the returned data types are ints.
For example, pow(2,16) will return the integral value of 65536. In Ch, if the exponent of the second
argument of function pow() is an integral value, the computation will be more efficient than its
real counterpart. For example, pow(x, 3) is more efficient than pow(x,3.0). Function pow() will
optimize the performance for applications that involve a large amount of integer exponentiation.
Function pow() behaves like the exponentiation operator ** in Fortran. Note that ANSI C forces
function pow() to deliver a double data, which not only inhibits the optimization for integer expo-
nentiation, but also changes the data type of an integral expression into a floating-point expression
due to the internal data type conversion. This is not applicable for many applications.

The absolute function abs(x) will compute the absolute value of an integer or a floating-point
number. The absolute value of a negative infinity —oo is a positive infinity oco.

The sqrt(x) function computes the nonnegative square root of x. If x is negative, the result
is NaN, except that sqrt(—0.0) = —0.0 according to the IEEE 754 standard. The square root of
infinity sqrt(oco) is infinity.

The exp(x) function computes the exponential function of x. The following results hold: e~ =
0.0; e® = o0; 00 = 1.0.

The log(x) function computes the natural logarithm of x. If x is negative, the result is NaN.
The value of —0.0 is considered equal to 0.0 in this case. The following results hold: log(+0.0) =
—00; log(oo) = oo. The 1ogl0(x) function computes the base-ten logarithm of x. If x is negative,
the result is a NaN. Like the function log(), the value of —0.0 is considered equal to 0.0. The
following results hold: log10(+£0.0) = —o0;logl10(o0) = oo.

The trigonometric functions sin(x), cos(x), and tan(x) computes sine, cosine, and tangent of x
measured in radians, respectively. The sine and tangent are odd functions so that sin(+0.0) = +0.0
and tan(+0.0) = £0.0. The cosine is an even function so that cos(+0.0) = 1.0. When the value
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Table 13: Results of real functions for +0.0, £00, and NaN.

function x value and results
—Inf —x1 —-0.0 0.0 x2 Inf NaN
abs(x) Inf z1 0.0 0.0 Z9 Inf NaN
sqrt(x) NaN NaN —0.0 0.0 sqrt(x)  Inf NaN
exp(x) 0.0 e ™1 1.0 1.0 e”  Inf NaN
log(x) NaN NaN —Inf —Inf log(z2) Inf NaN
log10(x) NaN NaN —Inf —Inf logig(z2)  Inf NaN
sin(x) NaN —sin(z;) —0.0 0.0 sin(zg) NaN NaN
cos(x) NaN cos(z1) 1.0 1.0 cos(zg) NaN NaN
tan(x) NaN —tan(z;) —0.0 0.0 tan(ze) NaN NaN
Note: tan(£7/2 + 2 k% w) = £Inf
asin(x) NaN —asin(z1) —0.0 0.0 asin(zz) NaN NaN
Note: asin(x) = NaN, for |z| > 1.0
acos(x) NaN acos(z1) pi/2 pi/2 acos(ze) NaN NaN
Note: acos(x) = NaN, for |z| > 1.0
atan(x) —pi/2 —atan(z;) —0.0 0.0 atan(zy) pi/2 NaN
sinh(x) —Inf —sinh(z;) —0.0 0.0 sinh(zy)  Inf NaN
cosh(x) Inf cosh(z;) 1.0 1.0 cosh(zy)  Inf NaN
tanh(x) -1.0 —tanh(z;) —-0.0 0.0 tanh(zg) 1.0 NaN
asinh(x) —Inf —asinh(z1) —-0.0 0.0 asinh(z2) Inf NaN
acosh(x) NaN NaN NaN NaN acosh(zg)  Inf NaN
Note: acosh(x) = NaN, for z < 1.0; acosh(1.0) = 0.0
atanh(x) NaN —atanh(z;) —0.0 0.0 atanh(zo) NaN NaN
Note: atanh(x) = NaN, for |z| > 1.0; atanh(+1.0) = +Inf
ceil(x) —Inf ceil(—z1) —-0.0 0.0 ceil(z2) Inf NaN
floor(x) —Inf floor(—z;) —0.0 0.0 floor(zz)  Inf NaN
ldexp(x, k) —Inf  ldexp(—z1,k) —0.0 0.0 ldexp(zs,k) Inf NaN
modf(x, &y) | —0.0 modf(—zi,&y) —0.0 0.0 modf(zs,&y) 0.0 NaN
y —Inf y —0.0 0.0 Y Inf NaN
frexp(x, &k) | —Inf frexp(—zi,&k) —0.0 0.0 frexp(zo,&k) Inf NaN
k 0 k 0 0 k 0 0
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Table 14: Results of the function pow(y, x) for £0.0, 00, and NaN.

pow(y, x)
y value x value
—Inf —x1 —-2k-1 -2k -0.0 0.0 2k 2k+1 x2 Inf NaN
Inf 0.0 0.0 0.0 0.0 NaN NaN Inf Inf  Inf  Inf NaN
y2 > 1 0.0 3™ gt g 100 10 y3F M 45? Inf NaN
1.0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 NaN NaN
0<y2<1 Inf y; yy KLy, 2k 1.0 1.0 y3F  4ZFL 42 0.0 NaN
0.0 Inf Inf Inf Inf NaN NaN 0.0 0.0 0.0 0.0 NaN
—0.0 Inf Inf —Inf Inf NaN NaN 0.0 —0.0 0.0 0.0 NaN
—yl NaN NaN —y;2*7! 472 NaN NaN ¢?F —y2T1 NaN NaN NaN
—Inf NaN NaN -0.0 0.0 NaN NaN Inf —Inf NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
Table 15: Results of the function atan2(y, x) for £0.0, oo, and NaN.
atan2(y, x)
y value x value
—Inf —x1 —0.0 0.0 x2 Inf NaN
Inf 3xpi/4 pi/2 pi/2  pi/2 pi/2  pi/4 NaN
y2 pi  atan2(yq, —z1) pi/2  pi/2  atan2(y2,z2) 0.0 NaN
0.0 pi pi pi 0.0 0.0 0.0 NaN
-0.0 —pi —pi  —3%pi/4 —pi/2 —-0.0 —-0.0 NaN
-yl —pi atan2(—y;, —z1) —pi/2 —pi/2 atan2(—y;,z2) —0.0 NaN
—Inf —3+pi/4 —pi/2 —pi/2 —pi/2 —pi/2 —pi/4 NaN
NaN NaN NaN NaN NaN NaN NaN NaN
Table 16: Results of the function fmod(y, x) for +0.0, 00, and NaN.
fmod(y, x)
y value x value
—Inf —x1 —-0.0 0.0 x2 Inf NaN
Inf NaN NaN NaN NaN NaN NaN NaN
y2 Yo fmod(ye, —z1) NaN NaN fmod(yo, z2) 1o NaN
0.0 0.0 0.0 NaN NaN 0.0 0.0 NaN
-0.0 -0.0 —0.0 NaN NaN —0.0 —-0.0 NaN
—yl y1  fmod(—y1,—z1) NaN NaN fmod(—yi,z2) —y1 NaN
—Inf NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

24




Harry H. Cheng Scientific Programming, Vol. 2, No. 3, Fall, 1993, pp. 49-75.

of the argument is positive or negative infinity, all these functions return NaNs. Theoretically, it is
true that tan(+£7/2+4 2%k *7) = +o0o. But, in practice, because the irrational number = cannot be
represented exactly in float or double data, the tan(x) function will never return infinities of +oo.
Notice that the function tan() is not continuous at 7/2, tan(w/2—¢) = oo and tan(w/2+¢) = —oo,
where ¢ is a very small number. Due to the finite precision and round-off errors of floating-point
numbers, one may get a wrong result near the value of /2.

The properties of odd functions of sine and tangent are reflected in their inverse functions
asin(x) and atan(x). The asin(x) function computes the principal value of the arc sine of x.
When the value of x is in the range of [—1.0,1.0], the asin(x) function returns the value in the
range of [—7/2,7/2] radians. When x is outside the range of [—1.0,1.0], the arc sine is undefined
and asin(x) returns NaN. The range of the input value for the even function acos(x) of arc cosine
is the same as that of asin(x). The acos(x) function computes the principal value of the arc cosine
of x. The range of the principal value of the arc cosine is [0.0, 7] radians. The atan(x) function
computes the principal value of the arc tangent of x. The atan(x) function returns the value in
the range of [—7/2, 7/2] radians. The following results hold: atan(+oo) = +7/2.

Like trigonometric functions sin(x) and tan(x), the hyperbolic functions sinh(x) and tanh(x)
are odd functions. The sinh(x) and tanh(x) functions compute the hyperbolic sine and tangent of x,
respectively. The even function cosh(x) computes the hyperbolic cosine of x. The following results
hold: sinh(+0.0) = £0.0; cosh(£0.0) = 1.0; tanh(+0.0) = +0.0; sinh(+00) = +o00; cosh(+oc) =
oo; tanh(+o00) = £+1.0;

The inverse hyperbolic functions are not defined by the ANSI C standard. In Ch, the inverse
hyperbolic sine, cosine, and tangent are defined as asinh(x), acosh(x), and atanh(x), respectively.
For the acosh(x) function, if the argument is less than 1.0, it is undefined and acosh(x) returns
NaN. acosh(1.0) returns a positive zero. The valid domain for function atanh(x) is [-1.0,1.0]. The
following results hold: asinh(+0.0) = £0.0;asinh(+o00) = +o00;acosh(co) = oo;atanh(+0.0) =
40.0; atanh(+1.0) = too.

The ceil(x) function computes the smallest integral value not less than the value of x. The
counterpart of ceil(x) is the function floor(x) which computes the largest integral value not greater
than the value of x. The following results hold: ceil(£0.0) = £0.0; floor(+0.0) = £0.0; ceil(+o0) =
+00; floor(+oo) = +o0

The ldexp(x, k) function multiplies the value of the floating-point number z with the value of
2 raised to the power of k. The returned value of = * 2¥ keeps the sign of .

The functions modf(x, xptr) and frexp(x, iptr) have two arguments. The first argument is
the input data and the second argument is a pointer which will store the resulted integral part of
the function call. The modf(x, xptr) function breaks the argument x into integral and fractional
parts, each of which has the same sign as the argument. The modf() function returns the fractional
part and the integral part is stored to the memory pointed to by the second argument. The basic
data types of two arguments must be the same. For example, if the first argument x is float, the
second argument xptr must be a pointer to float. If the first argument is a metanumber, the
integral part will equal the metanumber while the fractional part becomes zero with the sign of the
first argument except for NaN. The frexp(x, iptr) function breaks a floating-point number into a
normalized fraction and an integral power of 2 in the form of z * 2¥. The frexp(x, iptr) function
returns the normalized fraction and the integral part is stored to the memory pointed to by the
second argument which is a pointer to int. If the first argument is a metanumber, the fractional
part will equal the metanumber while the integral part becomes zero.

The mathematical functions pow(y, x), atan2(y,x), and fmod(y,x) have two input arguments.
The results of these three functions are given in Tables 14-16. The pow(y, x) function computes y
raised to the power of x, which is y* or ¢®1°8(%) If x is negative, y* becomes 1 /y"CI with the defined
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division operation given in Table 6. If y is less than zero and x is not an integral value, the function
is undefined. The value of —0.0 is considered equal to 0.0 in the evaluation of log(—0.0) when the
value of x is not an integral number. When x is an odd integer number and y is negative, the result
is negative. If both y and x are zeroes, 0° is indeterminate. For a positive value of y, the result
depends on the value of y when x is infinity. Ify is less than 1, y*° is 0.0; 1.0°° is indeterminate; if y is
greater than 1, y* is infinity. If y is infinity and x is zero, (+00)*%? are indeterminate. It has been
suggested that %0 = 1 for any x, including 0.0, Inf, and NaN (Kahan, 1986; Thomas, 1993), which
has been implemented in many computer systems including (Sun, 1990a). It is true that if f(z) and
g(x) are analytic at a, and lim,_,, f(z) = 0 and lim,;_,, g(z) = 0; then lim,_,, f(x)9® = 0° = 1.
For example, limg_,oz* = 1 and lim,_,q z°™(*) = 1. It is not difficult to find examples that 0° # 1
such as in lim,_,, z'°6®) = ¢ and lim,_,4(e"'/*)® = 1/e. To ensure the proper flow, a Ch program
shall not stop during the execution due to invalid operations. Ch is designed to be deterministic;
all operations and built-in functions either deliver correct numerical results, including Inf, or NaN.
It is a bad design for a computer language if at one point it can deliver a correct numerical result
while at other point it returns a wrong numerical result. In general, whenever there is a problem in
defining the value for a function or operation mathematically, the corresponding Ch expression will
return NaN. Because Ch expressions such as 1/log(0.0) and exp(1/—0.0) evaluate to 0.0, therefore,
pow(0.0,0.0) is defined as NaN in Ch. For the same reason, pow(Inf, 0.0) and pow(NaN, 0.0) are
also defined as NaN. Due to the similar considerations, our decision on z° has concurred with the
proposed standard for Ada (Dritz, 1991a,b). But, the definition given in Table 14 is much more
inclusive than what proposed for Ada. In general, all mathematically indeterminate expressions
are defined as NaN in Ch. For an interesting historical debate about whether 0° equal 1 or 0° is
undefined, one can see (Knuth, 1992).

The atan2(y, x) function computes the principal value of the arc tangent of y/x, using the signs
of both arguments to determine the returned value in the range of [—x, 7] radians. Given the (z,y)
coordinates of a point in the X-Y plane, the atan2(y, x) function computes the angle of the radius
from the origin to the point. Any positive number which overflows is represented by Inf. The nega-
tive overflow is —Inf. The following results hold: atan2(+Inf, —Inf) = +37/4; atan2(+Inf, Inf) =
+7/4; atan2(xInf,x) = +7/2; atan2(+y,Inf) = £0.0; and atan2(ty, —Inf) = +x. When
both values of y and x are zeroes, the function atan2(y, x) will return the results consistent
with the manipulation of metanumbers discussed so far. The value of —0.0 is considered as
a negative number less than zero. Therefore, the following results are defined for these spe-
cial operations: atan2(0.0,—-0.0) = 7; atan2(0.0,0.0) = 0.0; atan2(—0.0,—0.0) = —3x/4; and
atan2(—0.0,0) = —x/2, which is consistent with the treatment of the metanumbers of +Inf in
atan2(—Inf, —Inf) = —3pi/4. In Ch, atan2(0.0,0.0) is a specially defined value. These results
are different from those by the SUN’s ANSI C compiler, which is in conformance with 4.3 Berke-
ley Software Delivery (SUN, 1990a). According to 4.3BSD, the results for these special cases are
atan2(+0.0, —0.0) = £0.0 and atan2(+0.0,0.0) = £, which implies that the values of £0.0 in
z-axis are different from those in y-axis.

The fmod(y,x) function computes the floating-point remainder of y/x. The fmod(y,x) function
returns the value of y —i * z for some integer i. The magnitude of the returned value with the same
sign of x is less than the magnitude of x. If x is zero, the function is undefined and returns NaN.
When y is infinity, the result is also undefined. If x is infinity and y is a finite number, the result
is the same as y.
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7 Programming Examples

7.1 Computation of Extreme Values of Floating-Point Numbers

Due to different machine architectures for representation of floating-point numbers, the extreme
values such as the maximum representable floating-point value are different. For two machines with
the same representation of floating-point values, the same operations such as adding two values on
each machine may get different results, depending on the schemes for rounding a number which
cannot be represented exactly. To aid serious numerically-oriented programmers in writing their
programs, the ANSI C standard added header float.h as a companion to the existing header
limits.h which deals with the machine-dependent integer values only. In this section, we will
show how parameters defined in the ANSI C standard library float.h can be computed in Ch
without knowing the intricate architecture of the computer. A program can less depend on these
parameters if a language can support metanumbers Inf and NaN. The use of metanumbers such as
Inf and NaN instead of parameters is recommended for Ch programming.

7.1.1 Minimum Floating-Point Numbers FLT_MIN and FLT_MINIMUM

The parameter FLT MIN is defined in the ANSI C standard library header float.h as a
minimum normalized positive floating-point float number. If a number is less than FLT_MIN,
it is called an underflow. Since the IEEE 754 standard provides a gradual underflow, the minimum
denormalized positive floating-point float number is defined as FLT_MINIMUM in Ch. Because
of gradual underflow, the Ch expression x - y == 0 is TRUE iff x = y, which is not true for
systems that lack gradual underflow. This parameter is very useful from a programming point of
view. As an example, assume that values of FLT_ MINIMUM and FLT _MIN are 1.401298e-45 and
1.175494e-38, respectively. The following Ch code will illustrate subtleties of these two parameters.

float f, *flt_minimum;
int minimum, i;

minimum = 1; /# memory location becomes 00000001
flt_minimum = &minimum; /# *flt_minimum becomes FLT_MINIMUM

i = *flt_minimum > 0.0; /# i becomes 1

i = FLT_MIN > *flt_minimum; /# i becomes 1

i = fabs(*flt_minimum) > 0.0; /# i becomes 1

f = (*flt_minimum)/(*flt_minimum); /# f becomes 1.0; note 0.0/0.0 = NaN

f =f/1.e-46 /# f becomes Inf: note 1.e-46 < FLT_MINIMUM

Applications of these two numbers in handling of branch cuts of multiple-valued complex functions
will be described in (Cheng, 1993).

7.1.2 Machine Epsilon FLT _EPSILON

The machine epsilon FLT EPSILON is the difference between 1 and the least value greater than 1
that is representable in float. This parameter, defined in the ANSI C header float.h, is a system
constant in Ch. This parameter is very useful for scientific computing. For example, due to the
finite precision of the floating-point representation and alignment of addition operation, when a
significantly small value and a large number are added together, the small number may not have
contribution to the summation. Using FLT_EPSILON, whether adding a small positive number x
to a large positive number y can at least capture three decimal digits of significance of y can be
tested by
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if(x < y * FLT_EPSILON * 1000)

The following Ch code can calculate and print out the machine epsilon on the screen

float epsilon;
epsilon = 1.0;
while(epsilon+l > 1)
epsilon /= 2;
epsilon *= 2;
printf ("The machine epsilon FLT_EPSILON is %e", epsilon);

For SUN SPARCStations, the output from the execution of the above code is as follows:

The machine epsilon FLT_EPSILON is 1.192093¢-07

which matches the value of the parameter FLT_EPSILON defined in the ANSI C header float.h.
Although the above computation of the parameter FLT_EPSILON is simple in Ch which uses the
default rounding mode of round toward nearest, it may be vulnerable to other rounding modes. A
more robust method (Plauger, 1992) to obtain this parameter is by manipulating the bit pattern
of the memory of a float variable as shown in section 7.1.1.

7.1.3 Maximum Floating-Point Number FLT_MAX

The parameter FLT MAX defined in the ANSI C header float.h is the maximum representable
finite floating-point number. Any value that is larger than FLT MAX will be represented as Inf and
any value less than —FLT MAX is represented by —Inf. If the value of FLT MAX is represented as
fltmaz x 10¢, then the following two equations will be satisfied

(fltmaz + FLT_EPSILON) % 10° = Inf

(fltmaz + FLT_EPSILON/2) x 10¢ = FLT_MAX

where the machine epsilon FLT_EPSILON is defined in the previous section 7.1.2 and exponen-
tial value e is to be calculated. The following Ch program will calculate FLT_MAX as well as
FLT_MAX_10_EXP and FLT_MAX_EXP of the machine and print them on the screen. The value
of FLT_MAX_10_EXP is the maximum integer such that 10 raised to its power is in the range of the
representable finite floating-point numbers. The value of FLT MAX_EXP is the maximum integer such
that 2 raised to its power minus 1 is a representable finite floating-point number. For the illustrative
purpose, only the while-loop control structure is used in this example.

float b, £, flt_max;
int e, i, flt_max_exp, flt_max_10_exp;
b=10; e = 0; £ = b;
/* calculate exponential number e, 38 in the example */
while(f != Inf)
{
e++; fx=b;
}
flt_max_10_exp = e;
/* calculate leading non-zero number, 3 in the example */
i=0; f=0.0;
while(f != Inf)
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f = ++i * pow(b, e);
/* calculate numbers after decimal point, 40282347... in the example */
flt_max = i;
while(e !'= 0)
{
flt_max = --flt_max * b;
e—; 1 =0; £f =0.0;
while( f != Inf &% i < 10)

{
f = ++flt_max * pow(b, e);
it++;
}
}
f = frexp(flt_max, &flt_max_exp); /# calculate FLT_MAX_EXP

printf ("FLT_MAX = %.8e \n", flt_max);

printf ("FLT_MAX (in binary format) = %b \n", flt_max);
printf ("FLT_MAX_10_EXP = Jd \n", flt_max_10_exp);
printf ("FLT_MAX_EXP = Jd \n", flt_max_exp);

The output of the above code on SUN SPARCStations is as follows:

FLT MAX = 8.40282347e+38

FLT_MAX (in binary format) = 01111111011111111111111111111111

FLT MAX 10_.EXP = 38

FLT MAX EXP = 128

The above values for FLT MAX, FLT MAX 10 _EXP, and FLT MAX EXP are the same as the parameters
defined in the ANSI C header float.h. By just changing the declaration of the first statement
from float to double, the corresponding extreme values DBL_MAX, DBL_MAX_10_EXP, and DBL_MAX EXP
for double can be obtained. In this case, the polymorphic arithmetic operators and mathematical
functions pow() and frexp() will return double data. Note that the default mode for floating-point
constants is float which can be switched to double by function floatconst(FALSE).

In the above calculation of the extreme floating-point values, the user does not need to know the
intricate machine representation of floating-point numbers. If one knows the machine representation
of a floating-point number, the calculation of the extreme values can be much simpler. For example,
according to Table 1, the value of FLT_MAX is represented in a hexadecimal form as (TF7FFFFF ).
The following Ch program can be used to calculate the maximum representable finite floating-point
number FLT_MAX.

int i; float *flt_max;
flt_max = &i; /# flt_max points to the memory location of i
i = OXT7FT7FFFFF; /# *f1t_max becomes FLT_MAX

The maximum float number FLT_MAX can also be readily obtained by the I/O function scanfy()
with the binary input format "%32b". For interested readers, can you think of any other method
for computing the maximum representable finite floating-point number FLT MAX by a C or Fortran
program without knowing the machine architecture? The major difficulty is that, due to the
internal alignment for calculation of the floating-point numbers, the significantly small number will
be ignored when it is added to or subtracted from a large number. For example, the execution of
the command £ = FLT_MAX + 3.0e30 will give the variable £ the value of FLT_MAX although the
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Figure 1: Function f(z) = es.

value of 3.0 * 1030 is not a small number, but it is significantly smaller than FLT _MAX and ignored
in the above addition operation. The following two Ch expressions will further demonstrate the
difference between FLT_MAX and Inf, 1/Inf*FLT_MAX = 0.0 and 1/FLT_MAX«FLT_ MAX = 1.0.

7.2 Programming with Metanumbers

The Ch language distinguishes —0.0 from 0.0 for real numbers. The metanumbers 0.0, 0 0,
Inf, —Inf, and NaN are very useful for scientific computing. For example, the function f(z) = ex is
not continuous at the origin as is shown in Figure 1. This discontinuity can be handled gracefully
in Ch. The evaluation of the Ch expression exp(1/0. O) will return Inf and exp(l /(=0.0)) gives

0.0, which corresponds to mathematical expressions e°+ and €% or limg 0, em and lim;,_ .o em
respectively. In addition, the evaluation of expressions exp(1.0/Inf) and exp(l 0/(—Inf)) will get
the value of 1.0. As another example, the function finite(x) recommended by the IEEE 754
standard is equivalent to the Ch expression -Inf < x && x < Inf, where z can be a float/double
variable or expression. If z is a float, -Inf < x &% x < Inf is equivalent to -FLT MAX <= x &&
x <= FLTMAX; If z is a double, -Inf < x && x < Inf is equivalent to -DBL_MAX <= x && x <=
DBL_MAX; The mathematical statement “if — oo < walue <= 0o,then y becomes 00” can be easily
programmed in Ch as follows

if (-Inf < value && value <= Inf) y = Inf;

However, a computer can only evaluate an expression step by step. Although the metanumbers
are limits of the floating-point numbers, they cannot replace mathematical analysis. For example,
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the natural number e equal to 2.718281828... is defined as the limit value of the expression

1 T
lim <1 + —> =e.
T—00 T
But, the value of the expression pow(1.0 + 1.0/Inf, Inf) in Ch is NaN. The evaluation of this
expression is carried out as follows:

(10+£)W—(10+00)Inf—101nf_N N

If the value FLT_MAX instead of Inf is used in the above expression, the result is obtained by
1.0 ) FLT_MAX

FLT MAX

According to rules for negation, subtraction, and equal comparison operations given in Tables 2,
4, and 9, the Ch expression x-y == -(y-x) will always return TRUE for any values of z and y
with z equal to y, including NaN, +0.0, and £Inf. The outcome of this computation really matches
our intuition regarding algebra. However, there is a subtle difference between two expressions x —y
and —(z — y) in Ch. When z = y and NaN # z # Inf, z — y will produce 0.0 whereas —(z — y)
will return —0.0. If the IEEE 754 standard for handling NaN in relational operations was strictly
followed, the implication of the above operation would be much more complicated.

The application of NaN can be further demonstrated by numerically solving quadratic equation

(1_0 + — (1.0 + 0.0)FLT-MAX _ | oFLT-MAX _ 1 o

ar® +bzr+c=0
The execution of the following Ch program

float root[2];
float a,b,c;
a=1; b=2; ¢c = 2;
root [0] = (-b+sqrt(b*b-4*axc))/(2%a);
root[1] = (-b-sqrt(b*b-4%axc))/(2+*a);
if (root [0] == NaN)
printf("Solutions are complex numbers.\n");

will produce the following output
Solutions are complex numbers.
because solutions to the equation of 22 + 2z +2 = 0 are —1 4. In (Cheng, 1993), this equation
will be solved in complex numbers.

Because metanumber NaN is unordered, a program involving relational operations should be
handled cautiously. For example, the expression x > y is not equivalent to ! (x <= y) if either x
or y is a NaN. As an another example, the following Ch code fragment

if(x > 0.0) functionli();
else function2();

is different from the code fragment

if(x <= 0.0) function2();
else functionl();

The second if-statement should be written as if(x <= 0.0 || x == NaN) in order to have the
same functionality for these two code fragments.
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8 Conclusions

Ch not only retains most features of C from the scientific computing point of view, but also
extends C’s numerical computational capabilities. Metanumbers of —0.0, 0.0, Inf, —Inf, and NaN
introduced in Ch are external, which makes the power of the IEEE 754 arithmetic standard easily
available to the programmer. Furthermore, These metanumbers are extended to commonly used
mathematical functions in the spirit of the IEEE 754 standard. The rules for manipulation of these
metanumbers in I/O; arithmetic, relational, and logic operations; and commonly used mathemat-
ical functions in Ch are defined in this paper. The Ch extensions related to bitwise, assignment,
address and indirection, increment and decrement, as well as type conversion operations to ANSI
C have been highlighted. The gradual underflow feature of the IEEE 754 standard has been ex-
plored through parameter FLT _MINIMUM. Since the ANSI C standard is descriptive, the rigorous
definitions defined in this paper will not violate the standard. Like arithmetic operators, the built-
in mathematical functions in Ch are polymorphic, which means that the returned data type of
a function depends on the data types of the input arguments. This will simplify the scientific
programming significantly.

All points delineated in this paper have been implemented and tested in Ch. Example programs
with metanumbers and polymorphic mathematical functions are given in the paper. The function
names can be added, removed, and changed; and the mathematical operators can be added and
removed in Ch. Therefore, porting code from other languages to Ch is relatively simple. Most
C programs can be executed in the Ch environment with a minimum modification related to the
interpretive nature of the current implementation of Ch. The extension of scientific programming
with real numbers to scientific programming with complex numbers will be addressed in (Cheng,
1993).
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