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Extending C and FORTRAN for Design Automation

Harry H. Cheng

Abstract

The Ch programming language is designed to be a superset of C. Ch bridges the gap
between C and FORTRAN; it encompasses all the programming capabilities of FOR-
TRAN 77 and consists of features of many other programming languages and software
packages. Unlike other general-purpose programming languages, Ch is designed to be
especially suitable for applications in mechanical systems engineering. Because of our
research interests, many programming features in Ch have been implemented for design
automation, although they are useful in other applications as well. In this paper we will
describe these new programming features for design automation, as they are currently
implemented in Ch in comparison with C and FORTRAN 77.

1 INTRODUCTION

Computers have brought the revolutionary changes to design automation. Numerous design prob-
lems that used to be intractable have been solved using powerful computers. Computers were
programmed in the machine code in their earliest days. Machine code consists of highly inscrutable
sequences of 0’s and 1’s. The programming paradigm of the assembly language is at a significantly
higher level than that of machine code. Unlike machine code, with terms such as 0011000011011100,
assemblers allow users to program a computer with more meaningful symbols, such as ADD and
MOVE, as the processor’s built-in machine instructions in a one-to-one symbolic mnemonic form.
Like machine code, an assembly language program offers precise control over the way the processor
will carry out the instruction. Although an assembly language program can be very compact and
efficient, it is machine-dependent, tedious, hard to read, and difficult to change.

To make the computer accessible to users other than computer specialists, high-level program-
ming languages have been developed. The source program of high-level programming languages
uses readable English-like syntax so that users can concentrate on the problem rather than on the
underlying machine architecture of the computer. All currently existing general-purpose high-level
programming languages were not originally designed for applications in mechanical systems engi-
neering. For example, FORTRAN was the first general-purpose high-level computer programming
language ever developed. It was invented for FORmula TRANslation in the late 1950s by John
Bakus at IBM. Real and complex formulas, but not dual formulas, can be conveniently translated
into FORTRAN programs. Although some people think that it has lived considerably beyond its
time, FORTRAN 77 (ANSI, 1978) is still the primary language used by the professionals in mechan-
ical engineering both in academia and industry. The second most popular language used by the
professionals in mechanical engineering is the C programming language. Like other languages, C
was not designed for applications in mechanical system engineering. The C programming language
was invented by Dennis M. Ritchie at AT&T in the 1970s for Unix system programming (Kernighan
and Ritchie, 1978). C is commonly considered as a mid-level language, and it can provide precise
control over machines in the same manner as assembly languages. The user-base and its popularity
of C are continuously growing. Compared with FORTRAN 77, C contains modern data structures,
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a wide variety of data types, modern control structures, dynamic memory allocation capabilities,
capability of communication with the program’s environment, and more operators. Although these
desirable linguistic features provided in C are not present in FORTRAN 77, there exist serious
deficiencies in C for scientific programming. Some deficiencies for numerical computing in the orig-
inal K&R C (Kernighan and Ritchie, 1978) have been resolved in the ISO C standard (ISO, 1990).
For example, ISO C honored parentheses, defined additional floating-point arithmetic operations so
that floating-point operations for floats will be performed in float instead of in double, defined the
standard mathematical functions in the library header math.h, and provided the characteristics of
different floating-point data types in the library header float.h. These enhanced features make
ISO C more desirable for numerical computing than K&R C. However, many severe deficiencies
still remain in ISO C comparing with FORTRAN. For example, there are no intrinsic functions
and complex data type in C; passing multi-dimensional arrays to functions is cumbersome.

Since the development of FORTRAN 77, computer software has undergone revolutionary changes,
although they are not as dramatic as those of computer hardware. Many modern programming
features of C and other programming languages have been incorporated into a new standard For-
tran 90 (ISO, 1991). In light of the ISO C standard, the single most important enhancement of
Fortran 90 is to allow the programmer to manipulate array objects. Many other features introduced
in Fortran 90 are familiar to C programmers. For example, major additional features in Fortran 90,
such as control structures, data structures, pointers, user-defined types, recursive procedures, and
additional I/O functions were available in C at its earliest days. Because these modern features are
being added more than 30 years after its original design, the syntax and semantics of Fortran 90
become quite complicated in comparison with FORTRAN 77 and C.

Both C and FORTRAN contain features that do not represent good programming practice.
FORTRAN is based on the state-of-the-art of science and technology in the 1950s whereas C
reflects the needs of system programmers. They are not best suitable for applications in design au-
tomation. Researchers have investigated the programming requirements for design automation. For
example, a design process description language currently under development by Shah et al. (1993)
is based upon Prolog. They have investigated the high-level representation of design processes
and extensions of vocabulary to the base language. Neville and Joskowicz (1993) are developing
a representation language for automating mechanism design. In general, developing a brand new
language starting from scratch for design automation may not be justified economically. There is
a tremendous investment in both C and FORTRAN programs as well as in training programmers
and perfecting their skills in programming these two languages. Therefore, to narrow the historical
gap, we will merge these two most popular languages, C and FORTRAN, into a single program-
ming language — the Ch programming language. Ch is designed to be a superset of ISO C with
incorporation of all the programming features of Fortran 90. The Ch programming language has
been enhanced for design automation. It has been used as a teaching and learning tool at UC Davis
for an undergraduate course, Computer-Aided Mechanism Design (Cheng, 1994a). In this paper
we will describe the new programming features that are desirable for design automation, as they
are currently implemented in Ch, in comparison with C and FORTRAN 77.

2 PROGRAMMING IN THE ENTIRE REAL DOMAIN

The IEEE 754 standard (IEEE, 1985) for binary floating-point arithmetic is a significant milestone
on the road to consistent floating-point arithmetic with respect to real numbers. This standard has
significantly influenced the design of Ch. The IEEE 754 standard distinguishes 4-0.0 from —0.0,
which introduces an extra complexity for programming. The rationale for this extra complexity is
not well understood and accepted by all computer scientists. Many have challenged the necessity for
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the sign of zeros. Apparently, how to best handle “the sign of nothing” is still a topic to be further
investigated. Another important feature of the IEEE 754 standard is the internal representations
for the mathematical infinities and invalid value. The mathematical infinity oo is represented by
the symbol of Inf. A mathematically indeterminate or an undefined value such as division of zero
by zero is represented by NaN, which stands for Not-a-Number. Many computer hardware support
signed zeros, infinity, and NaN. Information about low-level and limited high-level instruction sets
provided by hardware vendors may not be relevant to the application programmer and most features
of a final system depend on the software implementation. Even for IEEE machines, if there is no
provision for propagating the sign of zeros, infinity, and NaN in a consistent and useful manner
through the software support, they will have to be programmed as if zeros were unsigned, without
infinity and NaN. Based on IEEE machines, some vendors provide software support for the IEEE
754 standard through libraries. However, these special values in libraries are not transparent to
the programmer. Although the application of symbols such as Inf and NaN can be found in some
software packages, their handling of these special numbers is often full of flaws. For example, one
can find ComplexInfinity in the software package Mathematica, and Inf and NaN in MATLAB.
In Mathematica, there is no distinction between complex infinity and real infinities, nor between
—0.0 and 0.0; therefore, many operations defined in Ch cannot be achieved in this package. In
MATLAB, there is no complex infinity, and one will be surprised by some of its results. At one
point, the sign of a zero is honored, but at an other point, it may not be. For example, acosh(Inf)
equals NaN whereas acos(Inf) is a complex NaN. Results of mathematical functions in many cases
are not consistent with mathematical conventions. It is in these grey areas that the IEEE 754
standard is not supported in many implementations of hardware and software systems.

To make the power of the IEEE 754 standard easily available to the programmer, the floating-
point numbers of —0.0, 0.0, Inf, —Inf, and NaN, referred to as metanumbers, are introduced in Ch
(Cheng, 1993a). These metanumbers are transparent to the programmer. Signed zeros +0.0 and
—0.0 in Ch behave like correctly signed infinitesimal quantities 04 and 0_, whereas symbols Inf and
—Inf correspond to mathematical infinities oo and —oo, respectively. The manipulation capabili-
ties of Inf and NaN in Ch go far beyond the scope used in mathematical software packages such as
Mathematica and MATLAB. The IEEE 754 standard only addresses the arithmetic involving these
metanumbers. These metanumbers are extended in Ch consistently to commonly used mathemat-
ical functions in the spirit of the IEEE 754 standard. There are provisions for consistent handling
of metanumbers in I/0O, arithmetic, relational and logic operations, and polymorphic mathematical
functions in Ch (Cheng, 1993a).

The metanumbers 0.0, —0.0, Inf, —Inf, and NaN are very useful for design automation. For
example, the discontinuity at the origin can be expressed using signed zeros. The infinity of
mechanical advantage at a toggling position for a four-bar linkage can be written as Inf. If there
exists no solution for output link corresponding to a given input link position of a four-bar linkage,
the solution can be represented symbolically as NaN (Cheng, 1994a).

3 PROGRAMMING IN THE EXTENDED FINITE COMPLEX PLANE

Complex number, an extension of real number, has wide applications in science and engineering. It
is very useful for analysis and design of planar mechanisms (Erdman and Sandor, 1991). Owing to
its importance in scientific programming, numerically oriented programming languages and software
packages usually provide complex number support in one way or another. For example, FORTRAN
has provided complex data type since its earliest days. C does not have complex as a basic data type
because numerically oriented scientific computing was not its original design goal. Computations
involving complex numbers can be introduced as a data structure in C. However, programming
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with such a structure is somewhat clumsy, because for each operation a corresponding function has
to be invoked. Using C++ (Stroustrup, 1987), a class for complex numbers can be created. By
using operator and function overloadings, built-in operators and functions can be extended so as to
also apply to the complex data type. Therefore, the complex data type can be achieved. However,
it may be too involved for novice users to create such a class.

The reason for providing complex as a basic data type is not only for programming conve-
nience, but also for design considerations. Design considerations such as implicit data type conver-
sion, handling of metanumbers, computational complex arrays, lvalues, and optional arguments in
multiple-valued complex functions used as branch indicators are difficult to implement at a user’s
program level even for a language like C++ with operator and function overloading capabilities.
They should best be handled as language primitives. Most textbooks avoid issues related to the
complex infinity. Likewise, none of the currently existing general-purpose computer programming
languages has provisions for consistent handling of complex infinity. Ch provides real metanumbers
of 0.0, —0.0, Inf, —Inf, and NaN, which makes the power of the IEEE 754 standard for binary
floating-point arithmetic easily available to the programmer. Ch extends the idea of metanumbers
to complex numbers not only for arithmetic, but also for commonly used mathematical functions
in the spirit of the IEEE 754 standard and C (Cheng, 1993b). Because of the finite represen-
tation of floating-point numbers, complex numbers in Ch are programmed in the extended finite
complex plane. Any complex or float compler values inside the ranges of |z| < FLT_MAX and
ly| < FLT_-MAX are representable in finite floating-point numbers. Variable z is used to represent
the real part of a complex number and y the imaginary part; FLT_MAX, a predefined system con-
stant, is the maximum representable finite floating-point number in the float data type. For double
complez, the boundary for the extended finite complex plane will be expanded from FLT_MAX to
DBL_MAX. A variable of double complex occupies 16-bytes; real and imaginary part each takes
8-bytes of double data type. A variable of long double complex is treated as if it was a double
complex. Outside the extended finite complex plane, a complex number is treated as a Complex-
Infinity represented as ComplexInf or complex(Inf,Inf) in Ch. The origin of the extended finite
complex plane is complex(0.0, 0.0) or ComplexZero, which stands for Complex-Zero. In Ch, an
undefined or a mathematically indeterminate complex number is denoted as complex(NaN, NaN)
or ComplexNaN, which stands for Complex-Not-a-Number. The special complex numbers of Com-
plexZero, ComplexInf, and ComplexNaN are referred to as complex metanumbers. Because of the
mathematical infinities of £o00, it becomes necessary to distinguish a positive zero 0.0 from a neg-
ative zero —0.0 for real numbers. Unlike the real line, along which real numbers can approach the
origin through the positive or negative numbers, the origin of the complex plane can be reached in
any direction in terms of the limit value of lim,_,o re? where r is the modulus and @ is the phase of
a complex number. Therefore, complex operations and complex functions in Ch do not distinguish
0.0 from —0.0 for real and imaginary parts of complex numbers. It is believed that Ch is the
first general-purpose computer programming language that has provisions for consistent handling
of signed zeros, signed infinities, and unsigned NaN in real numbers, and it also has consistent
handling of complex zero, complex infinity, and complex NaN as well as multiple-valued complex
functions with optional arguments. Applications of complex numbers in Ch for planar mechanism
design are presented by Cheng (1994a).

4 PROGRAMMING IN THE EXTENDED FINITE DUAL PLANE

Clifford (1873) introduced dual numbers in the form of x + ey with €2 = 0 to form bi-quaternions
(called dual quaternions nowadays) for studying the non-Euclidean geometry. Dual numbers d €
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D = {(z,y)|z,y € R} can be defined as ordered pairs

d=(z,y) (1)

with specific addition and multiplication rules. The real numbers = and y are called the real and
dual parts of d, respectively. If both x and y of a dual number are not zero, it is called a proper
dual number. If we identify the pair of (z,0) as real numbers, the real number R is a subset of
D; that is, R = {(z,y)|z € R,y = 0} and R C D. If a real number is considered either as z or
(z,0) and let ¢ denote the pure dual number (0,1) with the property of 2 = 0, dual numbers can
be written as

d=z+¢y (2)

Dual numbers are useful for analytical treatment in kinematics and dynamics of spatial mecha-
nisms (Yang and Freudenstein, 1964; Ravani and Roth, 1984; Pennock and Yang, 1985; Dooley
and McCarthy, 1991). Succinct formulas and equations can be derived by using dual numbers.
However, the concise dual formulas cannot be conveniently implemented in a computer program
using commonly used computer programming languages. The conciseness of a symbolic formula
diminishes when numerical computations are needed. Therefore, the application of dual numbers
in the study of problems in science and engineering has not yet been fully appreciated.

For the similar reasons of complex, dual is also implemented as a built-in data type, one of the
primitives of the Ch language (Cheng, 1994b). Dual numbers and dual metanumbers are handled
in the same manner as complex ones. For example, data types of float dual or dual, double dual,
and long double dual are available. Ch is the first computer programming language, to the best of
our knowledge, that provides dual as a basic data type. Formulas formulated in dual numbers can
be translated into Ch programs as easily as those expressed in real or complex numbers (Cheng
and Thompson, 1995).

Ch is a loosely typed language. All arguments of calling functions will be checked for compat-
ibility with the data types of the called functions. The order of the data types in Ch is in the
following sequence: char, int, float, double, complex, and dual. Char is the lowest data type and
dual the highest. The data types of operands for an operation will also be checked for compatibility.
However, unlike languages such as Pascal; which prohibits automatic type conversion, some data
type conversion rules have been built into Ch so that they can be invoked whenever necessary. This
will save many type conversion statements for a program.

5 POLYMORPHISM

A computer language with no mathematical functions is not suitable for design automation. Unlike
FORTRAN, in which commonly used mathematical functions are handled as intrinsic functions,
C is a small language — it does not provide mathematical functions internally. All functions in
C are external. Because C does not provide mathematical functions internally, like arithmetical
operations in K&R C, the return value from a standard mathematical function is a double floating-
point number regardless of the data types of the input arguments. In some of C implementations,
if the input arguments are not doubles, the mathematical functions may return erroneous results
without warning. The ISO C mathematical standard library does not provide any float functions. If
a different return data type is desired for a mathematical function, a new function with a different
name will be needed. For example, functions sinf(), sin(), and sinl() are reserved for float,
double, and long double sine functions, respectively. The expression sin(1) appears correct in C.
Indeed, most C programs will execute this operation calmly, but maybe with an erroneous result
because the input data type of integer does not match with the data type for the argument of the
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sin() function. Possible proliferations of the sine function could be csinf(), csin(), and csinl()
for float, double, and long double complex; dsinf(), dsin(), and dsinl() for float, double, and
long double dual, respectively. As a result, one has to remember many arcane names for different
functions.

The external functions of Ch can be created in the same manner as in C. Unlike C, however, the
commonly used mathematical functions are built internally into Ch. The mathematical functions in
Ch can handle different data types of the arguments gracefully in the same manner as the intrinsic
functions in FORTRAN. The output data type of a function depends on the data types of the input
arguments, which is called polymorphism. Like arithmetic operators, the built-in commonly used
mathematical functions in Ch are polymorphic. For example, the intrinsic function pow(x,y) is
defined as z¥. The variables x and y can be char, int, float, double, complex, or dual data types.
If both x and y are integral values, the return data type is an integer value which is obtained
using a more efficient algorithm than for exponentiation of real numbers. In this case, function
pow() is equivalent to the exponentiation operator ** in FORTRAN. Note that there is no integer
exponentiation operator or integer exponentiation function in ISO C. If x or y is a complex number,
function pow(x,y) returns a complex value polymorphically. Unique to Ch is its optional argument
for multiple-valued complex functions. For example, function pow(x,y,i) will calculate the ith
branch of the multiple-valued complex exponential function (Cheng, 1993b);

For portability, all mathematical functions included in the C header math.h have been imple-
mented polymorphically in Ch. The names of built-in mathematical functions of Ch are based
upon the C header math.h. However, one can change, add, or remove these functions and oper-
ators in Ch if necessary (Cheng, 1993a). These mathematical functions are C compatible. If the
arguments of these functions have the data types of the corresponding C mathematical functions,
there is no difference between the C and Ch functions from a user’s point of view. Besides the
polymorphic nature, the mathematical function in Ch is more powerful owing to its abilities to
handle metanumbers.

6 REFERENCES

A program written in a procedural programming language such as FORTRAN or C is generally
formed by a set of functions, which subsequently consist of many programming statements. Using
functions, a large computing task can be broken into smaller ones; a user can develop application
programs based on what others have done instead of starting from scratch. The performance and
user friendly interface of functions are critical to a programming language. The user may not need
to know details inside functions that were developed by others. But, to use the functions effectively,
the user has to understand how to interface functions through their arguments and return values.
In general, arguments can be passed to functions in one of two ways: call-by-value and call-by-
reference. In the call-by-value model, when a function is called, the values of the actual parameters
are copied into formal parameters local to the called function. When a formal parameter is used
as an lvalue, only the local copy of the parameter will be altered. If the user wants the called
function to alter its actual parameters in the calling function, the addresses of the parameters must
be passed to the called function explicitly. In the call-by-reference method, however, the address of
an argument is copied into the formal parameter of a function. Inside the function, the address is
used to access the actual argument used in the calling function. This means that when the formal
parameter is used as an lvalue, the parameter will affect the variable used to call the function.
FORTRAN uses the call-by-reference model, whereas C uses the call-by-value. When a FORTRAN
subroutine or function is ported as a function in C, the formal arguments of the subroutine are
generally treated as arguments of pointer type in the function of C. All variables of arguments
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inside a subroutine then have to be modified accordingly, which may degrade the clarity of the
original algorithm and code readability. This is also a point where beginners of C who have prior
FORTRAN experience get confused. Ch is designed to be a superset of C, but it encompasses all
the programming capabilities of FORTRAN 77. To bridge the gap between C and FORTRAN,
references in Ch are designed and implemented in the spirit of C, C++, and FORTRAN. For
example, following is a valid Ch code:

int a = 5, b = 6;
void swap(int &x, &y) /* pass-by-reference */

{
int temp;
temp = x; x = y; y = temp;
}
swap(a, b); /* swap a and b */

We have extended the linguistic features of references in C++ and FORTRAN for design au-
tomation. Variables of basic data type and variables of pointer type can be used as references. In
Ch variables of different data types can be passed to arguments of functions by reference, which
transcends a long-standing tradition of scientific programming in typed programming languages.
Furthermore, references can be used as both arguments and local variables of nested and recursively
nested functions. Functions in Ch can be called either by value or by reference. Many restrictions
in FORTRAN 77 about call-by-reference are relaxed in Ch. For example, the data types of actual
arguments of a function should be the same as those of the formal arguments of the function in
FORTRAN. In Ch, the data types of actual arguments of functions can be different from those of
the corresponding formal arguments of references in functions. In FORTRAN, when an argument of
a subroutine is used as an lvalue inside a subroutine, the actual argument in the calling subroutine
must be a variable. Unlike in FORTRAN, a reference variable in Ch can be used as an lvalue inside
a function even if the actual argument is not an lvalue. More details about linguistic features of
references in Ch and its applications in mechanism design can be found in (Cheng 1993c; 1994a).

7 NESTED FUNCTIONS

As described in the previous section, a program written in C or FORTRAN is formed by a set of
functions, which subsequently consist of many programming statements. All functions, including
the function main(), in C are at the same level; functions cannot be defined inside other functions.
In other words, there are no internal procedures in C. It has been pointed out by the C inventor that
“They have been forbidden not for any philosophic reason, but only to simplify the implementation”
(Ritchie, et al., 1978). Ch extends C with nested functions. Functions in Ch can not only be
recursive, but also be nested, which means that a function not only can call itself, but also can
define other functions inside the function (Cheng, 1993c).

With nested functions, details of one functional module can be hidden from the other modules
which do not need to know about them. Each module can be studied independently of others.
Nested functions modularize a program, thus clarifying the whole program and easing the pain
of making changes to modules written by others. This programming feature is very important
for writing modular and resuable code. This feature has been proved very useful for developing
teaching tool-boxes in assisting student learning of mechanism design (Cheng, 1994a).
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8 COMPUTATIONAL ARRAYS

Arrays in C are intimately tied with pointers. Treating array variables as pointers in C is very
elegant for system programming;; it is one of C’s major strengths. But numerically oriented scientific
computing was not the original design goal of C, as is reflected in an assumption made by the C
inventor that “C provides rectangular multi-dimensional arrays, although in practice they are much
less used than arrays of pointers” (Kernighan and Ritchie, 1978). This assumption is true only
when C is used for system programming, because multi-dimensional arrays are essential for design
automation.

Elements of an array in C are stored row-wise so that the second subscript (column) varies
faster than the first subscript (row) as elements are accessed in the storage order. The row-wise
storage pattern for elements of arrays and each index of arrays with the lower bound of zero is used
mainly because variables of array type are also treated as pointers in C. The storage for elements of
an array in C is different from that in FORTRAN, which stores elements of an array column-wise.
In order to facilitate the integration of C and FORTRAN, the best solution is to treat the array as
a single object in a program.

Regular arrays in Ch are fully ISO C compatible. Computational arrays in Ch can be ma-
nipulated as single objects. Computational arrays can be specified by type qualifier array. The
default keyword can be changed if there is a conflict with the existing C code. What distinguish the
computational array in Ch from other languages is its simplicity and similarity to mathematical
formulas. Not only computational arrays of real and complex numbers, but also computational
dual arrays are available in Ch.

9 AN APPLICATION EXAMPLE

The nested functions, polymorphism, and computational arrays in Ch can be demonstrated by the
computation of the forward kinematics of general six-degree-of-freedom robot manipulators. The
forward kinematics refers to the process that computes the position and orientation of the end-
effector of a robot manipulator when joint angles of the manipulator are given. For a six-degree-of-
freedom robot kinematic chain, the body coordinate system X;Y;Z;0; is attached to body i which
is the physical link between joints ¢ — 1 and ¢. The transformation matrix which transforms the
position specified in the body coordinate system X;11Y;1+17;+10;4+1 to the body coordinate system
X,;Y;Z; can be formulated using Denavit-Hartenberg notation as follows:

cos®; —sinb;cosqa; sinb;sina;  a; cosb;
D, = sinf; cosf;cosa; —cosb;sinw; a;sinb; 3)
0 sin o COS ; d;
0 0 0 1

where «; is the twist angle between Z; and Z;1 measured about axis X;11, a; the shortest distance
between Z; and Z;;; measured along the common normal X1, d; the shortest distance between
X; and X;41 along Z;, and 6; the angle between X; and X;;; measured along Z;. According to
the above definition, body 0 is the base of the robot manipulator and the world inertial frame
is XoY9ZpOg. There are seven coordinate systems XoYyZqOy, ..., XgYsZ60¢ for a six-degree-of-
freedom robot manipulator, its forward kinematics then becomes the computation of products of
transformation matrices as

R
Tg = l o 1)16 ] = D;D,D;3;D,D;5Dg (4)
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Program 1: FUNCTION forward_kinematics().

where the 3x3 rotation matrix Rg gives the orientation of the end-effector and 3x1 vector pg locates
the tool center point of the end-effector represented in the base coordinate system XYy ZyOp; the
coordinate transformation matrix D; is defined in equation (3).
For illustrative purpose, we will use dual matrices to compute robot forward kinematics. Using
dual angles
éi = 0; + ed; (5)

and
b&; = o + €a;, (6)

the corresponding dual D-H transformation matrix can be derived by the successive screw trans-
formations as follows (Cheng, 1994b)

cosf); —sinf;cosa; sinb;sinq;
D; = | sinf; cosf@;cos@; — cosb;sind; (7)
0 sin @; COS &5

The computation of the forward kinematics can be performed using the dual D-H matrix as

A~ AN AN A A~

T = D;D,D3D,D5Dg (8)

Acoording to the theory of transference (Hsai and Yang, 1981, Gupta, 1989; Martinez and Dulffy,
1992) which establishes the relationship between the dual form and regular vector form of a trans-
formation, the following equation can be obtained

T = (I+£Pg)Re 9)

where I is a 3x3 identity matrix, Rg is the rotational part of the transformation matrix T4 in
equation (4), and Pg defined as

0 —Pz Dy
Pe=| p. 0 -—pg (10)
Py Pz 0

is a skew-symmetrlc matrix cons1st1ng of components of the position vector P6 in equation (4).
Given T6, Rg is the real part of T6, and Pg is the product of the dual part of T6 and transpose
of Rg. Rg and Pg can be written symbolically as follows:

—~ /7
R6 = real(TG) = T6 (11)
—~ \

Pe = dual(Ts)RﬁT = TGRGT (12)
where the accent grave symbol over a variable “°” means to take the real part of the variable
whereas the accent acute symbol “*” stands for the dual part of the variable. Equations (11) and
(12) can also be written in Ch notation as Rg = real(Tg) and Pg = dual(Tg) * transpose(Rg),
respectively. R

The dual transformation matrix Tg can be easily computed in Ch using the function forward kinematics ()
shown in Program 1. In Program 1, the 3x3 computational dual array T6[3] [3] corresponding to
dual transformation matrix T in equation (8) is the output of the function passed as an argument
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Program 2: COMPUTATION OF FORWARD KINEMATICS FOR PUMA 560.

of the function; theta[i] and alpha[i] corresponding to §; and d; in equations (5) and (6), re-
spectively, are the input of the function. The dual D-H matrix ]51 in equation( 7) is represented by
computational dual array Di[3] [3] in the program. Function dual DH() computes the dual D-H
matrix in equation (7). Inside the function, functions sin() and cos() will compute dual sine and
cosine of input dual angles, respectively, because these are polymorphic mathematical functions.
Because function dual DH() is called only inside the function forward kinematics(), it is defined
as a nested function. The formula (8) is translated as T6 = D1*D2xD3*D4*D5*D6 in the above Ch
program, each computational dual array is treated as a single object.
For a Puma 560 robot manipulator, the screw parameters éz and @; are given as follows:

é1:01 d1:—90 deg

0y = 0y + £149.09mm & = £431.8 mm

05 = 05 é3 = 90 deg —£20.32 mm
04 = 04 +€433.07Tmm g = —90 deg

95 == (95 &5 =90 deg

0 = Og + £56.25mm &g = 0

Program 2 can compute the forward kinematics of a Puma 560 with joint values of (10,20,30,40,50,60)
degrees.

In Program 2, polymorphic functions real() and dual() return the real and dual parts of dual
transformation matrix 'i‘ﬁ, respectively. The transpose of computational array Rg is obtained by
the array function transpose(). The standard I/O function printf() in C has been enhanced
to handle computational arrays in Ch. The following output for the dual transformation matrix
'i‘ﬁ, orientation matrix Rg, and skew-symmetric positional matrix Pg will be printed out when
Program 2 is executed in a Ch programming environment.

The dual transformation matriz T6 is

dual(-0.637,-113.792) dual(0.023, 303.913) dual(0.771,-102.919)
dual( 0.771, -85.681) dual(0.030,-727.131) dual(0.636, 137.7/3)
dual(-0.008, 759.981) dual(0.999, 14.626) dual(-0.036, 227.072)
The rotational matriz R6 is

-0.637 0.023 0.771

0.771 0.030 0.636

-0.008 0.999 -0.036

The skew-symmetric matriz for the position vector pb is

0.000 -144.209 308.395

144.209 0.000 -730.916

-308.395 730.916 0.000

10 CONCLUSIONS

The Ch programming language bridges the gap between C and FORTRAN 77 with many ex-
tensions. It is designed to be especially suitable for applications in design automation, although
programming features in Ch are useful for applications in many other areas as well. In this paper we
have presented new programming features metanumbers, complex and dual types, polymorphism,
references, nested functions, and computational arrays, as they are currently implemented in Ch

10
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in comparison with C and FORTRAN 77. These new programming features can be very useful for
solving problems in design automation as shown in the application example.
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